[en] Presently, metallic nanowires (NWs) are the most promising materials to fabricate flexible transparent electrodes as an alternative to indium tin oxide. Here, the high performance of transparent conductive electrodes (TCEs) based on silver nanowires (AgNWs) percolation networks is reported. With optimized experimental conditions for the deposition, the AgNWs result in low sheet resistance of 10 Ω sq−1 combined with a high optical transmittance of 92.6% at λ = 550 nm. This leads to a valuable figure of merit as compared to other TCEs. In this study, the nanoscale electrical properties of the AgNWs are measured via conductive atomic force microscopy to characterize the percolation network. The electrical resistivity value calculated for a single AgNW is found to be about 12.35 µΩ cm, while a nanoscale conductivity map over an AgNW network bridging two electrodes has revealed high levels of current within the network over a distance of more than 1000 µm. The favorable determined conductivity results along with the high optical properties of the AgNWs network strongly suggest that thin-film electrodes based on AgNWs will be a potential approach for future flexible electronic devices.
Disciplines :
Chemistry
Author, co-author :
Pham, Sy Hieu; Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute in Materials Science and Engineering University of Mons (UMONS), Mons, Belgium ; Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lens, France ; Laboratory for Physics of Nanomaterials and Energy, Research Institute in Materials Science and Engineering, University of Mons (UMONS), Mons, Belgium
Ferri, Anthony; Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lens, France
Da Costa, Antonio; Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lens, France
Mohan, M. M. Saj; Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lens, France
Tran, Van Dang; International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, Hai Ba Trung, Viet Nam
Nguyen, Duy Cuong; International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, Hai Ba Trung, Viet Nam
Viville, Pascal ; Université de Mons - UMONS > Unités externes > Materia Nova ASBL ; Materia Nova R&D Center, Mons, Belgium
Lazzaroni, Roberto ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Desfeux, Rachel; Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lens, France
Leclère, Philippe ; Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute in Materials Science and Engineering University of Mons (UMONS), Mons, Belgium ; Laboratory for Physics of Nanomaterials and Energy, Research Institute in Materials Science and Engineering, University of Mons (UMONS), Mons, Belgium
Language :
English
Title :
Nanoscale Electrical Investigation of Transparent Conductive Electrodes Based on Silver Nanowire Network
The authors are grateful to the Région Hauts-de-France, to the FRS-FNRS (Belgium), to the Fonds Européen de Développement Régional (FEDER), to the Ministère de l'Enseignement Supérieur, de la Recherche et de l'Innovation (France), to the Major Domain of Interest (DIM) “Eco-Energy Efficiency” of Artois University, and to the University of Mons for supporting and funding partially this work. Région Hauts-de-France and FEDER are also acknowledged for funding the MFP-3D microscope under Program “Chemistry and Materials for a Sustainable Growth.”The authors are grateful to the Région Hauts‐de‐France, to the FRS‐FNRS (Belgium), to the Fonds Européen de Développement Régional (FEDER), to the Ministère de l'Enseignement Supérieur, de la Recherche et de l'Innovation (France), to the Major Domain of Interest (DIM) “Eco‐Energy Efficiency” of Artois University, and to the University of Mons for supporting and funding partially this work. Région Hauts‐de‐France and FEDER are also acknowledged for funding the MFP‐3D microscope under Program “Chemistry and Materials for a Sustainable Growth.”
S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan, Y. Lee, J. Park, S. L. Craig, H. Ko, ACS Nano 2017, 11, 4346.
B. Deng, P. C. Hsu, G. Chen, B. N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, H. Peng, Nano Lett. 2015, 15, 4206.
D. Kim, L. Zhu, D. J. Jeong, K. Chun, Y. Y. Bang, S. R. Kim, J. H. Kim, S. K. Oh, Carbon 2013, 63, 530.
J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, B. H. Hong, Nano Lett. 2011, 11, 5154.
K. H. Pyo, J. W. Kim, Compos. Sci. Technol. 2016, 133, 7.
N. M. Nair, J. K. Pakkathillam, K. Kumar, K. Arunachalam, D. Ray, P. Swaminathan, ACS Appl. Electron. Mater. 2020, 2, 1000.
N. M. Nair, K. Daniel, S. C. Vadali, D. Ray, P. Swaminathan, Flexible Printed Electron. 2019, 4, 045001.
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H. N. Alshareef, Adv. Energy Mater. 2018, 8.
Z. Z. Gu, Y. Tian, H. Z. Geng, D. S. Rhen, A. S. Ethiraj, X. Zhang, L. C. Jing, T. Wang, Z. H. Xu, X. T. Yuan, Appl. Nanosci. 2019, 9, 1971.
L. Lian, X. Xi, D. Dong, G. He, Org. Electron. 2018, 60, 9.
M. Choi, Y. J. Park, B. K. Sharma, S. R. Bae, S. Y. Kim, J. H. Ahn, Sci. Adv. 2018, 4, eaas8721.
A. Kim, H. Lee, H.-C. Kwon, H. S. Jung, N.-G. Park, S. Jeong, J. Moon, Nanoscale 2016, 8, 6308.
A. Kim, Y. Won, K. Woo, C. H. Kim, J. Moon, ACS Nano 2013, 7, 1081.
K. P. Sibin, G. Srinivas, H. D. Shashikala, A. Day, N. Sridhana, A. K. Sharma, H. C. Barshilia, Sol. Energy Mater. Sol. Cells 2017, 172, 277.
