Highly cross-linked bifunctional magnesium porphyrin-imidazolium bromide polymer: Unveiling the key role of co-catalysts proximity for CO2 conversion into cyclic carbonates
[en] Highly cross-linked materials containing an imidazolium salt and magnesium porphyrin, either in the absence (TSP-Mg-imi) or in the presence (7a and 7b) of multi-walled carbon nanotubes (MWCNTs), were synthesized and used as heterogeneous bifunctional catalysts for the conversion of CO2 into cyclic carbonates. The metalloporphyrin moiety acts both as a “covalent swelling agent”, generating hybrids with high surface area, and as a Lewis acid co-catalytic species. TSP-Mg-imi produced excellent conversion and TONMg values, under solvent-free conditions, even at room temperature and with low catalytic loading (0.003 mol%). In terms of conversion and TONMg, TSP-Mg-imi exhibited better catalytic performance compared to a reference homogeneous system, demonstrating that the proximity between the metal centers and the nucleophilic site results in a synergistic effect during the catalytic cycle. The results of the computational study confirmed both the cooperative function and the significance of incorporating a co-catalytic species into the system.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Chemistry
Author, co-author :
Valentino, Laura ; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and INSTM UdR Palermo, University of Palermo, Palermo, Italy
Campisciano, Vincenzo ; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and INSTM UdR Palermo, University of Palermo, Palermo, Italy
Célis, Chloé; Laboratory of Applied Material Chemistry (CMA), Department of Chemistry, University of Namur, Namur, Belgium
Lemaur, Vincent ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Lazzaroni, Roberto ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Gruttadauria, Michelangelo; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and INSTM UdR Palermo, University of Palermo, Palermo, Italy
Aprile, Carmela; Laboratory of Applied Material Chemistry (CMA), Department of Chemistry, University of Namur, Namur, Belgium
Giacalone, Francesco ; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and INSTM UdR Palermo, University of Palermo, Palermo, Italy
Language :
English
Title :
Highly cross-linked bifunctional magnesium porphyrin-imidazolium bromide polymer: Unveiling the key role of co-catalysts proximity for CO2 conversion into cyclic carbonates
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funding text :
The authors gratefully acknowledge the University of Palermo and the Italian Ministry of Education, University and Research (MIUR) for financial support through PRIN 2017 [project no. 2017W8KNZW ]. The Namur-Mons collaboration is supported by the European Regional Development Fund (FEDER) and the Walloon Region (Low Carbon Footprint Materials – BIORG-EL project). Research in Mons is also supported by the Fonds National de la Recherche Scientifique (F.R.S.-FNRS) [grant 2.5020.11] ‘Consortium des Équipements de Calcul Intensif (CÉCI)’ and the Walloon Region [grant 1117545] (Tier-1 supercomputer of the Fédération Wallonie-Bruxelles). Research in Namur is also supported by FNRS via the research project [grant G 4/1/6-GEQ/CDB and PDR T.0004.21]. This research used resources of PC2 (Plateforme Technologique Physico-Chemical Characterization), SIAM (Synthesis, Irradiation & Analysis of Materials) and MORPH-IM (Morphology & Imaging) technology platforms located at the University of Namur.The authors gratefully acknowledge the University of Palermo and the Italian Ministry of Education, University and Research (MIUR) for financial support through PRIN 2017 [project no. 2017W8KNZW]. The Namur-Mons collaboration is supported by the European Regional Development Fund (FEDER) and the Walloon Region (Low Carbon Footprint Materials – BIORG-EL project). Research in Mons is also supported by the Fonds National de la Recherche Scientifique (F.R.S.-FNRS) [grant 2.5020.11] ‘Consortium des Équipements de Calcul Intensif (CÉCI)’ and the Walloon Region [grant 1117545] (Tier-1 supercomputer of the Fédération Wallonie-Bruxelles). Research in Namur is also supported by FNRS via the research project [grant G 4/1/6-GEQ/CDB and PDR T.0004.21]. This research used resources of PC2 (Plateforme Technologique Physico-Chemical Characterization), SIAM (Synthesis, Irradiation & Analysis of Materials) and MORPH-IM (Morphology & Imaging) technology platforms located at the University of Namur.
