[en] We performed in this experimental study impacts of aqueous ferrofluid drops on a superhydrophobic surface. The ferrofluids were used to simulate changes of the gravitational acceleration g* by applying
different magnetic fields. It has been shown that a rebound/no rebound boundary can be obtained when plotting the impact results as a function of Weber, Reynolds, and Bond numbers, which quantify, respectively, effects of inertia over capillary ones, inertia over viscous dissipation, and gravity
over capillary effects. On a We versus Re/Bo$^n$ graph an optimum value of n close to 4 has been obtained by support vector machine analysis. Conditions to get rebound or no rebound have been established as functions of the impact parameters and of the liquid characteristics, but also of the body forces intensities.
Centre de recherche :
CRPM - Physique des matériaux
Disciplines :
Physique
Auteur, co-auteur :
Duvivier, Damien ; Université de Mons > Faculté des Sciences > Laboratoire de Physique des Surfaces et Interfaces
Rioboo, Romain ; Université de Mons > Unités externes > ASBL YOUFM ; Université de Mons > Faculté des Sciences > Laboratoire de Physique des Surfaces et Interfaces
Voué, Michel ; Université de Mons > Faculté des Sciences > Service de Physique des matériaux et Optique
De Coninck, Joël ; Université de Mons > Faculté des Sciences > Service du Laboratoire de Physique des Surfaces et Interfaces
Langue du document :
Anglais
Titre :
Drop impact on superhydrophobic surfaces -- Varying gravitational effects
Date de publication/diffusion :
29 octobre 2012
Titre du périodique :
Atomization and Sprays
ISSN :
1044-5110
Maison d'édition :
Begell House
Volume/Tome :
22
Fascicule/Saison :
5
Pagination :
409-429
Peer reviewed :
Peer reviewed
Unité de recherche :
S877 - Laboratoire de Physique des Surfaces et Interfaces S878 - Physique des matériaux et Optique
Institut de recherche :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Barthlott, W. and Neinhuis, C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces, Planta, vol. 202, no. 1, pp. 1-8, 1996.
Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P., and Moulinet, S., Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces, Europhys. Lett., vol. 74, pp. 299-305, 2006.
Berg, J. C. (ed.), Wettability, Dekker, New York, 1993.
Borgs, C., De Coninck, J., Kotecky, R., and Zinque M., Does the Roughness of the Substrate Enhance Wetting?, Phys. Rev. Lett., vol. 74, no. 12, pp. 2292-2294, 1995.
Bormashenko, E., Pogreb, R., Bormashenko, Y., Musin, A., and Stein, T., New Investigations on Ferrofluidics: Ferrofluidic Marbles and Magnetic-Field-Driven Drops on Superhydrophobic Surfaces, Langmuir, vol. 24, pp. 12119-12122, 2008.
Boser, B., Guyon, I., and Vapnik, V., Training Algorithm for Optimal Margin Classifiers, Proceedings of 5th Annual Workshop on Computational Learning Theory, ACM, New-York, pp. 144-152, 1992.
Cassie, A. B. D. and Baxter, S., Wettability of Porous Surfaces, Trans. Faraday Soc., vol. 40, pp. 546-551, 1944.
Bossis, G., Lacis, S., Meunier, A., and Volkova, O. Magnetorheological Fluids, J. Magn. Magn. Mater., vol. 252, no. 1-3, pp. 224-228, 2002.
Chandra, S. and Avedisian, C. T., On the Collision of a Droplet with a Solid Surface, Proc. R. Soc. London A, vol. 432, pp. 13-41, 1991.
Clanet, C., B́eguin, C., Richard, D., and Qúeŕe, D., Maximal Deformation of an Impacting Drop, J. Fluid Mech., vol. 517, pp. 199-208, 2004.
De Gennes, P.-G., Brochard-Wyart, F., and Qu'er'e, D., Capillary and Wetting Phenomena-Drops, Bubbles, Pearls, Waves, Springer, New York, 2002.
Desbief, S., Grignard, B., Detrembleur, C., Rioboo, R., Vaillant, A., Seveno, D., Voúe, M., De Coninck, J., Jonas, A. M., J́er̂ome, C., Damman, P., and Lazzaroni, R., Superhydrophobic Aluminum Surfaces by Deposition of Micelles of Fluorinated Block Copolymers, Langmuir, vol. 26, no. 3, pp. 2057-2067, 2010.
Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., andWeingessel A., e1071: Misc Functions of the Department of Statistics (e1071), R package version, TU Wien, 2011.
