Article (Scientific journals)
Kitai's Criterion for composition operators
Gomes, Daniel; Grosse-Erdmann, Karl
2025In Journal of Mathematical Analysis and Applications, 547 (2), p. 129347
Peer Reviewed verified by ORBi
 

Files


Full Text
2025KitaiCompOp.pdf
Embargo Until 01/Jan/2026 - Publisher postprint (559.06 kB) Creative Commons License - Attribution, Non-Commercial, No Derivative
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Composition operators; Kitai's Criterion; Linear dynamics; Mixing operators; Weighted shifts; Analysis; Applied Mathematics
Abstract :
[en] We present a general and natural framework to study the dynamics of composition operators on spaces of measurable functions, in which we then reconsider the characterizations for hypercyclic and mixing composition operators obtained by Bayart, Darji and Pires in 2018. We show that the notions of hypercyclicity and weak mixing coincide in this context and, if the system is dissipative, the recurrent composition operators agree with the hypercyclic ones. We also give a characterization for invertible composition operators satisfying Kitai's Criterion, and we construct an example of a mixing composition operator not satisfying Kitai's Criterion. For invertible dissipative systems with bounded distortion we show that composition operators satisfying Kitai's Criterion coincide with the mixing operators.
Research center :
CREMMI - Modélisation mathématique et informatique
Disciplines :
Mathematics
Author, co-author :
Gomes, Daniel ;  Departamento de Matemática, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, Brazil
Grosse-Erdmann, Karl  ;  Université de Mons - UMONS > Faculté des Sciences > Service d'Analyse fonctionnelle
Language :
English
Title :
Kitai's Criterion for composition operators
Publication date :
15 July 2025
Journal title :
Journal of Mathematical Analysis and Applications
ISSN :
0022-247X
eISSN :
1096-0813
Publisher :
Academic Press Inc.
Volume :
547
Issue :
2
Pages :
129347
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
Mathematical Analysis
Research institute :
Complexys
Funders :
Fonds de la Recherche Scientific
Fundação de Amparo à Pesquisa do Estado de São Paulo
Funding text :
The first author was supported by the S\u00E3o Paulo Research Foundation (FAPESP), grants 2021/02672-2 and 2023/03661-0; the second author was supported by the Fonds de la Recherche Scientifique - FNRS under grant n o CDR J.0078.21.
Available on ORBi UMONS :
since 26 February 2025

Statistics


Number of views
13 (3 by UMONS)
Number of downloads
1 (1 by UMONS)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi UMONS