Wu, X., Chen, C., Guo, Z., North, M., Whitwood, A.C., Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. ACS Catal. 9 (2019), 1895–1906, 10.1021/acscatal.8b04387.
Dibenedetto, A., Angelini, A., Stufano, P., Use of carbon dioxide as feedstock for chemicals and fuels: Homogeneous and heterogeneous catalysis. J. Chem. Technol. Biotechnol. 89 (2014), 334–353, 10.1002/jctb.4229.
Aresta, M., Dibenedetto, A., Angelini, A., Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev. 114 (2014), 1709–1742, 10.1021/cr4002758.
Lu, X.-B., Darensbourg, D.J., Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev. 41 (2012), 1462–1484, 10.1039/C1CS15142H.
Qin, Z., Thomas, C.M., Lee, S., Coates, G.W., Cobalt-based complexes for the copolymerization of propylene oxide and CO2: Active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. 42 (2003), 5484–5487, 10.1002/anie.200352605.
Huang, K., Zhang, J.-Y., Liu, F., Dai, S., Synthesis of porous polymeric catalysts for the conversion of carbon dioxide. ACS Catal. 8 (2018), 9079–9102, 10.1021/acscatal.8b02151.
Maeda, C., Miyazaki, Y., Ema, T., Recent progress in catalytic conversions of carbon dioxide. Catal Sci. Technol. 4 (2014), 1482–1497, 10.1039/C3CY00993A.
North, M., Pasquale, R., Young, C., Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 12 (2010), 1514–1539, 10.1039/C0GC00065E.
Shaikh, R.R., Pornpraprom, S., D'Elia, V., Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal. 8 (2018), 419–450, 10.1021/acscatal.7b03580.
Sakakura, T., Kohno, K., The synthesis of organic carbonates from carbon dioxide. Chem. Commun., 2009, 1312–1330, 10.1039/B819997C.
Schäffner, B., Schäffner, F., Verevkin, S.P., Börner, A., Organic carbonates as solvents in synthesis and catalysis. Chem. Rev. 110 (2010), 4554–4581, 10.1021/cr900393d.
Mujmule, R.B., Chung, W.-J., Kim, H., Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chem. Eng. J., 395, 2020, 125164, 10.1016/j.cej.2020.125164.
Castro-Osma, J.A., Lamb, K.J., North, M., Cr(salophen) complex catalyzed cyclic carbonate synthesis at ambient temperature and pressure. ACS Catal. 6 (2016), 5012–5025, 10.1021/acscatal.6b01386.
de la Cruz-Martínez, F., Castro-Osma, J.A., Lara-Sánchez, A., Carbon dioxide fixation into cyclic carbonates at room temperature catalyzed by heteroscorpionate aluminum complexes. Green Chem. Eng. 3 (2022), 280–287, 10.1016/j.gce.2022.02.003.
de la Cruz-Martínez, F., Martínez, J., Gaona, M.A., Fernández-Baeza, J., Sánchez-Barba, L.F., Rodríguez, A.M., Castro-Osma, J.A., Otero, A., Lara-Sánchez, A., Bifunctional aluminum catalysts for the chemical fixation of carbon dioxide into cyclic carbonates. ACS Sustain. Chem. Eng. 6 (2018), 5322–5332, 10.1021/acssuschemeng.8b00102.
Faizan, M., Srivastav, N., Pawar, R., Azaboratrane as an exceptionally potential organocatalyst for the activation of CO2 and coupling with epoxide. Mol. Catal., 521, 2022, 112201, 10.1016/j.mcat.2022.112201.
la Cruz-Martínez F.d. M.M.d. Sarasa Buchaca J. Fernández-Baeza L.F. Sánchez-Barba A.M. Rodríguez C. Alonso-Moreno J.A. Castro-Osma, and A. Lara-Sánchez, Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO2 and Cyclohexene Oxide, Organometallics 40 (2021) 1503-1514, doi: 10.1021/acs.organomet.1c00164.
Lei, Y., Gunaratne, H.Q.N., Jin, L., Design and synthesis of pyridinamide functionalized ionic liquids for efficient conversion of carbon dioxide into cyclic carbonates. J. CO2 Util., 58, 2022, 101930, 10.1016/j.jcou.2022.101930.
