Acetone selectivity; Aluminium doped ZnO nanoparticles; Volatile organic compounds sensors; Al-doped ZnO; Aluminum doped ZnO nanoparticle; Aluminum-doped ZnO; AZO nanoparticles; Compound sensors; Doped ZnO; Pure ZnO; Volatile organic compound sensor; ZnO nanoparticles; Electronic, Optical and Magnetic Materials; Ceramics and Composites; Chemistry (all); Biomaterials; Condensed Matter Physics; Materials Chemistry; General Chemistry
Abstract :
[en] We report the preparation and characterization of pure and doped ZnO nanoparticles with 1%, 3%, and 5% aluminum (AZO) using a sol-gel method followed by annealing at 400 °C for 2 h. The structural and morphological properties of the AZO nanoparticles were analyzed using X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) techniques, and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectrometry (EDS). Optical and specific area properties were investigated by photoluminescence (PL) and N2 physisorption measurements. The results showed that pure and doped AZO nanoparticles crystallize under a hexagonal wurtzite structure and exhibit spherical shapes with nanometric dimensions. TEM and SEM images revealed that the pure and Al-doped ZnO were round nanoparticles with a size smaller that 100 nm. FTIR measurements were conducted to investigate the presence of Al-O stretching vibrations, which served as an indication of aluminum incorporation into the ZnO lattice. The results confirmed the successful integration of aluminum into the ZnO structure. Additionally, XPS measurements were performed to examine the elemental composition of the AZO samples. The presence of Zn 2p peaks in all AZO samples, along with the presence of Al 2p peaks in the Al-doped ZnO structures, provided further evidence for the successful incorporation of Al ions into the ZnO lattice. The PL spectra revealed the presence of various defects (oxygen vacancies, interstitials) in the structure of pure and doped ZnO. Moreover, we fabricated gas sensors by spray-coating the AZO nanoparticles on alumina substrates equipped with interdigitated gold electrodes. The sensors demonstrated linear responses to gas concentration in the range of 5 to 50 ppm, with high sensitivity and good reproducibility, particularly for A1ZO (1% Al-doped ZnO), which exhibited the highest response (~12) at 300 °C under 10 ppm of acetone. Furthermore, A1ZO demonstrated excellent selectivity to acetone compared to other volatile organic compounds (VOCs) gases. Our findings highlight the potential of aluminum-doped ZnO nanoparticles as a promising material for enhancing the sensing properties of acetone gas sensors. Graphical Abstract: [Figure not available: see fulltext.]
Disciplines :
Materials science & engineering
Author, co-author :
Benamara, Majdi ; Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes University, Gabes, Tunisia
Rivero-Antúnez, Pedro; Departamento de Física de la Materia Condensada, Universidad de Sevilla, Sevilla, Spain
Dahman, Hassen; Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes University, Gabes, Tunisia
Essid, Manel; Chemistry Department, College of Science, King Khalid University (KKU), Abha, Saudi Arabia
Bouzidi, Souhir; Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, Avenue de l’Environnement Monastir, Monastir, Tunisia
Debliquy, Marc ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux
Lahem, Driss ; Université de Mons - UMONS > Unités externes > Materia Nova ASBL ; Materia Nova, Materials R&D Centre, Parc Initialis, Avenue Nicolas Copernic 3, Mons, Belgium
Morales-Flórez, Víctor; Departamento de Física de la Materia Condensada, Universidad de Sevilla, Sevilla, Spain ; Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Sevilla, Spain
Esquivias, Luis; Departamento de Física de la Materia Condensada, Universidad de Sevilla, Sevilla, Spain ; Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Sevilla, Spain
Silva, José P. B.; Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal ; Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga, Portugal
El Mir, Lassaad; Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes University, Gabes, Tunisia
Language :
English
Title :
Selective and rapid detection of acetone using aluminum-doped zno-based sensors
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funding text :
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP2/110/44.This work is financially supported by the Tunisian Ministry of Higher Education and Scientific Research (PRF 2019-D4P2), the European Regional Development Fund (ERDF), and the Walloon Region of Belgium through the Interreg V France-Wallonie-Vlaanderen program, under PATHACOV project, and the Micro + project co-funded by the European Regional Development Fund (ERDF) and Wallonia, Belgium (No. 675781-642409). In addition, this work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding Contract UIDB/04650/2020. J.P.B.S. also expresses gratitude to FCT for the contract under the Institutional Call to Scientific Employment Stimulus – 2021 Call (CEECINST/00018/2021).
