Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond. Chem. Soc. Rev. 2019, 48, 1272-1341, 10.1039/C8CS00581H
Zhang, L. L.; Zhao, X. S. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 2520-2531, 10.1039/b813846j
Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P. Ultrahigh-Power Micrometre-Sized Supercapacitors Based on Onion-Like Carbon. Nat. Nanotechnol. 2010, 5, 651, 10.1038/nnano.2010.162
Miller, J. R.; Simon, P. Electrochemical Capacitors for Energy Management. Science 2008, 321, 651-652, 10.1126/science.1158736
Li, X.; Wei, B. Supercapacitors Based on Nanostructured Carbon. Nano Energy 2013, 2, 159-173, 10.1016/j.nanoen.2012.09.008
Deng, Y.; Xie, Y.; Zou, K.; Ji, X. Review on Recent Advances in Nitrogen-Doped Carbons: Preparations and Applications in Supercapacitors. J. Mater. Chem. A 2016, 4, 1144-1173, 10.1039/C5TA08620E
Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A 2017, 5, 12653-12672, 10.1039/C7TA00863E
Pognon, G.; Cougnon, C.; Mayilukila, D.; Bélanger, D. Catechol-Modified Activated Carbon Prepared by the Diazonium Chemistry for Application as Active Electrode Material in Electrochemical Capacitor. ACS Appl. Mater. Interfaces 2012, 4, 3788-3796, 10.1021/am301284n
Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate Methods for Evaluating the Efficiency and Capacitive Behavior of Different Types of Supercapacitors. Electrochem. Commun. 2015, 60, 21-25, 10.1016/j.elecom.2015.07.022
Balducci, A.; Belanger, D.; Brousse, T.; Long, J. W.; Sugimoto, W. Perspective-a Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices. J. Electrochem. Soc. 2017, 164, A1487-A1488, 10.1149/2.0851707jes
Ke, Q.; Wang, J. Graphene-Based Materials for Supercapacitor Electrodes-a Review. Journal of Materiomics 2016, 2, 37-54, 10.1016/j.jmat.2016.01.001
Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P. L.; Chaudret, B.; Gogotsi, Y.; Simon, P. On-Chip and Freestanding Elastic Carbon Films for Micro-Supercapacitors. Science 2016, 351, 691-695, 10.1126/science.aad3345
Farquhar, A. K.; Supur, M.; Smith, S. R.; van Dyck, C.; McCreery, R. L. Hybrid Graphene Ribbon/Carbon Electrodes for High-Performance Energy Storage. Adv. Energy Mater. 2018, 8, 1802439, 10.1002/aenm.201802439
Ranganathan, S.; McCreery, R. L. Electroanalytical Performance of Carbon Films with near-Atomic Flatness. Anal. Chem. 2001, 73, 893-900, 10.1021/ac0007534
Supur, M.; Van Dyck, C.; Bergren, A. J.; McCreery, R. L. Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions. ACS Appl. Mater. Interfaces 2018, 10, 6090-6095, 10.1021/acsami.7b19305
Baranton, S.; Bélanger, D. Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated Diazonium Cations. J. Phys. Chem. B 2005, 109, 24401-24410, 10.1021/jp054513+
Baranton, S.; Bélanger, D. In Situ Generation of Diazonium Cations in Organic Electrolyte for Electrochemical Modification of Electrode Surface. Electrochim. Acta 2008, 53, 6961-6967, 10.1016/j.electacta.2008.02.105
Chamoulaud, G.; Belanger, D. Spontaneous Derivatization of a Copper Electrode with in Situ Generated Diazonium Cations in Aprotic and Aqueous Media. J. Phys. Chem. C 2007, 111, 7501-7507, 10.1021/jp0704012