Li, M.-R., Zhang, M.-C., Yue, T.-J., Lu, X.-B., Ren, W.-M., Highly efficient conversion of CO2 to cyclic carbonates with a binary catalyst system in a microreactor: intensification of “electrophile–nucleophile” synergistic effect. RSC Adv. 8 (2018), 39182–39186, 10.1039/C8RA07236A.
Liu, Y., Cao, Z., Zhou, Z., Zhou, A., Imidazolium-based deep eutectic solvents as multifunctional catalysts for multisite synergistic activation of epoxides and ambient synthesis of cyclic carbonates. J. CO2 Util., 53, 2021, 101717, 10.1016/j.jcou.2021.101717.
Qu, L., del Rosal, I., Li, Q., Wang, Y., Yuan, D., Yao, Y., Maron, L., Efficient CO2 transformation under ambient condition by heterobimetallic rare earth complexes: Experimental and computational evidences of a synergistic effect. J. CO2 Util. 33 (2019), 413–418, 10.1016/j.jcou.2019.07.008.
Saptal, V.B., Bhanage, B.M., Bifunctional ionic liquids derived from biorenewable sources as sustainable catalysts for fixation of carbon dioxide. ChemSusChem 10 (2017), 1145–1151, 10.1002/cssc.201601228.
Whiteoak, C.J., Martin, E., Belmonte, M.M., Benet-Buchholz, J., Kleij, A.W., An efficient iron catalyst for the synthesis of five- and six-membered organic carbonates under mild conditions. Adv. Synth. Catal. 354 (2012), 469–476, 10.1002/adsc.201100752.
Luo, R., Chen, M., Liu, X., Xu, W., Li, J., Liu, B., Fang, Y., Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites. J. Mater. Chem. A 8 (2020), 18408–18424, 10.1039/D0TA06142E.
Pal, T.K., De, D., Bharadwaj, P.K., Metal-organic frameworks as heterogeneous catalysts for the chemical conversion of carbon dioxide. Fuel, 320, 2022, 123904, 10.1016/j.fuel.2022.123904.
Siddig, L.A., Alzard, R.H., Nguyen, H.L., Göb, C.R., Alnaqbi, M.A., Alzamly, A., Hexagonal layer manganese metal-organic framework for photocatalytic CO2 cycloaddition reaction. ACS Omega 7 (2022), 9958–9963, 10.1021/acsomega.2c00663.
Tapiador, J., Leo, P., Rodríguez-Diéguez, A., Choquesillo-Lazarte, D., Calleja, G., Orcajo, G., A novel Zn-based-MOF for efficient CO2 adsorption and conversion under mild conditions. Catal. Today 390–391 (2022), 230–236, 10.1016/j.cattod.2021.11.025.
Wang, W., Li, C., Jin, J., Yan, L., Ding, Y., Mg–porphyrin complex doped divinylbenzene based porous organic polymers (POPs) as highly efficient heterogeneous catalysts for the conversion of CO2 to cyclic carbonates. Dalton Trans. 47 (2018), 13135–13141, 10.1039/C8DT02913J.
Luo, R., Zhang, W., Yang, Z., Zhou, X., Ji, H., Synthesis of cyclic carbonates from epoxides over bifunctional salen aluminum oligomers as a CO2-philic catalyst: Catalytic and kinetic investigation. J. CO2 Util. 19 (2017), 257–265, 10.1016/j.jcou.2017.04.002.
Liu, L., Jayakumar, S., Chen, J., Tao, L., Li, H., Yang, Q., Li, C., Synthesis of bifunctional porphyrin polymers for catalytic conversion of dilute CO2 to cyclic carbonates. ACS Appl. Mater. Interfaces 13 (2021), 29522–29531, 10.1021/acsami.1c04624.
Su, Z., Ma, L., Wei, J., Bai, X., Wang, N., Li, J., A zinc porphyrin polymer as efficient bifunctional catalyst for conversion of CO2 to cyclic carbonates. Appl. Organomet. Chem., 36, 2022, e6632, 10.1002/aoc.6632.
Wang, W., Wang, Y., Li, C., Yan, L., Jiang, M., Ding, Y., State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO2 to cyclic carbonates. ACS Sustain. Chem. Eng. 5 (2017), 4523–4528, 10.1021/acssuschemeng.7b00947.