Iben Nassar K, Rammeh N, Soreto Teixeira S, Graça MPF (2022) Physical Properties, Complex Impedance, and Electrical Conductivity of Double Perovskite LaBa0.5Ag0.5FeMnO6. J Electron Mater 51(1):370–377 DOI: 10.1007/s11664-021-09301-z
Benamara M, Massoudi J, Dahman H, Dhahri E, El Mir L, Ly A, Lahem D (2020) High response to sub-ppm level of NO2 with 50% RH of ZnO sensor obtained by an auto-combustion method. J Mater Sci Mater Electron 31(17):14249–14260 DOI: 10.1007/s10854-020-03981-9
Spanel P, Dryahina K, Rejskova A, Chippendale TWE, Smithm D (2011) Breath acetone concentration; biological variability and the influence of diet. Physiol Meas 32:23–31 DOI: 10.1088/0967-3334/32/8/N01
Anderson JC, Lamm WJE, Hlastala MP (2006) Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver. J Appl Physiol 100:880–889 DOI: 10.1152/japplphysiol.00868.2005
Anderson JC (2015) Measuring breath acetone for monitoring fat loss. Obesity 23:2327–2334 DOI: 10.1002/oby.21242
Wang LL, Chen S, Li W, Wang K, Lou Z, Shen G (2019) Grain‐boundary‐induced drastic sensing performance enhancement of polycrystalline‐microwire printed gas sensors. Adv Mater 31:1804583 DOI: 10.1002/adma.201804583
Wang WC, Liu FQ, Wang B, Wang Q (2019) Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-temperature NH3 sensing. Chin Chem Lett. 30:1261–1265 DOI: 10.1016/j.cclet.2018.12.030
Deng L, Bao L, Xu J, Wang D, Wang X (2020) Highly sensitive acetone gas sensor based on ultra-low content bimetallic PtCu modified WO3·H2O hollow sphere. Chin Chem Lett 31(8):2041–2044 DOI: 10.1016/j.cclet.2020.04.033
Xu DS, Xu PC, Wang XQ, Chen Y, Yu H, Zheng D, Li X (2020) Pentagram-Shaped Ag@ Pt Core–Shell Nanostructures as High-Performance Catalysts for Formaldehyde Detection. ACS Appl Mater Interf 12:8091–8097 DOI: 10.1021/acsami.9b17201
Benamara M, Zahmouli N, Soreto Teixeira S, Graça MPF, El Mir L, Valente MA (2022) Electrical and Magnetic Studies of Maghemite (γ-Fe2O3) Prepared by the Sol–Gel Route. J Electron Mater 51(5):2698–2707 DOI: 10.1007/s11664-022-09539-1
Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C (2015) Electrolytically Exfoliated Graphene-Loaded Flame-Made Ni-Doped SnO2 Composite Film for Acetone Sensing. ACS Appl Mater Interf 7:3077–3092 DOI: 10.1021/acsami.5b00161
Wang L, Teleki A, Pratsinis SE, Gouma PI (2008) Ferroelectric WO3 Nanoparticles for Acetone Selective Detection. Chem Mater 20:4794–4796 DOI: 10.1021/cm800761e
Darvishnejad MH, Firooz AA, Beheshtian J, Khodadadi AA (2016) Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) onto hexagonal ZnO plates. RSC Adv 6:7838–7845 DOI: 10.1039/C5RA24169C
Palanisamy S, Ezhil Vilian AT, Chen SM (2012) Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int J Electrochem Sci 7:2153–2163 DOI: 10.1016/S1452-3981(23)13869-7
Yang K, She GW, Wang H, Ou XM, Zhang XH, Lee CS, Lee ST (2009) ZnO nanotube arrays as biosensors for glucose. J Phys Chem C 113:20169–20172 DOI: 10.1021/jp901894j
Li SM, Zhang LX, Zhu MY, Ji GJ, Zhao LX, Yin J, Bie LJ (2017) Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sens. Actuators B Chem 249:611–623 DOI: 10.1016/j.snb.2017.04.007
Kohl D (1990) The role of noble metals in the chemistry of solid-state gas sensors. Sens Actuators B Chem 1:158–165 DOI: 10.1016/0925-4005(90)80193-4
