Abe, K. et al. Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis. Proc. Natl. Acad. Sci. 115, 2764–2769 (2018). DOI: 10.1073/pnas.1711667115
Lamalice, L., Le Boeuf, F. & Huot, J. Endothelial cell migration during angiogenesis. Circ. Res. 100, 782–794 (2007). DOI: 10.1161/01.RES.0000259593.07661.1e
Aznavoorian, S. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 110, 1427–1438 (1990). DOI: 10.1083/jcb.110.4.1427
Oudin, M. J. et al. Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov. 6, 516–531 (2016). DOI: 10.1158/2159-8290.CD-15-1183
Riaz, M., Versaevel, M., Mohammed, D., Glinel, K. & Gabriele, S. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement. Sci. Rep. 6, 34141 (2016). DOI: 10.1038/srep34141
McCarthy, J. B. & Furcht, L. T. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell Biol. 98, 1474–1480 (1984). DOI: 10.1083/jcb.98.4.1474
Barnhart, E. L., Lee, K.-C., Keren, K., Mogilner, A. & Theriot, J. A. An Adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol. 9, e1001059 (2011). DOI: 10.1371/journal.pbio.1001059
Dertinger, S. K. W., Jiang, X., Li, Z., Murthy, V. N. & Whitesides, G. M. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. 99, 12542–12547 (2002). DOI: 10.1073/pnas.192457199
Poole, T. J. & Steinberg, M. S. Evidence for the guidance of pronephric duct migration by a craniocaudally traveling adhesion gradient. Dev. Biol. 92, 144–158 (1982). DOI: 10.1016/0012-1606(82)90159-2
Weber, M. et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332 (2013). DOI: 10.1126/science.1228456
Ganiko, L., Martins, A. R., Espreafico, E. M. & Roque-Barreira, M. C. Neutrophil haptotaxis induced by the lectin KM+. Glycoconj. J. 15, 531–534 (1998). DOI: 10.1023/A:1006999323098
Ricoult, S. G., Kennedy, T. E. & Juncker, D. Substrate-bound protein gradients to study haptotaxis. Front. Bioeng. Biotechnol. 3, 40 (2015). DOI: 10.3389/fbioe.2015.00040
Jeon, N. L. et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000). DOI: 10.1021/la000600b
Preira, P. et al. Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13, 161–170 (2013). DOI: 10.1039/C2LC40847C
Chen, X., Su, Y.-D., Ajeti, V., Chen, S.-J. & Campagnola, P. J. Cell adhesion on micro-structured fibronectin gradients fabricated by multiphoton excited photochemistry. Cell. Mol. Bioeng. 5, 307–319 (2012). DOI: 10.1007/s12195-012-0237-8
Wang, S. et al. Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments. Biomed. Microdevices 11, 1127–1134 (2009). DOI: 10.1007/s10544-009-9329-1
Rink, I., Rink, J., Helmer, D., Sachs, D. & Schmitz, K. A haptotaxis assay for leukocytes based on surface-bound chemokine gradients. J. Immunol. 194, 5549–5558 (2015). DOI: 10.4049/jimmunol.1500148
MacNearney, D., Mak, B., Ongo, G., Kennedy, T. E. & Juncker, D. Nanocontact printing of proteins on physiologically soft substrates to study cell haptotaxis. Langmuir 32, 13525–13533 (2016). DOI: 10.1021/acs.langmuir.6b03246
Versaevel, M., Grevesse, T., Riaz, M., Lantoine, J. & Gabriele, S. Micropatterning Hydroxy-PAAm Hydrogels and Sylgard 184 Silicone Elastomers with Tunable Elastic Moduli. In Methods in Cell Biology vol. 121 33–48 (Elsevier, 2014).
