Article (Scientific journals)
A strategy based on hybrid 0D Chemical Reactor Networks and 1D Flame predictions for flashback prevention in an original H2 fueled micro Gas Turbine combustor without any redesign
Pappa, Alessio; Bricteux, Laurent; De Paepe, Ward
2025In International Journal of Hydrogen Energy, 111, p. 264 - 277
Peer Reviewed verified by ORBi
 

Files


Full Text
A strategy based on hybrid 0D Chemical Reactor Networks and 1D Flame predictions for flashback prevention in an original H2 fueled micro Gas Turbine com.pdf
Publisher postprint (1.86 MB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Chemical Reactor Network (CRN); Exhaust Gas Recirculation (EGR); Flashback; Humidification; Hydrogen; micro Gas Turbine (mGT); Chemical reactor network; Exhaust gas recirculation; Gas recirculations; Hydrogen combustion; Inlet conditions; Micro gas turbine; Micro-gas; Reactor network; Renewable Energy, Sustainability and the Environment; Fuel Technology; Condensed Matter Physics; Energy Engineering and Power Technology
Abstract :
[en] Hydrogen combustion is well-known to lead to flame instabilities, potentially resulting in flashback. Performing air humidification or Exhaust Gas Recirculation (EGR) alters the combustor inlet conditions, slowing down the flame speed and reducing the reaction rate and temperature. Nevertheless, these solutions are currently less considered for safe hydrogen combustion, and no prediction methodology exists. Therefore, the main goal of this work is thus to provide a fast prediction and low-computational complexity methodology to prevent flashback in a micro Gas Turbine (mGT) without any combustor redesigning. A parametric study is thus performed to find the minimal dilution levels to lead to stable combustion for several CH4/H2 blends, using a hybrid model, combining a 0D Chemical Reactor Network with 1D laminar flame calculations. The 0D/1D approach allows predetermining the inlet conditions to reduce the laminar flame speed down to the one of pure methane combustion flame. The results obtained using this hybrid methodology show that safe and complete combustion is possible for 0 to 100% hydrogen when performing water dilution, but limited to 50–55%vol when performing EGR. The 0D/1D analysis shows that a CH4/H2 blend of 50/50%vol requires either a water-to-air ratio of Ω=3.4%, or an EGR ratio of 77 % for flame stabilization. Burning up to 100 % H2 involves Ω=10.25%, while no solution exists when performing EGR.
Disciplines :
Energy
Author, co-author :
Pappa, Alessio  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Thermique et Combustion
Bricteux, Laurent  ;  Université de Mons - UMONS > Faculté Polytechnique > Service des Fluides-Machines
De Paepe, Ward  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Thermique et Combustion
Language :
English
Title :
A strategy based on hybrid 0D Chemical Reactor Networks and 1D Flame predictions for flashback prevention in an original H2 fueled micro Gas Turbine combustor without any redesign
Publication date :
20 March 2025
Journal title :
International Journal of Hydrogen Energy
ISSN :
0360-3199
eISSN :
1879-3487
Publisher :
Elsevier Ltd
Volume :
111
Pages :
264 - 277
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F704 - Thermique et Combustion
F702 - Fluides-Machines
Research institute :
R200 - Institut de Recherche en Energie
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi UMONS :
since 13 March 2025

Statistics


Number of views
2 (0 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi UMONS