H. Tang, H. Feng, H. Wang, X. Wan, J. Liang, Y. Chen, ACS Appl. Mater. Interfaces 2019, 11, 25330.
Y. Chen, R. S. Carmichael, T. B. Carmichael, ACS Publ. 2019, 11, 31210.
S. H. Liu, H. W. Yu, Q. Y. Zhang, F. S. Qin, X. Zhang, L. T. Zhang, W. F. Xie, J. Mater. Chem. C 2019, 7, 5426.
S. Shi, V. Sadhu, R. Moubah, G. Schmerber, Q. Bao, S. Ravi, P. Silva, J. Mater. Chem. C 2013, 1, 1708.
D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
J. I. Nomoto, T. Hirano, T. Miyata, T. Minami, Thin Solid Films 2011, 1400.
Y. S. Yun, D. H. Kim, B. Kim, H. H. Park, H. J. Jin, Synth. Met. 2012, 162, 1364.
J. Ha, S. Park, D. Kim, J. Ryu, C. Lee, B. H. Hong, Y. Hong, Org. Electron. 2013, 14, 2324.
J. Lee, M. Lim, J. Yoon, M. S. Kim, B. Choi, D. M. Kim, D. H. Kim, I. Park, S. J. Choi, ACS Appl. Mater. Interfaces 2017, 9, 26279.
M. Göbelt, R. Keding, S. W. Schmitt, B. Hoffmann, S. Jackle, M. Latzel, V. V. Radmilovic, V. R. Radmilovic, E. Spiecker, S. Christiansen, Nano Energy 2015, 16, 196.
S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, Adv. Mater. 2014, 26, 6670.
T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J. P. Simonato, D. Bellet, Small 2016, 12, 6052.
T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, K. Suganuma, Nano Res. 2011, 4, 1215.
J. Lee, J. Y. Woo, J. T. Kim, B. Y. Lee, C. S. Han, ACS Appl. Mater. Interfaces 2014, 6, 10974.
J. A. Spechler, K. A. Nagamatsu, J. C. Sturm, C. B. Arnold, ACS Appl. Mater. Interfaces 2015, 7, 10556.
Y. Yang, S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Ju, H. Chang, L. Xiao, H. Xu, Y. Liu, ACS Nano 2020, 14, 8754.
S. Lee, J. Jang, T. Park, Y. M. Park, J. S. Park, Y. K. Kim, H. K. Lee, E. C. Jeon, D. K. Lee, B. Ahn, C. H. Chung, ACS Appl. Mater. Interfaces 2020, 12, 6169.
Q. H. Tran, D. T. Chu, V. H. Hoang, S. H. Pham, P. Leclère, T. T. H. Nguyen, D. H. Tran, Q. T. Do, A. T. Pham, D. C. Nguyen, Mater. Lett. 2021, 287, 129243.
A. T. Pham, X. Q. Nguyen, D. H. Tran, V. N. Phan, T. T. Duong, D. C. Nguyen, Nanotechnology 2016, 27, 335202.
T. Bin Song, Y. Chen, C. H. Chung, Y. Yang, B. Bob, H. S. Duan, G. Li, K. N. Tu, Y. Huang, ACS Nano 2014, 8, 2804.
D. Y. Choi, H. W. Kang, H. J. Sung, S. S. Kim, Nanoscale 2013, 5, 977.
M. Lagrange, D. P. Langley, G. Giusti, C. Jiménez, Y. Bréchet, D. Bellet, Nanoscale 2015, 7, 17410.
J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2008, 8, 689.
M. Jagota, N. Tansu, Sci. Rep. 2015, 5, 10219.
D. P. Langley, M. Lagrange, G. Giusti, C. Jiménez, Y. Bréchet, N. D. Nguyen, D. Bellet, Nanoscale 2014, 6, 13535.
K. P. Sibin, N. Selvakumar, A. Kumar, A. Dey, N. Sridhara, H. D. Shashikala, A. K. Sharma, H. C. Barshilia, Sol. Energy 2017, 141, 118.
Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, H. Cheng, Langmuir 2013, 29, 13836.
M. R. Golobostanfard, H. Abdizadeh, S. Mohammadi, M. A. Baghchesara, Sol. Energy Mater. Sol. Cells 2015, 132, 418.
A. G. Ricciardulli, S. Yang, G. J. A. H. Wetzelaer, X. Feng, P. W. M. Blom, Adv. Funct. Mater. 2018, 28, 1706010.
D. S. Ghosh, T. L. Chen, N. Formica, J. Hwang, I. Bruder, V. Pruneri, Sol. Energy Mater. Sol. Cells 2012, 107, 338.
P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, Nano Lett. 2009, 9, 3890.
A. Kim, Y. Won, K. Woo, S. Jeong, J. Moon, Adv. Funct. Mater. 2014, 24, 2462.
A. L. Dearden, P. J. Smith, D. Y. Shin, N. Reis, B. Derby, P. O'Brien, Macromol. Rapid Commun. 2005, 26, 315.
Z. Cheng, L. Liu, S. Xu, M. Lu, X. Wang, Sci. Rep. 2015, 5, 10718.
A. Bid, A. Bora, A. K. Raychaudhuri, Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74, 035426.
S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, ACS Nano 2009, 3, 1767.