Fluteau, T.; Bessis, C.; Barraud, C.; Della Rocca, M. L.; Martin, P.; Lacroix, J.-C.; Lafarge, P. Tuning the Thickness of Electrochemically Grafted Layers in Large Area Molecular Junctions. J. Appl. Phys. 2014, 116, 114509, 10.1063/1.4896106
Brousse, T.; Bélanger, D.; Long, J. W. To Be or Not to Be Pseudocapacitive?. J. Electrochem. Soc. 2015, 162, A5185-A5189, 10.1149/2.0201505jes
Gogotsi, Y.; Penner, R. M. Energy Storage in Nanomaterials-Capacitive, Pseudocapacitive, or Battery-Like?. ACS Nano 2018, 12, 2081-2083, 10.1021/acsnano.8b01914
Li, L.; Secor, E. B.; Chen, K.-S.; Zhu, J.; Liu, X.; Gao, T. Z.; Seo, J.-W. T.; Zhao, Y.; Hersam, M. C. High-Performance Solid-State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Adv. Ener. Mater. 2016, 6, 1600909, 10.1002/aenm.201600909
Liu, L.; Wang, X.; Izotov, V.; Havrykov, D.; Koltsov, I.; Han, W.; Zozulya, Y.; Linyucheva, O.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Capacitance of Coarse-Grained Carbon Electrodes with Thickness up to 800 Mm. Electrochim. Acta 2019, 302, 38-44, 10.1016/j.electacta.2019.02.004
Anariba, F.; DuVall, S. H.; McCreery, R. L. Mono-and Multilayer Formation by Diazonium Reduction on Carbon Surfaces Monitored with Atomic Force Microscopy "Scratching. Anal. Chem. 2003, 75, 3837-3844, 10.1021/ac034026v
Palys, B. J.; Bukowska, J.; Jackowska, K. Sers of 1,8-Diaminonaphthalene on Gold, Silver and Copper Electrodes Polymerisation and Complexes Formed with the Electrode Material. J. Electroanal. Chem. 1997, 428, 19-24, 10.1016/S0022-0728(97)00029-6
Majid, S.; Rhazi, M. E.; Amine, A.; Curulli, A.; Palleschi, G. Carbon Paste Electrode Bulk-Modified with the Conducting Polymer Poly(1,8-Diaminonaphthalene): Application to Lead Determination. Microchim. Acta 2003, 143, 195-204, 10.1007/s00604-003-0058-5
Li, X.-G.; Huang, M.-R.; Li, S.-X. Facile Synthesis of Poly(1,8-Diaminonaphthalene) Microparticles with a Very High Silver-Ion Adsorbability by a Chemical Oxidative Polymerization. Acta Mater. 2004, 52, 5363-5374, 10.1016/j.actamat.2004.07.042
Tagowska, M.; Pałys, B.; Mazur, M.; Skompska, M.; Jackowska, K. In Situ Deposition of Poly(1,8-Diaminonaphthalene): From Thin Films to Nanometer-Sized Structures. Electrochim. Acta 2005, 50, 2363-2370, 10.1016/j.electacta.2004.10.049
Lee, J. W.; Park, D. S.; Shim, Y. B.; Park, S. M. Electrochemical Characterization of Poly(1,8-Diaminonaphthalene): A Functionalized Polymer. J. Electrochem. Soc. 1992, 139, 3507-3514, 10.1149/1.2069107
Oyama, N.; Sato, M.; Ohsaka, T. Preparation of Thin Polymeric Films on Electrode Surfaces by Electro-Polymerization of Aromatic Compounds with Amino Groups. Synth. Met. 1989, 29, 501-506, 10.1016/0379-6779(89)90340-8
Skompska, M.; Hillman, A. R. Electrochemical Quartz Crystal Microbalance Studies of the Electropolymerization, Electroactivity and Complexing Properties of Poly(1,8-Diaminonaphthalene) Films. J. Chem. Soc., Faraday Trans. 1996, 92, 4101-4108, 10.1039/ft9969204101
