Bimetallic nanostructures; Cathodic sites; Conversion process; Conversion rates; Fundamental mechanisms; Galvanic replacement reactions; Mechanistic studies; Silver nanowires; Electronic, Optical and Magnetic Materials; Energy (all); Physical and Theoretical Chemistry; Surfaces, Coatings and Films
Abstract :
[en] Hollow bimetallic nanostructures are of great importance for various applications. Understanding the fundamental mechanisms occurring during the synthesis of such nanomaterials by wet chemistry remains very challenging. This Article reports a mechanistic study on the galvanic replacement reaction between planar arrays of silver nanowires grown site-specifically on tall silicon nanogratings and HAuCl4 in lack of any stabilizing or capping agent, which might complicate and alter the conversion process of silver nanowires into silver-gold nanotubes. The direct contact of the silver nanowires with the substrate is found to modify the reaction as compared to nanowires in suspension. We show that when using diluted HAuCl4, AgCl nanoclusters precipitate on the surface during the process resulting in an increased surface roughness of the nanotubes. Overcoming this drawback requires saturating the HAuCl4 solution with NaCl; this allows distributing the anodic and cathodic sites over the surface of the nano-objects in a homogeneous manner, allowing in turn obtaining nanotubes with a smooth surface. For both protocols (i.e., pure HAuCl4 or HAuCl4 saturated with NaCl), the conversion rate was found to increase with the concentration of HAuCl4 in the solution. We further show that the kinetic of the reaction and the surface roughness of the nanotubes become more important when raising the temperature from 0 to 100 °C. Furthermore, we show that by using the proposed approach, one can synthesize double-walled bimetallic nanotubes.
Disciplines :
Physics
Author, co-author :
El Mel, Abdel-Aziz; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Chettab, Meriem; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Gautron, Eric; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Chauvin, Adrien ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface ; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Humbert, Bernard; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Mevellec, Jean-Yves; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Delacote, Cyril; CEISAM, Université de Nantes, CNRS, Nantes Cedex 3, France
Thiry, Damien ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface ; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Stephant, Nicolas; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Ding, Junjun; Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, United States
Du, Ke; Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, United States
Choi, Chang-Hwan; Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, United States
Tessier, Pierre-Yves; Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes Cedex 3, France
Zhao, Y.; Jiang, L. Hollow Micro/Nanomaterials with Multilevel Interior Structures Adv. Mater. 2009, 21, 3621-3638 10.1002/adma.200803645
Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y. Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys J. Am. Chem. Soc. 2004, 126, 9399-9406 10.1021/ja048789r
Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y.; Jeong, U. Chemical Transformations of Nanostructured Materials Nano Today 2011, 6, 186-203 10.1016/j.nantod.2011.02.006
Schwartzberg, A. M.; Olson, T. Y.; Talley, C. E.; Zhang, J. Z. Gold Nanotubes Synthesized Via Magnetic Alignment of Cobalt Nanoparticles as Templates J. Phys. Chem. C 2007, 111, 16080-16082 10.1021/jp076034b
Sander, M. S.; Gao, H. Aligned Arrays of Nanotubes and Segmented Nanotubes on Substrates Fabricated by Electrodeposition onto Nanorods J. Am. Chem. Soc. 2005, 127, 12158-12159 10.1021/ja0522231
Dickey, M. D.; Weiss, E. A.; Smythe, E. J.; Chiechi, R. C.; Capasso, F.; Whitesides, G. M. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation ACS Nano 2008, 2, 800-808 10.1021/nn800036r
Costa, J. C. S.; Corio, P.; Camargo, P. H. C. Silver-Gold Nanotubes Containing Hot Spots on Their Surface: Facile Synthesis and Surface-Enhanced Raman Scattering Investigations RSC Adv. 2012, 2, 9801-9804 10.1039/c2ra21562d