Strale, P.-O. et al. Multiprotein printing by light-induced molecular adsorption. Adv. Mater. 28, 2024–2029 (2016). DOI: 10.1002/adma.201504154
Delépine, C. et al. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. Hum. Mol. Genet. 25, 146–157 (2016). DOI: 10.1093/hmg/ddv464
Simmons, N. L. Cultured monolayers of MDCK cells: a novel model system for the study of epithelial development and function. Gen. Pharmacol. 13, 287–291 (1982). DOI: 10.1016/0306-3623(82)90047-7
Hornung, A. et al. A bistable mechanism mediated by integrins controls mechanotaxis of leukocytes. Biophys. J. 118, 565–577 (2020). DOI: 10.1016/j.bpj.2019.12.013
Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl. Acad. Sci. 109, 10891–10896 (2012). DOI: 10.1073/pnas.1117814109
Ravasio, A. et al. Gap geometry dictates epithelial closure efficiency. Nat. Commun. 6, 7683 (2015). DOI: 10.1038/ncomms8683
Omelchenko, T., Vasiliev, J. M., Gelfand, I. M., Feder, H. H. & Bonder, E. M. Rho-dependent formation of epithelial ‘leader’ cells during wound healing. Proc. Natl. Acad. Sci. 100, 10788–10793 (2003). DOI: 10.1073/pnas.1834401100
Zahm, J. M. et al. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil. Cytoskeleton 37, 33–43 (1997). DOI: 10.1002/(SICI)1097-0169(1997)37:1<33::AID-CM4>3.0.CO;2-I
Mohammed, D. et al. Substrate area confinement is a key determinant of cell velocity in collective migration. Nat. Phys. 10.1038/s41567-019-0543-3 15, 858–866 (2019). DOI: 10.1038/s41567-019-0543-3
Heller, D. et al. EpiTools: an open-source image analysis toolkit for quantifying epithelial growth dynamics. Dev. Cell 36, 103–116 (2016). DOI: 10.1016/j.devcel.2015.12.012
Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta BBA Biomembr. 1778, 660–669 (2008). DOI: 10.1016/j.bbamem.2007.07.012
Mui, K. L., Chen, C. S. & Assoian, R. K. The mechanical regulation of integrin–cadherin crosstalk organizes cells, signaling and forces. J. Cell Sci. 129, 1093–1100 (2016). DOI: 10.1242/jcs.183699
Mohammed, D. et al. Innovative tools for mechanobiology: unravelling outside-in and inside-out mechanotransduction. Front. Bioeng. Biotechnol. 7, 162 (2019). DOI: 10.3389/fbioe.2019.00162
Borghi, N., Lowndes, M., Maruthamuthu, V., Gardel, M. L. & Nelson, W. J. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl. Acad. Sci. 107, 13324–13329 (2010). DOI: 10.1073/pnas.1002662107
Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl. Acad. Sci. 112, 15314–15319 (2015). DOI: 10.1073/pnas.1510973112
Warren, M., Puskarczyk, K. & Chapman, S. C. Chick embryo proliferation studies using EdU labeling. Dev. Dyn. 238, 944–949 (2009). DOI: 10.1002/dvdy.21895
Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. 102, 11594–11599 (2005). DOI: 10.1073/pnas.0502575102
Versaevel, M., Grevesse, T. & Gabriele, S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012). DOI: 10.1038/ncomms1668
Chen, N., Zhang, J., Xu, M., Wang, Y. L. & Pei, Y. H. Inhibitory effect of mitomycin C on proliferation of primary cultured fibroblasts from human airway granulation tissues. Respiration 85, 500–504 (2013). DOI: 10.1159/000346648
Xi, W., Sonam, S., Beng Saw, T., Ladoux, B. & Teck Lim, C. Emergent patterns of collective cell migration under tubular confinement. Nat. Commun. 8, 1517 (2017). DOI: 10.1038/s41467-017-01390-x
Farooqui, R. & Fenteany, G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J. Cell Sci. 118, 51–63 (2005). DOI: 10.1242/jcs.01577
Martin, P. Wound healing–aiming for perfect skin regeneration. Science 276, 75–81 (1997). DOI: 10.1126/science.276.5309.75
Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000). DOI: 10.1083/jcb.149.2.471
Laplante, A. F., Germain, L., Auger, F. A. & Moulin, V. Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J. 15, 2377–2389 (2001). DOI: 10.1096/fj.01-0250com
Liang, C.-C., Park, A. Y. & Guan, J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007). DOI: 10.1038/nprot.2007.30
Fernandez-Gonzalez, R. & Zallen, J. A. Wounded cells drive rapid epidermal repair in the early Drosophila embryo. Mol. Biol. Cell 24, 3227–3237 (2013). DOI: 10.1091/mbc.e13-05-0228
Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. 104, 15988–15993 (2007). DOI: 10.1073/pnas.0705062104
Begnaud, S., Chen, T., Delacour, D., Mège, R.-M. & Ladoux, B. Mechanics of epithelial tissues during gap closure. Curr. Opin. Cell Biol. 42, 52–62 (2016). DOI: 10.1016/j.ceb.2016.04.006
Wood, W. et al. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4, 907–912 (2002). DOI: 10.1038/ncb875
Danjo, Y. & Gipson, I. K. Actin ‘purse string’ filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement. J. Cell Sci. 111(Pt 22), 3323–3332 (1998).