Bai, X., Su, Z., Wei, J., Ma, L., Duan, S., Wang, N., Zhang, X., Li, J., Zinc(II)porphyrin-based porous ionic polymers (PIPs) as multifunctional heterogeneous catalysts for the conversion of CO2 to cyclic carbonates. Ind. Eng. Chem. Res. 61 (2022), 5093–5102, 10.1021/acs.iecr.2c00161.
Wu, Q.-J., Mao, M.-J., Chen, J.-X., Huang, Y.-B., Cao, R., Integration of metalloporphyrin into cationic covalent triazine frameworks for the synergistically enhanced chemical fixation of CO2, Catal. Sci. Technol. 10 (2020), 8026–8033, 10.1039/D0CY01636E.
He, H., Zhu, Q.-Q., Zhang, W.-W., Zhang, H.-W., Chen, J., Li, C.-P., Du, M., Metal and Co-Catalyst Free CO2 conversion with a bifunctional covalent organic framework (COF). ChemCatChem 12 (2020), 5192–5199, 10.1002/cctc.202000949.
Chen, Y., Luo, R., Xu, Q., Jiang, J., Zhou, X., Ji, H., Charged metalloporphyrin polymers for cooperative synthesis of cyclic carbonates from CO2 under ambient conditions. ChemSusChem 10 (2017), 2534–2541, 10.1002/cssc.201700536.
Luo, R., Chen, Y., He, Q., Lin, X., Xu, Q., He, X., Zhang, W., Zhou, X., Ji, H., Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals. ChemSusChem 10 (2017), 1526–1533, 10.1002/cssc.201601846.
Li, H., Li, C., Chen, J., Liu, L., Yang, Q., Synthesis of a pyridine–zinc-based porous organic polymer for the co-catalyst-free cycloaddition of epoxides. Chem. Asian J. 12 (2017), 1095–1103, 10.1002/asia.201700258.
Ma, D., Li, B., Liu, K., Zhang, X., Zou, W., Yang, Y., Li, G., Shi, Z., Feng, S., Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J. Mater. Chem. A 3 (2015), 23136–23142, 10.1039/C5TA07026K.
Liu, J., Zhao, G., Cheung, O., Jia, L., Sun, Z., Zhang, S., Highly porous metalloporphyrin covalent ionic frameworks with well-defined cooperative functional groups as excellent catalysts for CO2 cycloaddition. Chem. Eur. J. 25 (2019), 9052–9059, 10.1002/chem.201900992.
Luo, R., Chen, M., Zhou, F., Zhan, J., Deng, Q., Yu, Y., Zhang, Y., Xu, W., Fang, Y., Synthesis of metalloporphyrin-based porous organic polymers and their functionalization for conversion of CO2 into cyclic carbonates: Recent advances, opportunities and challenges. J. Mater. Chem. A 9 (2021), 25731–25749, 10.1039/D1TA08146B.
Gao, W.-Y., Chrzanowski, M., Ma, S., Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chem. Soc. Rev. 43 (2014), 5841–5866, 10.1039/C4CS00001C.
Tashiro, K., Aida, T., Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem. Soc. Rev. 36 (2007), 189–197, 10.1039/B614883M.
Dai, Z., Tang, Y., Zhang, F., Xiong, Y., Wang, S., Sun, Q., Wang, L., Meng, X., Zhao, L., Xiao, F.-S., Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions. Chin. J. Catal. 42 (2021), 618–626, 10.1016/S1872-2067(20)63679-8.
Ema, T., Miyazaki, Y., Koyama, S., Yano, Y., Sakai, T., A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates. Chem. Commun. 48 (2012), 4489–4491, 10.1039/C2CC30591G.
Ema, T., Miyazaki, Y., Shimonishi, J., Maeda, C., Hasegawa, J.-Y., Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: Structural optimization and mechanistic study. J. Am. Chem. Soc. 136 (2014), 15270–15279, 10.1021/ja507665a.
Maeda, C., Shimonishi, J., Miyazaki, R., Hasegawa, J.-Y., Ema, T., Frontispiece: Highly active and robust metalloporphyrin catalysts for the synthesis of cyclic carbonates from a broad range of epoxides and carbon dioxide. Chem. Eur. J. 22 (2016), 6556–6563, 10.1002/chem.201681962.
