IPCC, 2019. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press.
PNEC, 2019. Plan National Energie Climat 2021-2030, Partie A - Plan National, Contexte, Objectifs, Politiques et Mesures. https://www.plannationalenergieclimat.be.
IEAGHG Technical Report, 2019. Further Assessment of Emerging CO2 Capture Technologies for the Power Sector and their Potential to Reduce Costs.
Vega F., Baena-Moreno F.M., Gallego Fernández L. M., Portillo E., Navarrete B., Zhang Z., 2020. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Applied Energy, 260, 114313.
Dubois L. and Thomas D. 2018. Comparison of various configurations of the absorption-regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases. Int. J. Greenhouse Gas Control 69, 20-35.
Dubois L. and Thomas D. 2019. Optimization of the Post-Combustion CO2 Capture Process Applied to Cement Plant Flue Gases: Parametric Study with Different Solvents and Configurations Combined with Intercooling. GHGT-14 Conference Paper, SSRN, 3365618.
Oh H.-T., Ju Y., Chung K., Lee C.-H., 2020. Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes. Energy, 206, 118164.
Knudsen J.N., Jensen J.N., Vilhelmsen P-J., Biede O., 2009. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia, 1, 783-790.
Le Moullec Y., Neveux T., Al Azki A., Chikukwa A., Hoff K.A., 2014. Process modifications for solvent-based post-combustion CO2 capture. Int. J. Greenhouse Gas Control, 31, 96-112.
IEAGHG, 2012. Gaseous Emissions from Amine Based Post-Combustion CO2 Capture Processes and Various Methods for their Deep Removal. Report: 2012/07.
Le Moullec Y., Neveux T., 2016. 13 - Process modifications for CO2 capture. Absorption-Based Post-combustion Capture of Carbon Dioxide, 305-340.
Rochelle G.T., Wu Y., Chen E., Akinpelumi K., Fischer K., Gao T., Liu C-T., Selinger J., 2019. Pilot plant demonstration of piperazine with the advanced flash stripper. Int. J. Greenhouse Gas Control 84, 72-81.
Karimi, M., Hillestad, M., Svendsen, H.F., 2011. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chem. Eng. Des. 89, 1229-1236.
Dubois L., Laribi S., Mouhoubi S., De Weireld G., Thomas D., 2017. Study of the Post-combustion CO2 Capture Applied to Conventional and Partial Oxy-fuel Cement Plants. Energy Procedia, 114, 6181-6196.
Gardarsdottir, S.O., De Lena, E., Romano, M., Roussanaly, S., Voldsund, M., Pérez-Calvo, J.F., Berstad, D., Fu, C., Anantharaman, R., Sutter, D., Gazzani, M., Mazzotti, M., Cinti, G., 2019. Comparison of technologies for CO2 capture from cement production-Part 2: Cost analysis. Energies. 1, 542.
Michailos, S., McCord, S., Sick, V., Stokes, G., Styring, P., 2019. Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment. Energy Convers. Manag. 184, 262-276.
Moser P., Schmidt S., Stahl K., 2011. Investigation of trace elements in the inlet and outlet streams of a MEA-based post-combustion capture process - Results from the test programme at the Niederaussem pilot plant. Energy Procedia 4, 473-479.
Van-Dal É.S., Bouallou C., 2013. Design and simulation of a methanol production plant from CO2 hydrogenation. J. Clean. Prod. 57, 38-45.
Rubin, E.S., Davison, J.E., Herzog, H.J., 2015. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control. 40, 378-400.
Kuramochi T., Ramirez A., Turkenburg W.et Faaij A., 2012. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci., 38, 87-112.