Article (Scientific journals)
Two remarks on the set of recurrent vectors
López-Martínez, Antoni; Menet, Quentin
2025In Journal of Mathematical Analysis and Applications, 541 (1), p. 128686
Peer Reviewed verified by ORBi
 

Files


Full Text
Two remarks on Rec and RRec.pdf
Author postprint (413.7 kB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Cyclicity; Hypercyclicity; Linear dynamics; Recurrence; Reiterative recurrence; Analysis; Applied Mathematics
Abstract :
[en] We solve in the negative two open problems, related to the linear and topological structure of the set of recurrent vectors, asked by Sophie Grivaux, Alfred Peris and the first author of this paper. Firstly, we show that there exist recurrent operators whose set of recurrent vectors is not dense lineable; and secondly, we construct operators which are reiteratively recurrent and cyclic, but whose set of reiteratively recurrent vectors is meager.
Disciplines :
Mathematics
Author, co-author :
López-Martínez, Antoni;  Universitat Politècnica de València, Institut Universitari de Matemàtica Pura i Aplicada, València, Spain
Menet, Quentin  ;  Université de Mons - UMONS > Faculté des Sciences > Service d'Analyse fonctionnelle
Language :
English
Title :
Two remarks on the set of recurrent vectors
Publication date :
2025
Journal title :
Journal of Mathematical Analysis and Applications
ISSN :
0022-247X
eISSN :
1096-0813
Publisher :
Academic Press Inc.
Volume :
541
Issue :
1
Pages :
128686
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S844 - Probabilité et statistique
Research institute :
R150 - Institut de Recherche sur les Systèmes Complexes
Funding text :
The first author was supported by the Spanish Ministerio de Ciencia, Innovaci\u00F3n y Universidades, grant FPU2019/04094; by MCIN/AEI/10.13039/501100011033, Projects PID2019-105011GB-I00 and PID2022-139449NB-I00; and by the \u201CFundaci\u00F3 Ferran Sunyer i Balaguer\u201D. The second author is a Research Associate of the Fonds de la Recherche Scientifique - FNRS.
Available on ORBi UMONS :
since 06 January 2025

Statistics


Number of views
8 (2 by UMONS)
Number of downloads
1 (1 by UMONS)

Scopus citations®
 
3
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi UMONS