Campisciano, V., Valentino, L., Morena, A., Santiago-Portillo, A., Saladino, N., Gruttadauria, M., Aprile, C., Giacalone, F., Carbon nanotube supported aluminum porphyrin-imidazolium bromide crosslinked copolymer: A synergistic bifunctional catalyst for CO2 conversion. J. CO2 Util., 57, 2022, 101884, 10.1016/j.jcou.2022.101884.
A. Morena, V. Campisciano, A. Santiago-Portillo, M. Gruttadauria, F. Giacalone, C. Aprile, POSS-Al-porphyrin-imidazolium cross-linked network as catalytic bifunctional platform for the conversion of CO2 with epoxides, Fuel 336 (2022) 126819, doi:10.1016/j.fuel.2022.126819.
Buaki-Sogó, M., Vivian, A., Bivona, L.A., García, H., Gruttadauria, M., Aprile, C., Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catal. Sci. Technol. 6 (2016), 8418–8427, 10.1039/C6CY01068G.
Agrigento, P., Al-Amsyar, S.M., Sorée, B., Taherimehr, M., Gruttadauria, M., Aprile, C., Pescarmona, P.P., Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO2 and epoxides into cyclic carbonates. Catal. Sci. Technol. 4 (2014), 1598–1607, 10.1039/C3CY01000G.
Aprile, C., Giacalone, F., Agrigento, P., Liotta, L.F., Martens, J.A., Pescarmona, P.P., Gruttadauria, M., Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: A high-throughput study in supercritical conditions. ChemSusChem 4 (2011), 1830–1837, 10.1002/cssc.201100446.
Calabrese, C., Liotta, L.F., Carbonell, E., Giacalone, F., Gruttadauria, M., Aprile, C., Imidazolium-functionalized carbon nanohorns for the conversion of carbon dioxide: Unprecedented increase of catalytic activity after recycling. ChemSusChem 10 (2017), 1202–1209, 10.1002/cssc.201601427.
Calabrese, C., Liotta, L.F., Giacalone, F., Gruttadauria, M., Aprile, C., Supported polyhedral oligomeric silsesquioxane-Based (POSS) Materials as Highly Active Organocatalysts for the Conversion of CO2. ChemCatChem 11 (2019), 560–567, 10.1002/cctc.201801351.
Bivona, L.A., Fichera, O., Fusaro, L., Giacalone, F., Buaki-Sogo, M., Gruttadauria, M., Aprile, C., A polyhedral oligomeric silsesquioxane-based catalyst for the efficient synthesis of cyclic carbonates. Catal Sci. Technol. 5 (2015), 5000–5007, 10.1039/C5CY00830A.
Cadena, C., Anthony, J.L., Shah, J.K., Morrow, T.I., Brennecke, J.F., Maginn, E.J., Why Is CO2 So soluble in imidazolium-based ionic liquids?. J. Am. Chem. Soc. 126 (2004), 5300–5308, 10.1021/ja039615x.
Zhu, J.M., He, K.G., Zhang, H., Xin, F., Effect of swelling on carbon dioxide adsorption by poly(Ionic Liquid)s. Adsorp. Sci. Technol. 30 (2012), 35–41, 10.1260/0263-6174.30.1.35.
Zulfiqar, S., Sarwar, M.I., Mecerreyes, D., Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges. Polym. Chem. 6 (2015), 6435–6451, 10.1039/C5PY00842E.
Tang, J., Tang, H., Sun, W., Plancher, H., Radosz, M., Shen, Y., Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem. Commun., 2005, 3325–3327, 10.1039/B501940K.
Giacalone, F., Gruttadauria, M., Covalently supported ionic liquid phases: An advanced class of recyclable catalytic systems. ChemCatChem 8 (2016), 664–684, 10.1002/cctc.201501086.
Campisciano, V., Giacalone, F., Gruttadauria, M., Supported ionic liquids: A versatile and useful class of materials. Chem. Rec. 17 (2017), 918–938, 10.1002/tcr.201700005.
Campisciano, V., Gruttadauria, M., Giacalone, F., Modified nanocarbons for catalysis. ChemCatChem 11 (2019), 90–133, 10.1002/cctc.201801414.