Jackowska, K.; Skompska, M.; Przyłuska, E. Electro-Oxidation of 1,5 and 1,8 Diaminonaphthalene: An Rde Study. J. Electroanal. Chem. 1996, 418, 35-39, 10.1016/S0022-0728(96)04852-8
Blond, P.; Mattiuzzi, A.; Valkenier, H.; Troian-Gautier, L.; Bergamini, J.-F.; Doneux, T.; Goormaghtigh, E.; Raussens, V.; Jabin, I. Grafting of Oligo(Ethylene Glycol)-Functionalized Calix[4]Arene-Tetradiazonium Salts for Antifouling Germanium and Gold Surfaces. Langmuir 2018, 34, 6021-6027, 10.1021/acs.langmuir.8b00464
Torréns, M.; Ortiz, M.; Turner, A. P. F.; Beni, V.; O'Sullivan, C. K. Controlled Zn-Mediated Grafting of Thin Layers of Bipodal Diazonium Salt on Gold and Carbon Substrates. Chem.-Eur. J. 2015, 21, 671-681, 10.1002/chem.201405121
Harnisch, J. A.; Gazda, D. B.; Anderegg, J. W.; Porter, M. D. Chemical Modification of Carbonaceous Stationary Phases by the Reduction of Diazonium Salts. Anal. Chem. 2001, 73, 3954-3959, 10.1021/ac010398x
Downard, A. J. Potential-Dependence of Self-Limited Films Formed by Reduction of Aryldiazonium Salts at Glassy Carbon Electrodes. Langmuir 2000, 16, 9680-9682, 10.1021/la000866i
Laforgue, A.; Addou, T.; Bélanger, D. Characterization of the Deposition of Organic Molecules at the Surface of Gold by the Electrochemical Reduction of Aryldiazonium Cations. Langmuir 2005, 21, 6855-6865, 10.1021/la047369c
Yu, D. S.; Kuila, T.; Kim, N. H.; Lee, J. H. Enhanced Properties of Aryl Diazonium Salt-Functionalized Graphene/Poly(Vinyl Alcohol) Composites. Chem. Eng. J. 2014, 245, 311-322, 10.1016/j.cej.2014.02.025
Vettorazzi, N.; Silber, J. J.; Sereno, L. Solvent Effects in Electrochemical Oxidation of 1-Naphthylamine: Dimethylsulfoxide Vs. Acetonitrile. J. Electroanal. Chem. Interfacial Electrochem. 1983, 158, 89-102, 10.1016/S0022-0728(83)80340-4
Arévalo, A. H.; Fernández, H.; Silber, J. J.; Sereno, L. Mechanism of Electropolymerization of 1-Naphthylamine in Aqueous Acid Media. Electrochim. Acta 1990, 35, 741-748, 10.1016/0013-4686(90)90008-N
Jin, C.-S.; Shim, Y.-B.; Park, S.-M. Electropolymerization and Spectroelectrochemical Characterization of Poly(1,5-Diaminonaphthalene). Synth. Met. 1995, 69, 561-562, 10.1016/0379-6779(94)02569-K
Ruangchuay, L.; Schwank, J.; Sirivat, A. Surface Degradation of A-Naphthalene Sulfonate-Doped Polypyrrole During Xps Characterization. Appl. Surf. Sci. 2002, 199, 128-137, 10.1016/S0169-4332(02)00564-0
Choukourov, A.; Kousal, J.; Slavínská, D.; Biederman, H.; Fuoco, E. R.; Tepavcevic, S.; Saucedo, J.; Hanley, L. Growth of Primary and Secondary Amine Films from Polyatomic Ion Deposition. Vacuum 2004, 75, 195-205, 10.1016/j.vacuum.2004.02.006
Li, Q.; Qian, Y.; Cui, H.; Zhang, Q.; Tang, R.; Zhai, J. Preparation of Poly(Aniline-1,8-Diaminonaphthalene) and Its Application as Adsorbent for Selective Removal of Cr(Vi) Ions. Chem. Eng. J. 2011, 173, 715-721, 10.1016/j.cej.2011.08.035
Kumar, S. N.; Gaillard, F.; Bouyssoux, G.; Sartre, A. High-Resolution Xps Studies of Electrochemically Synthesized Conducting Polyaniline Films. Synth. Met. 1990, 36, 111-127, 10.1016/0379-6779(90)90240-L