Alia, S. M.; Zhang, G.; Kisailus, D.; Li, D.; Gu, S.; Jensen, K.; Yan, Y. Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions Adv. Funct. Mater. 2010, 20, 3742-3746 10.1002/adfm.201001035
Ye, S.; Marston, G.; McLaughlan, J. R.; Sigle, D. O.; Ingram, N.; Freear, S.; Baumberg, J. J.; Bushby, R. J.; Markham, A. F.; Critchley, K. et al. Engineering Gold Nanotubes with Controlled Length and near-Infrared Absorption for Theranostic Applications Adv. Funct. Mater. 2015, 25, 2117-2127 10.1002/adfm.201404358
Mu, C.; Yu, Y. X.; Wang, R. M.; Wu, K.; Xu, D. S.; Guo, G. L. Uniform Metal Nanotube Arrays by Multistep Template Replication and Electrodeposition Adv. Mater. 2004, 16, 1550-1553 10.1002/adma.200400129
Tao, F.; Guan, M.; Jiang, Y.; Zhu, J.; Xu, Z.; Xue, Z. An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template Method Adv. Mater. 2006, 18, 2161-2164 10.1002/adma.200600275
Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties Adv. Mater. 2013, 25, 6313-6333 10.1002/adma.201302820
González, E.; Arbiol, J.; Puntes, V. F. Carving at the Nanoscale: Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature Science 2011, 334, 1377-1380 10.1126/science.1212822
Anderson, B. D.; Tracy, J. B. Nanoparticle Conversion Chemistry: Kirkendall Effect, Galvanic Exchange, and Anion Exchange Nanoscale 2014, 6, 12195-12216 10.1039/C4NR02025A
Li, J.; Zeng, H. C. Hollowing Sn-Doped Tio2 Nanospheres Via Ostwald Ripening J. Am. Chem. Soc. 2007, 129, 15839-15847 10.1021/ja073521w
El Mel, A.-A.; Buffière, M.; Tessier, P.-Y.; Konstantinidis, S.; Xu, W.; Du, K.; Wathuthanthri, I.; Choi, C.-H.; Bittencourt, C.; Snyders, R. Highly Ordered Hollow Oxide Nanostructures: The Kirkendall Effect at the Nanoscale Small 2013, 9, 2838-2843 10.1002/smll.201202824
El Mel, A.-A.; Molina-Luna, L.; Buffière, M.; Tessier, P.-Y.; Du, K.; Choi, C.-H.; Kleebe, H.-J.; Konstantinidis, S.; Bittencourt, C.; Snyders, R. Electron Beam Nanosculpting of Kirkendall Oxide Nanochannels ACS Nano 2014, 8, 1854-1861 10.1021/nn406328f
Li, X.; Chen, Q.; McCue, I.; Snyder, J.; Crozier, P.; Erlebacher, J.; Sieradzki, K. Dealloying of Noble-Metal Alloy Nanoparticles Nano Lett. 2014, 14, 2569-2577 10.1021/nl500377g
Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L. M. Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping Nano Lett. 2014, 14, 3220-3226 10.1021/nl500593j
Sutter, E.; Jungjohann, K.; Bliznakov, S.; Courty, A.; Maisonhaute, E.; Tenney, S.; Sutter, P. In Situ Liquid-Cell Electron Microscopy of Silver-Palladium Galvanic Replacement Reactions on Silver Nanoparticles Nat. Commun. 2014, 5, 4946 10.1038/ncomms5946
Jang, H.; Min, D.-H. Spherically-Clustered Porous Au-Ag Alloy Nanoparticle Prepared by Partial Inhibition of Galvanic Replacement and Its Application for Efficient Multimodal Therapy ACS Nano 2015, 9, 2696-2703 10.1021/nn506492s
Aherne, D.; Gara, M.; Kelly, J. M.; Gun'ko, Y. K. From Ag Nanoprisms to Triangular Auag Nanoboxes Adv. Funct. Mater. 2010, 20, 1329-1338 10.1002/adfm.200902030
Liu, Y.; Hight Walker, A. R. Preferential Outward Diffusion of Cu During Unconventional Galvanic Replacement Reactions Between Haucl4 and Surface-Limited Cu Nanocrystals ACS Nano 2011, 5, 6843-6854 10.1021/nn200565y
Oh, M. H.; Yu, T.; Yu, S.-H.; Lim, B.; Ko, K.-T.; Willinger, M.-G.; Seo, D.-H.; Kim, B. H.; Cho, M. G.; Park, J.-H. et al. Galvanic Replacement Reactions in Metal Oxide Nanocrystals Science 2013, 340, 964-968 10.1126/science.1234751
Seo, D.; Song, H. Asymmetric Hollow Nanorod Formation Through a Partial Galvanic Replacement Reaction J. Am. Chem. Soc. 2009, 131, 18210-18211 10.1021/ja907640h
Teng, X.; Wang, Q.; Liu, P.; Han, W.; Frenkel, A. I.; Wen; Marinkovic, N.; Hanson, J. C.; Rodriguez, J. A. Formation of Pd/Au Nanostructures from Pd Nanowires Via Galvanic Replacement Reaction J. Am. Chem. Soc. 2008, 130, 1093-1101 10.1021/ja077303e
Sun, Y.; Xia, Y. Mechanistic Study on the Replacement Reaction Between Silver Nanostructures and Chloroauric Acid in Aqueous Medium J. Am. Chem. Soc. 2004, 126, 3892-3901 10.1021/ja039734c
Prevo, B. G.; Esakoff, S. A.; Mikhailovsky, A.; Zasadzinski, J. A. Scalable Routes to Gold Nanoshells with Tunable Sizes and Response to near-Infrared Pulsed-Laser Irradiation Small 2008, 4, 1183-1195 10.1002/smll.200701290
