[en] The aim of this work is to perform a network analysis on the French adaptation of the interpersonal reactivity index (IRI) scale from a large Belgian database and provide additional information for the construct of empathy. We analyze a database of 1973 healthy young adults who were queried on the IRI scale. A regularized partial correlation network is estimated. In the visualization of the model, items are displayed as nodes, edges represent regularized partial correlations between the nodes. Centrality denotes a node's connectedness with other nodes in the network. The spinglass algorithm and the walktrap algorithm are used to identify communities of items, and state-of-the-art stability analyses are carried out. The spinglass algorithm identifies four communities, the walktrap algorithm five communities. Positive edges are found among nodes belonging to the same community as well as among nodes belonging to different communities. Item 14 ("Other people's misfortunes do not usually disturb me a great deal") shows the highest strength centrality score. The network edges and node centrality order are accurately estimated. Network analysis highlights interesting connections between indicators of empathy; how these results impact empathy models must be assessed in further studies.
Disciplines :
Neurosciences & behavior
Author, co-author :
Briganti, Giovanni ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Anatomie humaine et Oncologie expérimentale ; Department of Psychiatry, C.U.B., Erasme Hospital, Université libre de Bruxelles,
Kempenaers, Chantal; Department of Psychiatry, C.U.B., Erasme Hospital, Université libre de Bruxelles,
Braun, Stéphanie; Department of Psychiatry, C.U.B., Erasme Hospital, Université libre de Bruxelles,
Fried, Eiko I; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B,
Linkowski, Paul; Department of Psychiatry, C.U.B., Erasme Hospital, Université libre de Bruxelles,
Language :
English
Title :
Network analysis of empathy items from the interpersonal reactivity index in 1973 young adults.
Armour, C., Fried, E.I., Deserno, M.K., Tsai, J., Pietrzak, R.H., A network analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in U.S. military veterans. J. Anxiety Disord. 45 (2017), 49–59 https://doi.org/10.1016/j.janxdis.2016.11.008.
Beard, C., Millner, A.J., Forgeard, M.J.C., Fried, E.I., Hsu, K.J., Treadway, M.T., et al. Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychol. Med. 46 (2016), 3359–3369 https://doi.org/10.1017/S0033291716002300.
Blair, R.J.R., Responding to the emotions of others: dissociating forms of empathy through the study of typical and psychiatric populations. Conscious. Cogn. 14 (2005), 698–718 The Brain and Its Self https://doi.org/10.1016/j.concog.2005.06.004.
Bohart, A.C., Greenberg, L., Empathy reconsidered: new directions in psychotherapy,. n.d, 1997, APA.
Borsboom, D., Cramer, A.O.J., Network analysis: an integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9 (2013), 91–121 https://doi.org/10.1146/annurev-clinpsy-050212-185608.
Boschloo, L., Borkulo, C.D.van, Borsboom, D., Schoevers, R.A., A prospective study on how symptoms in a network predict the onset of depression. PPS 85 (2016), 183–184 https://doi.org/10.1159/000442001.
Braun, S., Rosseel, Y., Kempenaers, C., Loas, G., Linkowski, P., Self-report of empathy: a shortened French adaptation of the interpersonal reactivity index (IRI) using two large Belgian samples. Psychol. Rep. 117 (2015), 735–753 https://doi.org/10.2466/08.02.PR0.117c23z6.
Briganti, G., Linkowski, P., Fried, E.I., Kempenaers, C., Braun, S., Data for: “Network Analysis Of Empathy Items From The Interpersonal Reactivity Index In 1973 Young Adults”. 2018, Mendeley Data v3 http://dx.doi.org/10.17632/8vhkd7mw63.3.
Bryant, R.A., Creamer, M., O'Donnell, M., Forbes, D., McFarlane, A.C., Silove, D., et al. Acute and chronic posttraumatic stress symptoms in the emergence of posttraumatic stress disorder: a network analysis. JAMA Psychiatry 74 (2017), 135–142 https://doi.org/10.1001/jamapsychiatry.2016.3470.
Cliffordson, C., The hierarchical structure of empathy: dimensional organization and relations to social functioning. Scand. J. Psychol. 43 (2002), 49–59 https://doi.org/10.1111/1467-9450.00268.
Costantini, G., Richetin, J., Borsboom, D., Fried, E.I., Rhemtulla, M., Perugini, M., Development of indirect measures of conscientiousness: combining a facets approach and network analysis. Eur. J. Pers. 29 (2015), 548–567 https://doi.org/10.1002/per.2014.
Csardi, G., Nepusz, T., The igraph software package for complex network research. InterJ. Complex Syst., 2006, 1695.
Dalege, J., Borsboom, D., van Harreveld, F., van der Maas, H.L.J., Network analysis on attitudes. Soc. Psychol. Pers. Sci. 8 (2017), 528–537 https://doi.org/10.1177/1948550617709827.
Davis, M.H., A multidimensional approach to individual differences in empathy. JSAS Catalog Sel. Doc. Psychol., 1980.
Decety, J., Bartal, I.B.-A., Uzefovsky, F., Knafo-Noam, A., Empathy as a driver of prosocial behaviour: highly conserved neurobehavioural mechanisms across species. Phil. Trans. R. Soc. B, 371, 2016, 20150077 https://doi.org/10.1098/rstb.2015.0077.
Decety, J., Jackson, P.L., The functional architecture of human empathy. Behav. Cognit. Neurosci Rev. 3 (2004), 71–100 https://doi.org/10.1177/1534582304267187.