Meneguzzi, A.; Pham, M. C.; Lacroix, J.-C.; Piro, B.; Adenier, A.; Ferreira, C. A.; Lacaze, P.-C. Electroactive Poly(Aromatic Amine) Films for Iron Protection in Sulfate Medium. J. Electrochem. Soc. 2001, 148, B121-B126, 10.1149/1.1354613
Kang, E. T.; Neoh, K. G.; Tan, K. L.; Tan, B. T. G. Protonation of the Amine Nitrogens in Emeraldine-Evidence from X-Ray Photoelectron Spectroscopy. Synth. Met. 1992, 46, 227-233, 10.1016/0379-6779(92)90346-K
Snauwaert, P.; Lazzaroni, R.; Riga, J.; Verbist, J.; Gonbeau, D. A Photoelectron Spectroscopic Study of the Electrochemical Processes in Polyaniline. J. Chem. Phys. 1990, 92, 2187-2193, 10.1063/1.458010
Doppelt, P.; Hallais, G.; Pinson, J.; Podvorica, F.; Verneyre, S. Surface Modification of Conducting Substrates. Existence of Azo Bonds in the Structure of Organic Layers Obtained from Diazonium Salts. Chem. Mater. 2007, 19, 4570-4575, 10.1021/cm0700551
Yu, S. S. C.; Tan, E. S. Q.; Jane, R. T.; Downard, A. J. An Electrochemical and Xps Study of Reduction of Nitrophenyl Films Covalently Grafted to Planar Carbon Surfaces. Langmuir 2007, 23, 11074-11082, 10.1021/la701655w
Huang, W.-S.; Humphrey, B. D.; MacDiarmid, A. G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of Its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385-2400, 10.1039/f19868202385
Gospodinova, N.; Terlemezyan, L. Conducting Polymers Prepared by Oxidative Polymerization: Polyaniline. Prog. Polym. Sci. 1998, 23, 1443-1484, 10.1016/S0079-6700(98)00008-2
Zhang, J.; Kong, L.-B.; Wang, B.; Luo, Y.-C.; Kang, L. In-Situ Electrochemical Polymerization of Multi-Walled Carbon Nanotube/Polyaniline Composite Films for Electrochemical Supercapacitors. Synth. Met. 2009, 159, 260-266, 10.1016/j.synthmet.2008.09.018
Wang, Q.; Li, J.-l.; Gao, F.; Li, W.-s.; Wu, K.-z.; Wang, X.-d. Activated Carbon Coated with Polyaniline as an Electrode Material in Supercapacitors. New Carbon Materials 2008, 23, 275-280, 10.1016/S1872-5805(08)60030-X
Abiman, P.; Wildgoose, G. G.; Compton, R. G. Investigating the Mechanism for the Covalent Chemical Modification of Multiwalled Carbon Nanotubes Using Aryl Diazonium Salts. Int. J. Electrochem. Sci. 2008, 3, 104-117
Jung, H. J.; Min, H.; Yu, H.; Lee, T. G.; Chung, T. D. Electrochemical Cleavage of Azo Linkage for Site-Selective Immobilization and Cell Patterning. Chem. Commun. 2010, 46, 3863-3865, 10.1039/b922611g
Sadowska, K.; Roberts, K. P.; Wiser, R.; Biernat, J. F.; Jabłonowska, E.; Bilewicz, R. Synthesis, Characterization, and Electrochemical Testing of Carbon Nanotubes Derivatized with Azobenzene and Anthraquinone. Carbon 2009, 47, 1501-1510, 10.1016/j.carbon.2009.01.044
Farquhar, A. K.; Dykstra, H. M.; Waterland, M. R.; Downard, A. J.; Brooksby, P. A. Spontaneous Modification of Free-Floating Few-Layer Graphene by Aryldiazonium Ions: Electrochemistry, Atomic Force Microscopy, and Infrared Spectroscopy from Grafted Films. J. Phys. Chem. C 2016, 120, 7543-7552, 10.1021/acs.jpcc.5b11279
Mesnage, A.; Lefèvre, X.; Jégou, P.; Deniau, G.; Palacin, S. Spontaneous Grafting of Diazonium Salts: Chemical Mechanism on Metallic Surfaces. Langmuir 2012, 28, 11767-11778, 10.1021/la3011103