Ridley, A. J. Life at the leading edge. Cell 145, 1012–1022 (2011). DOI: 10.1016/j.cell.2011.06.010
Ponti, A. et al. Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative fluorescent speckle microscopy. Biophys. J. 89, 3456–3469 (2005). DOI: 10.1529/biophysj.104.058701
Jacinto, A., Martinez-Arias, A. & Martin, P. Mechanisms of epithelial fusion and repair. Nat. Cell Biol. 3, E117–E123 (2001). DOI: 10.1038/35074643
Vishwakarma, M. et al. Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives. Nat. Commun. 9, 3469 (2018). DOI: 10.1038/s41467-018-05927-6
Kamran, Z. et al. In vivo imaging of epithelial wound healing in the cnidarian Clytia hemisphaerica demonstrates early evolution of purse string and cell crawling closure mechanisms. BMC Dev. Biol. 17, 17 (2017). DOI: 10.1186/s12861-017-0160-2
Brugués, A. et al. Forces driving epithelial wound healing. Nat. Phys. 10, 683–690 (2014). DOI: 10.1038/nphys3040
Ajeti, V. et al. Wound healing coordinates actin architectures to regulate mechanical work. Nat. Phys. 15, 696–705 (2019). DOI: 10.1038/s41567-019-0485-9
Vedula, S. R. K. et al. Mechanics of epithelial closure over non-adherent environments. Nat. Commun. 6, 6111 (2015). DOI: 10.1038/ncomms7111
Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997). DOI: 10.1038/385537a0
Abdellatef, S. A. & Nakanishi, J. Photoactivatable substrates for systematic study of the impact of an extracellular matrix ligand on appearance of leader cells in collective cell migration. Biomaterials 169, 72–84 (2018). DOI: 10.1016/j.biomaterials.2018.03.045
Weber, G. F., Bjerke, M. A. & DeSimone, D. W. Integrins and cadherins join forces to form adhesive networks. J. Cell Sci. 124, 1183–1193 (2011). DOI: 10.1242/jcs.064618
Martinez-Rico, C., Pincet, F., Thiery, J.-P. & Dufour, S. Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. J. Cell Sci. 123, 712–722 (2010). DOI: 10.1242/jcs.047878
Burute, M. & Thery, M. Spatial segregation between cell–cell and cell–matrix adhesions. Curr. Opin. Cell Biol. 24, 628–636 (2012). DOI: 10.1016/j.ceb.2012.07.003
Rafiq, N. B. M. et al. A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions. Nat. Mater. 18, 638 (2019). DOI: 10.1038/s41563-019-0371-y
Cochet-Escartin, O., Ranft, J., Silberzan, P. & Marcq, P. Border forces and friction control epithelial closure dynamics. Biophys. J. 106, 65–73 (2014). DOI: 10.1016/j.bpj.2013.11.015
Versaevel, M., Riaz, M., Grevesse, T. & Gabriele, S. Cell confinement: putting the squeeze on the nucleus. Soft Matter 9, 6665–6676 (2013). DOI: 10.1039/c3sm00147d