Fukai, J., Shiiba,Y., Yamamoto, T., Mitayake, O., Poulikakos, D., Megaridis, C. M., and Zhao, Z., Wetting Effects on the Spreading of a Liquid Droplet Colliding with a Flat Surface: Experiments and Modeling, Phys. Fluids A, vol. 7, pp. 236-247, 1995.
Gao, L. and McCarthy, T. J., A Perfectly Hydrophobic Surface (A/R = 180±/180±), J. Am. Chem. Soc., vol. 128, no. 28, pp. 9052-9053, 2006.
Gao, N., Yan, Y. Y., Chen, X. Y., and Zheng, X. F., Superhydrophobic Composite Films Based on THS and Nanoparticles, J. Bionic Eng., vol. 7 (Suppl.), pp. S59-S66, 2010.
Garćia, A. A., Egatz-Ǵomez, A., Lindsay, S. A., Doḿinguez-Garćia, P., Melle, S., Marquez, M., Rubio, M. A., Picraux, S. T., Yang, D., Aella, P., Hayes, M. A., Gust, D., Loyprasert, S., Vazquez-Alvarez, T., and Wang, J., Magnetic Movement of Biological Fluid Droplets, J. Magn. Magn. Mater., vol. 311, pp. 238-243, 2007.
Gentner, F., Rioboo, R., Baland, J.-P., and De Coninck, J., Low Inertia Impact Dynamics for Nanodrops, Langmuir, vol. 20, no. 11, pp. 4748-4755, 2004.
Guo, Z. G., Zhou, F., Hao, J. C., Liang, Y. M., Liu, W. M, and Huck, W. T. S., "Stick and Slide" Ferrofluid Droplets on Superhydrophobic Surfaces, Appl. Phys. Lett., vol. 89, p. 081911, 2006.
He, B., Patankar, N. A., and Lee, J., Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir, vol. 19, no. 12, pp. 4999-5003, 2003.
Hong, X., Gao, X., and Jiang, L., Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet, J. Am. Chem. Soc., vol. 129, pp. 1478-1479, 2007.
Kompinsky, E. and Sher, E., Experimental Comparisons between Droplet-Droplet Collision and Single-Droplet Impacts on a Solid Surface, Atomization Sprays, vol. 19, pp. 409-423, 2009.
Ma, M. and Hill, R. M., Superhydrophobic Surfaces, Curr. Opin. Colloid Interface Sci., vol. 11, no. 4, pp. 193-202, 2006.
Marmur, A., Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be?, Langmuir, vol. 19, pp. 8343-8348, 2003.
Massart, R., Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media, IEEE Trans. Magn. Mag., vol. 17, no. 2, pp. 1247-1248, 1981.
Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., andWatanabe, T., Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, vol. 16, pp. 5754-5760, 2000.
Nakajima, A., Hashimoto, K., and Watanabe, T., Recent Studies on Super-Hydrophobic Films, Monatsch. Chem., vol. 132, pp. 31-41, 2001.
Onda, T., Shibuichi, S., Satoh, N., and Tsujii, K., Super-Water-Repellent Fractal Surfaces, Langmuir, vol. 12, no. 9, pp 2125-2127, 1996.
Ö ner, D. and McCarthy, T. J., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, vol. 16, pp. 7777-7782, 2000.
Pasandideh-Fard, M., Qiao, Y. M., Chandra, S., and Mostaghimi, J., Capillary Effects during Droplet Impact on a Solid Surface, Phys. Fluids, vol. 8, pp. 650-659, 1996.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in Fortran, 2nd ed.; Cambridge University Press: Cambridge, 1992.
R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, 2012; http://www.R-project.org/.
Rahimi, S. and Weihs, D., Experimental Investigation of Magneto-Rheological Droplet Impact on a Smooth Surface, J. Magn. Magn. Mater., vol. 321, pp. 3178-3182, 2009.
Reyssat, M., Ṕepin, A., Marty, F., Chen, Y., and Qúeŕe, D., Bouncing Transitions on Microtextured Materials, Europhys. Lett., vol. 74, pp. 306-312, 2006.
Richard, D. and Qúeŕe, D., Bouncing water drops, Europhys. Lett., vol. 50, pp. 769-775, 2000.
Rinaldi, C., Chaves, A., Elborai, S., He, X., and Zahn, M., Magnetic Fluid Rheology and Flows, Curr. Opin. Colloid Interface Sci., vol. 10, no. 3-4, pp. 141-157, 2005.