V. Campisciano, M. Gruttadauria, F. Giacalone, Modified Nanocarbons as Catalysts in Organic Processes In "Catalyst Immobilization: Methods and Applications"; Benaglia, M., Puglisi, A., Eds.; Wiley-VCH: Weinheim, Germany, 2019; pp. 77–113.
Campisciano, V., Burger, R., Calabrese, C., Liotta, L.F., Lo Meo, P., Gruttadauria, M., Giacalone, F., Straightforward preparation of highly loaded MWCNT–polyamine hybrids and their application in catalysis. Nanoscale Adv. 2 (2020), 4199–4211, 10.1039/D0NA00291G.
Campisciano, V., Calabrese, C., Liotta, L.F., La Parola, V., Spinella, A., Aprile, C., Gruttadauria, M., Giacalone, F., Templating effect of carbon nanoforms on highly cross-linked imidazolium network: Catalytic activity of the resulting hybrids with Pd nanoparticles. Appl. Organomet. Chem., 33, 2019, e4848.
Grimme, S., Ehrlich, S., Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32 (2011), 1456–1465, 10.1002/jcc.21759.
Simon, S., Duran, M., Dannenberg, J.J., How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?. J. Chem. Phys. 105 (1996), 11024–11031, 10.1063/1.472902.
García-López, E.I., Campisciano, V., Giacalone, F., Liotta, L.F., Marcì, G., Supported Poly(Ionic Liquid)-heteropolyacid based materials for heterogeneous catalytic fructose dehydration in aqueous medium. Molecules, 27, 2022, 4722, 10.3390/molecules27154722.
Buscemi, R., Giacalone, F., Orecchio, S., Gruttadauria, M., Cross-linked imidazolium salts as scavengers for palladium. ChemPlusChem 79 (2014), 421–426, 10.1002/cplu.201300361.
Morena, A., Campisciano, V., Comès, A., Liotta, L.F., Gruttadauria, M., Aprile, C., Giacalone, F., A Study on the stability of carbon nanoforms-polyimidazolium network hybrids in the conversion of CO2 into Cyclic Carbonates: Increase in catalytic activity after reuse. Nanomaterials, 11, 2021, 2243, 10.3390/nano11092243.
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87 (2015), 1051–1069, 10.1515/pac-2014-1117.
Pavia, C., Ballerini, E., Bivona, L.A., Giacalone, F., Aprile, C., Vaccaro, L., Gruttadauria, M., Palladium Supported on cross-linked imidazolium network on silica as highly sustainable catalysts for the suzuki reaction under flow conditions. Adv. Synth. Catal. 355 (2013), 2007–2018, 10.1002/adsc.201300215.
Song, H., Wang, Y., Xiao, M., Liu, L., Liu, Y., Liu, X., Gai, H., Design of novel poly(ionic liquids) for the conversion of CO2 to Cyclic Carbonates under mild conditions without solvent. ACS Sustain. Chem. Eng. 7 (2019), 9489–9497, 10.1021/acssuschemeng.9b00865.
Yuan, J., Mecerreyes, D., Antonietti, M., Poly(ionic liquid)s: An update. Prog. Polym. Sci. 38 (2013), 1009–1036, 10.1016/j.progpolymsci.2013.04.002.
Muralidharan, S., Hayes, R., Intense satellites in the N 1s X-ray photoelectron spectra of certain metalloporphyrins. J. Am. Chem. Soc. 102 (1980), 5106–5107, doi: 10.1021/ja00535a052.
Karweik, D.H., Winograd, N., Nitrogen charge distributions in free-base porphyrins, metalloporphyrins, and their reduced analogs observed by x-ray photoelectron spectroscopy. Inorg. Chem. 15 (1976), 2336–2342, 10.1021/ic50164a003.
Zhang, J., Zhang, P., Zhang, Z., Wei, X., Spectroscopic and kinetic studies of photochemical reaction of magnesium tetraphenylporphyrin with oxygen. Chem. A Eur. J. 113 (2009), 5367–5374, 10.1021/jp811209k.
Reay, D., Ramshaw, C., Harvey, A., Chapter 1 - A Brief History of Process Intensification. Reay, D., Ramshaw, C., Harvey, A., (eds.) Process Intensification (second Edition), 2013, Butterworth-Heinemann, Oxford, 1–25.
J.P. Lange, US Patent 7728164B2 (2010) to Shell Oil Company.