Demetriou, A., Spanoudis, G., Kazi, S., Mouyi, A., Žebec, M.S., Kazali, E., Golino, H., Bakracevic, K., Shayer, M., Developmental differentiation and binding of mental processes with g through the life-span. J. Intell., 5, 2017, 23 https://doi.org/10.3390/jintelligence5020023.
Epskamp, S., Borsboom, D., Fried, E.I., Estimating psychological networks and their accuracy: a tutorial paper. Behav. Res., 2017, 1–18 https://doi.org/10.3758/s13428-017-0862-1.
Epskamp, S., Cramer, A.O.J., Waldorp, L.J., Schmittmann, V.D., Borsboom, D., qgraph: network visualizations of relationships in psychometric data. J. Stat. Software, 48, 2012 https://doi.org/10.18637/jss.v048.i04.
Epskamp, S., Fried, E.I., A tutorial on regularized partial correlation networks. Psychol. Methods, 2018 https://doi.org/10.1037/met0000167.
Freeman, L.C., Centrality in social networks conceptual clarification. Soc. Netw. 1 (1978), 215–239 https://doi.org/10.1016/0378-8733(78)90021-7.
Fried, E.I., Borkulo, C.D.van, Cramer, A.O.J., Boschloo, L., Schoevers, R.A., Borsboom, D., Mental disorders as networks of problems: a review of recent insights. Soc. Psychiatry Psychiatr. Epidemiol. 52 (2017), 1–10 https://doi.org/10.1007/s00127-016-1319-z.
Fried, E.I., Cramer, A.O.J., Moving forward: challenges and directions for psychopathological network theory and methodology. Perspect. Psychol. Sci. 12 (2017), 999–1020 https://doi.org/10.1177/1745691617705892.
Fried, E.I., Eidhof, M.B., Palic, S., Costantini, G., Huisman-van Dijk, H.M., Bockting, C.L.H., et al. Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: a cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clin. Psychol. Sci., 2018 https://doi.org/10.1177/2167702617745092.
Friedman, J.H., Hastie, T., & Tibshirani, R. (2014). Glasso: graphical lasso-estimation of Gaussian graphical models. R package version 1.8. Retrieved from https://CRAN.Rproject.org/package=glasso.
Glück, T.M., Knefel, M., Lueger-Schuster, B., A network analysis of anger, shame, proposed ICD-11 post-traumatic stress disorder, and different types of childhood trauma in foster care settings in a sample of adult survivors. Eur. J. Psychotraumatol., 8, 2017, 1372543 https://doi.org/10.1080/20008198.2017.1372543.
Golino, H.F., Epskamp, S., Exploratory graph analysis: a new approach for estimating the number of dimensions in psychological research. PLOS ONE, 12, 2017, e0174035 https://doi.org/10.1371/journal.pone.0174035.
Haslbeck, J.M.B., Fried, E.I., How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychol. Med. 47 (2017), 2767–2776 https://doi.org/10.1017/S0033291717001258.
Haslbeck, J.M.B., Waldorp, L.J., 2016. mgm: structure estimation for time-varying mixed graphical models in high-dimensional data. arXiv preprint:1510.06871v2.
Kossakowski, J.J., Epskamp, S., Kieffer, J.M., Borkulo, C.D.van, Rhemtulla, M., Borsboom, D., The application of a network approach to health-related quality of life (HRQoL): introducing a new method for assessing HRQoL in healthy adults and cancer patients. Qual. Life Res. 25 (2016), 781–792 https://doi.org/10.1007/s11136-015-1127-z.
Kruis, J., Maris, G., Three representations of the Ising model. Sci. Rep., 6, 2016, 34175 https://doi.org/10.1038/srep34175.
Marshall, G.N., Schell, T.L., Miles, J.N.V., A multi-sample confirmatory factor analysis of PTSD symptoms: what exactly is wrong with the DSM-IV structure?. Clin. Psychol. Rev. 33:1 (2013), 54–66.
Opsahl, T., Agneessens, F., Skvoretz, J., Node centrality in weighted networks: generalizing degree and shortest paths. Social Netw. 32:3 (2010), 245–251 http://doi.org/10.1016/j.socnet.2010.03.006.
Reniers, R.L.E.P., Corcoran, R., Drake, R., Shryane, N.M., Völlm, B.A., The QCAE: a questionnaire of cognitive and affective empathy. J. Pers. Assess. 93 (2011), 84–95 https://doi.org/10.1080/00223891.2010.528484.
Ross, J., Watling, C., Use of empathy in psychiatric practice: constructivist grounded theory study. BJPsych. Open 3 (2017), 26–33 https://doi.org/10.1192/bjpo.bp.116.004242.
Ruzzano, L., Borsboom, D., Geurts, H.M., Repetitive behaviors in autism and obsessive–compulsive disorder: new perspectives from a network analysis. J. Autism Dev. Disord. 45 (2015), 192–202 https://doi.org/10.1007/s10803-014-2204-9.
van der Maas, H.L.J., Dolan, C.V., Grasman, R.P.P.P., Wicherts, J.M., Huizenga, H.M., Raijmakers, M.E.J., A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol. Rev. 113 (2006), 842–861 https://doi.org/10.1037/0033-295X.113.4.842.
Wispé L., The distinction between sympathy and empathy: to call forth a concept, a word is needed. J. Pers. Soc. Psychol. 50 (1986), 314–321 https://doi.org/10.1037/0022-3514.50.2.314.
Yang, Z., Algesheimer, R., Tessone, C.J., A comparative analysis of community detection algorithms on artificial networks. Sci. Rep., 6, 2016 https://doi.org/10.1038/srep30750.