Lu, X.; Tuan, H.-Y.; Chen, J.; Li, Z.-Y.; Korgel, B. A.; Xia, Y. Mechanistic Studies on the Galvanic Replacement Reaction Between Multiply Twinned Particles of Ag and Haucl4 in an Organic Medium J. Am. Chem. Soc. 2007, 129, 1733-1742 10.1021/ja067800f
Au, L.; Lu, X.; Xia, Y. A Comparative Study of Galvanic Replacement Reactions Involving Ag Nanocubes and Aucl2- or Aucl4- Adv. Mater. 2008, 20, 2517-2522 10.1002/adma.200800255
Zhang, W.; Yang, J.; Lu, X. Tailoring Galvanic Replacement Reaction for the Preparation of Pt/Ag Bimetallic Hollow Nanostructures with Controlled Number of Voids ACS Nano 2012, 6, 7397-7405 10.1021/nn302590k
Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D. Galvanic Replacement-Free Deposition of Au on Ag for Core-Shell Nanocubes with Enhanced Chemical Stability and Sers Activity J. Am. Chem. Soc. 2014, 136, 8153-8156 10.1021/ja502472x
Skrabalak, S. E.; Chen, J.; Au, L.; Lu, X.; Li, X.; Xia, Y. Gold Nanocages for Biomedical Applications Adv. Mater. 2007, 19, 3177-3184 10.1002/adma.200701972
Lu, X.; Au, L.; McLellan, J.; Li, Z.-Y.; Marquez, M.; Xia, Y. Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO3)3 or NH4OH Nano Lett. 2007, 7, 1764-1769 10.1021/nl070838l
Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H. C.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. Synthesis of Pd-Pt Bimetallic Nanocrystals with a Concave Structure Through a Bromide-Induced Galvanic Replacement Reaction J. Am. Chem. Soc. 2011, 133, 6078-6089 10.1021/ja201156s
Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y.; Xia, Y. Facile Synthesis of Gold-Silver Nanocages with Controllable Pores on the Surface J. Am. Chem. Soc. 2006, 128, 14776-14777 10.1021/ja066023g
Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Morphological Control of Catalytically Active Platinum Nanocrystals Angew. Chem., Int. Ed. 2006, 45, 7824-7828 10.1002/anie.200603068
Gilroy, K.; Sundar, A.; Farzinpour, P.; Hughes, R.; Neretina, S. Mechanistic Study of Substrate-Based Galvanic Replacement Reactions Nano Res. 2014, 7, 365-379 10.1007/s12274-013-0402-y
Gilroy, K.; Farzinpour, P.; Sundar, A.; Tan, T.; Hughes, R.; Neretina, S. Substrate-Based Galvanic Replacement Reactions Carried out on Heteroepitaxially Formed Silver Templates Nano Res. 2013, 6, 418-428 10.1007/s12274-013-0319-5
Gilroy, K. D.; Farzinpour, P.; Sundar, A.; Hughes, R. A.; Neretina, S. Sacrificial Templates for Galvanic Replacement Reactions: Design Criteria for the Synthesis of Pure Pt Nanoshells with a Smooth Surface Morphology Chem. Mater. 2014, 26, 3340-3347 10.1021/cm501418d
Gilroy, K. D.; Sundar, A.; Hajfathalian, M.; Yaghoubzade, A.; Tan, T.; Sil, D.; Borguet, E.; Hughes, R. A.; Neretina, S. Transformation of Truncated Gold Octahedrons Into Triangular Nanoprisms Through the Heterogeneous Nucleation of Silver Nanoscale 2015, 7, 6827-6835 10.1039/C5NR00151J
Sundar, A.; Farzinpour, P.; Gilroy, K. D.; Tan, T.; Hughes, R. A.; Neretina, S. Eutectic Combinations as a Pathway to the Formation of Substrate-Based Au-Ge Heterodimers and Hollowed Au Nanocrescents with Tunable Optical Properties Small 2014, 10, 3379-3388 10.1002/smll.201400383
Wathuthanthri, I.; Liu, Y.; Du, K.; Xu, W.; Choi, C.-H. Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area Adv. Funct. Mater. 2013, 23, 608-618 10.1002/adfm.201201814
Gogoi, S. K.; Borah, S. M.; Dey, K. K.; Paul, A.; Chattopadhyay, A. Optically Definable Reaction-Diffusion-Driven Pattern Generation of Ag-Au Nanoparticles on Templated Surfaces Langmuir 2011, 27, 12263-12269 10.1021/la202447x
Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of Nanoporosity in Dealloying Nature 2001, 410, 450-453 10.1038/35068529
El Mel, A.-A.; Boukli-Hacene, F.; Molina-Luna, L.; Bouts, N.; Chauvin, A.; Thiry, D.; Gautron, E.; Gautier, N.; Tessier, P.-Y. Unusual Dealloying Effect in Gold/Copper Alloy Thin Films: The Role of Defects and Column Boundaries in the Formation of Nanoporous Gold ACS Appl. Mater. Interfaces 2015, 7, 2310-2321 10.1021/am5065816
Park, S.; Son, J.; Lee, T.; Kim, J.; Han, S.; Park, H.; Song, J. Galvanic Synthesis of Three-Dimensional and Hollow Metallic Nanostructures Nanoscale Res. Lett. 2014, 9, 679 10.1186/1556-276X-9-679