Article (Scientific journals)
Pediatric cardiac surgery: machine learning models for postoperative complication prediction.
Florquin, Rémi; Florquin, Renaud; Schmartz, Denis et al.
2024In Journal of Anesthesia, 38 (6), p. 747 - 755
Peer Reviewed verified by ORBi
 

Files


Full Text
s00540-024-03377-7.pdf
Publisher postprint (959.69 kB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Anesthesiology; Artificial intelligence; Machine learning; Pediatric cardiac surgery; Humans; Infant; Female; Child; Child, Preschool; Male; Cardiopulmonary Bypass/methods; Logistic Models; Support Vector Machine; Risk Assessment/methods; Area Under Curve; Machine Learning; Cardiac Surgical Procedures/methods; Cardiac Surgical Procedures/adverse effects; Postoperative Complications/epidemiology; Postoperative Complications/diagnosis; Postoperative Complications/etiology; Anesthesiology and Pain Medicine
Abstract :
[en] [en] PURPOSE: Managing children undergoing cardiac surgery with cardiopulmonary bypass (CPB) presents a significant challenge for anesthesiologists. Machine Learning (ML)-assisted tools have the potential to enhance the recognition of patients at risk of complications and predict potential issues, ultimately improving outcomes. METHODS: We evaluated the prediction capacity of six models, ranging from logistic regression to support vector machine, using a dataset comprising 33 variables and 1364 subjects. The Area Under the Curve (AUC) and the F1 score served as the primary evaluation metrics. Our primary objectives were twofold: first, to develop an effective prediction model, and second, to create a user-friendly comprehensive model for identifying high-risk patients. RESULTS: The logistic regression model demonstrated the highest effectiveness, achieving an AUC of 83.65%, and an F1 score of 0.7296, with balanced sensitivity and specificity of 77.94% and 76.47%, respectively. In comparison, the comprehensive three-layer decision tree model achieved an AUC of 72.84%, with sensitivity (79.41%) comparable to more complex models. CONCLUSION: Our machine learning-assisted tools provide an additional perspective and enhance the predictive capabilities of traditional scoring methods. These tools can assist anesthesiologists in making well-informed decisions. Furthermore, we have successfully demonstrated the feasibility of creating a practical white-box model. The next steps involve conducting clinical validation and multicenter cross-validation. TRIAL REGISTRATION: NCT05537168.
Disciplines :
Anesthesia & intensive care
Author, co-author :
Florquin, Rémi ;  Department of Anesthesiology, CHU Charleroi, Chaussée de Bruxelles 140, 6042, Lodelinsart, Belgium. remi.florquin@gmail.com ; Chair of Artificial Intelligence and Digital Medicine, Mons University, 7000, Mons, Belgium. remi.florquin@gmail.com
Florquin, Renaud;  Floconsult SPRL, 1480, Tubize, Belgium
Schmartz, Denis;  Department of Anesthesiology, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles, 1070, Brussels, Belgium
Dony, Philippe;  Department of Anesthesiology, CHU Charleroi, Chaussée de Bruxelles 140, 6042, Lodelinsart, Belgium
Briganti, Giovanni  ;  Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service de Médecine computationnelle et Neuropsychiatrie
Language :
English
Title :
Pediatric cardiac surgery: machine learning models for postoperative complication prediction.
Publication date :
December 2024
Journal title :
Journal of Anesthesia
ISSN :
0913-8668
eISSN :
1438-8359
Publisher :
Springer, Japan
Volume :
38
Issue :
6
Pages :
747 - 755
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
M121 - Service de Médecine computationnelle et Neuropsychiatrie
Research institute :
Santé
Available on ORBi UMONS :
since 03 December 2024

Statistics


Number of views
10 (1 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi UMONS