Hyun, W. J.; Secor, E. B.; Kim, C.-H.; Hersam, M. C.; Francis, L. F.; Frisbie, C. D. Scalable, Self-Aligned Printing of Flexible Graphene Micro-Supercapacitors. Adv. Ener. Mater. 2017, 7, 1700285, 10.1002/aenm.201700285
Song, D.; Secor, E. B.; Wang, Y.; Hersam, M. C.; Frisbie, C. D. Transfer Printing of Sub-5 Mm Graphene Electrodes for Flexible Microsupercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 22303-22310, 10.1021/acsami.8b06235
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326, 10.1126/science.1216744
Guo, G.; Sun, Y.; Ma, Y.; Zhou, Y.; Xiong, Z.; Liu, Y. Facile Synthesis of Conducting Hydrogels Based on Polyaniline Fiber and Graphene Oxide for Application in All-Solid-State Supercapacitors. Int. J. Electrochem. Sci. 2019, 14, 5899-5912, 10.20964/2019.06.220
Deshmukh, P.; Shinde, N. M.; Patil, S.; Bulakhe, R.; Lokhande, C. Supercapacitive Behavior of Polyaniline Thin Films Deposited on Fluorine Doped Tin Oxide (Fto) Substrates by Microwave-Assisted Chemical Route. Chem. Eng. J. 2013, 223, 572-577, 10.1016/j.cej.2013.03.056
Wu, Z.-S.; Parvez, K.; Li, S.; Yang, S.; Liu, Z.; Liu, S.; Feng, X.; Müllen, K. Alternating Stacked Graphene-Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High-Energy Micro-Supercapacitors. Adv. Mater. 2015, 27, 4054-4061, 10.1002/adma.201501643
Song, D.; Zare Bidoky, F.; Secor, E. B.; Hersam, M. C.; Frisbie, C. D. Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 9947-9954, 10.1021/acsami.8b20766
Hamra, A. A. B.; Lim, H. N.; Hafiz, S. M.; Kamaruzaman, S.; Rashid, S. A.; Yunus, R.; Altarawneh, M.; Jiang, Z. T.; Huang, N. M. Performance Stability of Solid-State Polypyrrole-Reduced Graphene Oxide-Modified Carbon Bundle Fiber for Supercapacitor Application. Electrochim. Acta 2018, 285, 9-15, 10.1016/j.electacta.2018.07.212
Guo, M.; Zhou, Y.; Sun, H.; Zhang, G.; Wang, Y. Interconnected Polypyrrole Nanostructure for High-Performance All-Solid-State Flexible Supercapacitor. Electrochim. Acta 2019, 298, 918-923, 10.1016/j.electacta.2018.12.156
Wu, D.; Zhong, W. A New Strategy for Anchoring a Functionalized Graphene Hydrogel in a Carbon Cloth Network to Support a Lignosulfonate/Polyaniline Hydrogel as an Integrated Electrode for Flexible High Areal-Capacitance Supercapacitors. J. Mater. Chem. A 2019, 7, 5819-5830, 10.1039/C8TA11153G
Gao, D.; Liu, R.; Yu, W.; Luo, Z.; Liu, C.; Fan, S. Gravity-Induced Self-Charging in Carbon Nanotube/Polymer Supercapacitors. J. Phys. Chem. C 2019, 123, 5249-5254, 10.1021/acs.jpcc.8b11644
Dang, F.; Yang, P.; Zhao, W.; Liu, J. Z.; Wu, H.; Liu, A.; Liu, Y. Tuning Capacitance of Graphene Films Via a Robust Routine of Adjusting Their Hierarchical Structures. Electrochim. Acta 2019, 298, 254-264, 10.1016/j.electacta.2018.12.071
Supur, M.; Smith, S. R.; McCreery, R. L. Characterization of Growth Patterns of Nanoscale Organic Films on Carbon Electrodes by Surface Enhanced Raman Spectroscopy. Anal. Chem. 2017, 89, 6463-6471, 10.1021/acs.analchem.7b00362