Trivikrama Rao GS, Tarakarama Rao D (1999) Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sens Actuators B Chem 55:166–169 DOI: 10.1016/S0925-4005(99)00049-0
Yang Z, Huang Y, Chen G, Guo Z, Cheng S, Huang S (2009) Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sens. Actuators B Chem 140:549–556 DOI: 10.1016/j.snb.2009.04.052
Iben Nassar K, Slimi M, Rammeh N, Bouhamed A, Njeh A, Kanoun O (2021) Investigation of AC electrical conductivity and dielectric properties of BiBaFeZnO6 double perovskite oxides. J Mater Sci: Mater Electron 32:24050–24057
Yoo R, Güntner AT, Park Y, Rim HJ, Lee HS, Lee W (2019) Sensing of acetone by Al-doped ZnO. Sens Actuators B Chem 283:107–115 DOI: 10.1016/j.snb.2018.12.001
Koo A, Yoo R, Woo SP, Lee HS, Lee W (2019) Enhanced acetone-sensing properties of Pt-decorated Al-doped ZnO nanoparticles. Sens Actuators B Chem 280:109–119 DOI: 10.1016/j.snb.2018.10.049
Rath RJ, Farajikhah S, Oveissi F, Dehghani F, Naficy S (2023) Chemiresistive Sensor Arrays for Gas/Volatile Organic Compounds Monitoring: A Review. Adv Eng Mater 25(3):2200830 DOI: 10.1002/adem.202200830
Epping R, Koch M (2023) On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 28(4):1598 DOI: 10.3390/molecules28041598
El Ghoul J, Omri K, El Mir L, Barthou C, Alaya S (2012) Sol-gel synthesis and luminescence properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials. J Lumin 132:2288 DOI: 10.1016/j.jlumin.2012.03.069
Rajput P, Vashishtha P, Gupta G, Kamni (2021) A comparative study on structural and optical properties of ZnO nanoparticles prepared by three different synthesis methods. Mater Today Proc 43:3856–3861 DOI: 10.1016/j.matpr.2020.12.1177
Nguyen HTP, Nguyen TMT, Hoang CN, Le TK, Lund T, Huynh TKX (2020) Characterization and photocatalytic activity of new photocatalysts based on Ag, F-modified ZnO nanoparticles prepared by thermal shock method. Arab J Chem 13:1837–1847 DOI: 10.1016/j.arabjc.2018.01.018
Anugrahwidya R, Yudasari N, Tahir D (2019) Optical and structural investigation of synthesis ZnO/Ag Nanoparticles prepared by laser ablation in liquid. Mater Sci Semicond Process 105:104712 DOI: 10.1016/j.mssp.2019.104712
Taha KK, Modwi A, Elamin M, Arasheed R, Al-Fahad AJ, Albutairi I, Arasheed H, Alfaify M, Anojaidi K, Algethami FK (2019) Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles. J Photochem Photobiol A Chem 390:112263 DOI: 10.1016/j.jphotochem.2019.112263
Benamara M, Zahmouli N, Kallekh A, Bouzidi S, El Mir L, Alamri HR, Valente MA (2023) Study of the magnetic properties of Mg, Gd, and Co doped maghemite (γ-Fe2O3) nanoparticles prepared by sol–gel. J Magn Magn Mater 569:170479 DOI: 10.1016/j.jmmm.2023.170479
Ahammed N, Hassan MS, Hassan M (2018) Effects of aluminum (Al) incorporation on structural, optical and thermal properties of ZnO nanoparticles. Mater Sci -Pol 36 3:419–426 DOI: 10.1515/msp-2018-0018
Jantrasee S, Moontragoon P, Pinitsoontorn S (2016) Thermoelectric properties of Al-doped ZnO: experiment and simulation. J. Semicond. 37(9):092002 DOI: 10.1088/1674-4926/37/9/092002
Garcia-Martinez O, Rojas RM, Vila E, De JM (1993) Vidales, Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ion 63:442–449 DOI: 10.1016/0167-2738(93)90142-P
Vayssilov GN, Aleksandrov HA, Dib E, Costa IM, Nesterenko N, Mintova S (2022) Superacidity and spectral signatures of hydroxyl groups in zeolites. Microporous Mesoporous Mater 343:112144 DOI: 10.1016/j.micromeso.2022.112144