Rioboo, R., Tropea, C., and Marengo, M., Outcomes from a Drop Impact on Solid Surfaces, Atomization Sprays, vol. 11, pp. 155-166, 2001.
Rioboo, R., Marengo, M., and Tropea, C., Time Evolution of Liquid Drop Impact onto Solid, Dry Surfaces, Exp. Fluids, vol. 33, pp. 112-124, 2002.
Rioboo, R., Ad̀ao, M. H., Voúe, M., and De Coninck, J., Experimental Evidence of Liquid Drop Break-up in Complete Wetting Experiments, J. Mater. Sci., vol. 41, no. 16, pp. 5068-5080, 2006.
Rioboo, R., Voúe, M., Vaillant, A., Seveno, D., Conti, J., Bondar, A. I., Ivanov, D. A., and De Coninck, J., Superhydrophobic Surfaces from Various Polypropylenes, Langmuir, vol. 24, no. 17, pp. 9508-9514, 2008a.
Rioboo, R., Voúe, M., Vaillant, A., and De Coninck, J., Drop Impact on Porous Superhydrophobic Polymer Surfaces, Langmuir, vol. 24, no. 24, pp. 14074-14077, 2008b.
Rioboo, R., Voúe, M., Ad̀ao, H., Conti, J., Vaillant, A., Seveno, D., and De Coninck, J., Drop Impact on Soft Surfaces: Beyond the Static Contact Angles, Langmuir, vol. 26, no. 7, pp. 4873-4879, 2010.
Rioboo, R., Delattre, B., Duvivier, D., Vaillant, A., and De Coninck, J., Superhydrophobicity and Liquid Repellency of Solutions on Polypropylene, Adv. Colloid Interface Sci., vol. 175, pp. 1-10, 2012.
Roisman, I. V., Rioboo, R., and Tropea, C., Normal impact of a liquid drop on a dry surface: Model for spreading and receding, Proc. R. Soc. London A, vol. 458, pp. 1411-1430, 2002.
Roisman, I. V., Inertia Dominated Drop Collisions. II. An Analytical Solution of the Navier-Stokes Equations for a Spreading Viscous Film, Phys. Fluids, vol. 21, p. 052104, 2009.
Schiaffino, S. and Sonin, A. A., Molten Droplet Deposition and Solidification at Low Weber Numbers, Phys. Fluids, vol. 9, no. 11, pp. 3172-3187, 1997.
Schneider, J., Egatz-Ǵomez, A., Melle, S., Lindsay, S. A., Doḿinguez-Garćia, P., Rubio, M. A., Marquez, M., and Garcia, A. A., Motion of Viscous Drops on Superhydrophobic Surfaces Due to Magnetic Gradients, Colloids Surf. A, vol. 323, pp. 19-27, 2008.
Sikalo, S., Tropea, C., and Ganic, E. N., Impact of Droplets onto Inclined Surfaces, J. Colloid Interface Sci., vol. 286, no. 2, pp. 661-669, 2005.
Stow, C. D. and Hadfield, M. G., An Experimental Investigation of Fluid Flow Resulting from the Impact of aWater Drop with an Unyielding Dry Surface, Proc. R. Soc. London A, vol. 373, pp. 419-441, 1981.
Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New-York, 1995.
Voúe, M., Rioboo, R., Bauthier, C., Conti, J., Charlot, M., and De Coninck, J., Dissipation and Moving Contact Lines on Non-Rigid Substrates, J. Eur. Ceram. Soc., vol. 23, no. 15, pp. 2769-2775, 2003.
Wautelet, M. and Duvivier, D., The characteristic dimensions of the nanoworld, Eur. J. Phys., vol. 28, no. 5, pp. 953-959, 2007.
Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., vol. 28, pp. 988-994, 1936.
Worthington, A. M., On the Form Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate, Proc. R. Soc. London, vol. 25, pp. 261-271, 1876.
Zakinyan, A., Nechaeva, O., and Dikansky, Y., Motion of a Deformable Drop of Magnetic Fluid on a Solid Surface in a Rotating Magnetic Field, Exp. Therm. Fluid Sci., vol. 39, pp. 265-268, 2012.
Zhao, Y., Fang, J., Wang, H., Wang, X., and Lin, T., Magnetic Liquid Marbles: Manipulation of Liquid Droplets Using Highly Hydrophobic Fe3O4 Nanoparticles, Adv. Mater., vol. 22, pp. 707-710, 2010.