Tong Y, Wirth J, Kirsch H, Wolf M, Saalfrank P, Campen RK (2015) Optically probing Al—O and O—H vibrations to characterize water adsorption and surface reconstruction on α-alumina: An experimental and theoretical study. Chem Phys 142(5):054704
Benamara M, Massoudi J, Dahman H, Ly A, Dhahri E, Debliquy M, El Mir L, Lahem D (2021) Study of room temperature NO2 sensing performances of ZnO1-x (x = 0, 0.05, 0.10). App Physics A 128(1):1–18
Bembibre A, Benamara M, Hjiri M, Gómez E, Alamri HR, Dhahri R, Serra A (2022) Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. J Chem Eng 427:132006 DOI: 10.1016/j.cej.2021.132006
Islam MN, Ghosh TB, Chopra KL, Acharya HN (1996) XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280(1-2):20–25 DOI: 10.1016/0040-6090(95)08239-5
Benamara M, Teixeira SS, Graça MPF, Valente MA, Jakka SK, Dahman H, Dhahri E, Debliquy M, Lahem D (2021) Study of ZnO room temperature NO2 sensor under illumination prepared by auto-combustion. App Physics A 127(9):1–15 DOI: 10.1007/s00339-021-04855-5
Neher SH, Klein H, Kuhs WF (2018) Determination of crystal size distributions in alumina ceramics by a novel X‐ray diffraction procedure. J Am Ceram Soc 101:1381–1392 DOI: 10.1111/jace.15309
Benamara M, Bouzidi S, Zahmouli N, Teixeira SS, Graça MPF, El Mir L, Valente MA (2022) Electrical transport of Mg-doped maghemite (γ-Fe2O3) nanoparticles. App Physics A 128(7):1–15 DOI: 10.1007/s00339-022-05753-0
Chand P, Gaur A, Kumar A, Gaur UK (2015) Effect of NaOH molar concentration on optical and ferroelectric properties of ZnO nanostructures. Appl Surf Sci 356:438–446 DOI: 10.1016/j.apsusc.2015.08.107
Soylu M, Coskun M (2018) Controlling the properties of ZnO thin films by varying precursor concentration. J Alloys Compd 741:957–968 DOI: 10.1016/j.jallcom.2018.01.079
Egashira M, Kanehara N, Shimizu Y, Iwanaga H (1989) Gas-sensing characteristics of Li+-doped and undoped ZnO whiskers. Sens Actuators B Chem 18:349–360 DOI: 10.1016/0250-6874(89)87041-6
Shimizu Y, Kai S, Takao Y, Hyodo T, Egashira M (2000) Correlation between methylmercaptan gas-sensing properties and its surface chemistry of SnO2-based sensor materials. Sens Actuators B Chem 65:349–357 DOI: 10.1016/S0925-4005(99)00438-4
Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH (2008) Improvement of acetone gas sensing performance of ZnO nanoparticles. Appl Phys Lett 93:26310301–26310303
Hu J, Zou C, Su Y, Li M, Han Y, Kong ES-W, Yang Z, Zhang Y (2018) An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J Mater Chem A 6:17120–17131 DOI: 10.1039/C8TA04404J
Al-Hardan NH, Abdullah MJ, Aziz AA (2013) Performance of Cr-doped ZnO for acetone sensing. Appl Surf Sci 270:480–485 DOI: 10.1016/j.apsusc.2013.01.064
An W, Wu X, Zeng XC (2008) Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study. J Phys Chem C 112:5747–5755 DOI: 10.1021/jp711105d
Duy LV, Duy NV, Hung CM, Hoa ND, Dich NQ, (2020) Urea mediated synthesis and acetone-sensing properties of ultrathin porous ZnO nanoplates. Mater Today Commun 101445.
Shimizu Y, Kai S, Takao Y, Hyodo T, Egashira M (2000) Layered mesoporous SnO2 for effective ethanol detection at reduced working temperature. Sens. Actuators B Chem 65:349–357 DOI: 10.1016/S0925-4005(99)00438-4