Dubernet, M.L.; Boudon, V.; Culhane, J.L.; Dimitrijevic, M.S.; Fazliev, A.Z.; Joblin, C.; Kupka, F.; Leto, G.; Le Sidaner, P.; Loboda, P.A.; et al. Virtual atomic and molecular data centre. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2151–2159. [CrossRef]
Zwolf, C.; Dubernet, M.L.; Ba, Y.A.; Moreau, N. Experience and feedbacks from the sustainability for the virtual atomic and molecular data centre E-infrastructure. In Proceedings of the IST-Africa Conference, Pointe aux Piments, Mauritius, 7–9 May 2014; pp. 1–9. [CrossRef]
Dubernet, M.L.; Antony, B.; Ba, Y.A.; Babikov, Y.; Bartschat, K.; Boudon, V.; Braams, B.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 074003. [CrossRef]
Emoto, M.; Murakami, I.; Kato, D.; Yoshida, M.; Kato, M.; Imazu, S. Improvement of the NIFS Atom and Molecular Database. Atoms 2019, 7, 91. [CrossRef]
Murakami, I.; Kato, D.; Kato, M.; Sakaue, H.A. Atomic and molecular database and data evaluation activities at the National Institute for Fusion Science. Fusion Sci. Technol. 2013, 63, 400–405. [CrossRef]
Ryabchikova, T.; Piskunov, N.; Kurucz, R.L.; Stempels, H.C.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scr. 2015, 90, 054005. [CrossRef]
Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Version 5.7.1); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: https://physics.nist.gov/asd (accessed on 9 July 2020).
Skobelev, I.Y.; Loboda, P.A.; Gagarin, S.V.; Ivliev, S.V.; Kozlov, A.I.; Morozov, S.V.; Pikuz, S.A., Jr.; Pikuz, T.A.; Popova, V.V.; Faenov, A.Y. The Spectr-W3 Database on the Spectroscopic Properties of Atoms and Ions. Opt. Spectrosc. 2016, 120, 507–514. [CrossRef]
Del Zanna, G.; Young, P.R. Atomic data for plasma spectroscopy: The CHIANTI database, improvements and challenges. Atoms 2020, 8, 46. [CrossRef]
Hummer, D.G.; Berrington, K.A.; Eissner, W.; Pradhan, A.K.; Saraph, H.E.; Tully, J.A. Atomic data from the IRON project. I. Goals and methods. Astron. Astrophys. 1993, 279, 298–309.
Cunto, W.; Mendoza, C.; Ochsenbein, F.; Zeippen, C.J. TOPbase at the CDS. Astron. Astrophys. 1993, 275, L5–L8.
Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N. Virtual Laboratory Astrophysics and the Stark-B database VAMDC node: A resource for electron and ion impact widths and shifts of isolated lines. J. Phys. Conf. Ser. 2020, 1412, 132052.
Roueff, E.; Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Abgrall, H. The spectroscopic atomic and molecular databases at Paris Observatory. Atoms 2020, 8, 36. [CrossRef]
Endres, C.P.; Schlemmer, S.; Schilke, P.; Stutzki, J.; Mueller, H.S.P. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC. J. Mol. Spect. 2016, 327, 95–104. [CrossRef]
Pickett, H.M.; Poynter, R.L.; Cohen, E.A.; Delitsky, M.L.; Pearson, J.C.; Müller, H.S.P. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 883–890. [CrossRef]
Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN 2016 Mol. Spectrosc. Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [CrossRef]
Babikov, Y.; Mikhailenko, S.; Barbe, A.; Tyuterev, V. S&MPO—An information system for ozone spectroscopy on the WEB. J. Quant. Spectrosc. Radiat. Transf. 2014, 145, 169–196. [CrossRef]
Richard, C.; Boudon, V.; Rotger, M. Calculated spectroscopic databases for the VAMDC portal: New molecules and improvements. J. Quant. Spectrosc. Radiat Transf. 2020, 251, 107096. [CrossRef]
Boudon, V.; Manceron, L.; Richard, C. High-resolution spectroscopy and analysis of the ν3, ν4 and 2ν4 bands of SiF4 in natural isotopic abundance. J. Quant. Spectrosc. Radiat Transf. 2020, 253, 107114–1–107114–20. [CrossRef]
Tashkun, S.A.; Perevalov, V.I.; Gamache, R.R.; Lamouroux, J. CDSD-296, high-resolution carbon dioxide spectroscopic databank: An update. J. Quant. Spectrosc. Radiat. Transf. 2019, 228, 124–131. [CrossRef]
Akhlyostin, A.; Apanovich, Z.; Fazliev, A.; Kozodoev, A.; Lavrentiev, N.; Privezentsev, A.; Rodimova, O.; Voronina, S.; Császár, A.; Tennyson, J. The current status of the W@DIS information system. Proc. SPIE 2018, 158, 10035.
Wakelam, V.; Herbst, E.; Loison, J.C.; Smith, I.W.M.; Chandrasekaran, V.; Pavone, B.; Adams, N.G.; Bacchus-Montabonel, M.C.; Bergeat, A.; Béroff, K.; et al. A KInetic Database for Astrochemistry (KIDA). Astrophys. J. Suppl. 2012, 199, 21. [CrossRef]
Wakelam, V.; Loison, J.C.; Herbst, E.; Pavone, B.; Bergeat, A.; Béroff, K.; Chabot, M.; Faure, A.; Galli, D.; Geppert, W.D.; et al. The 2014 KIDA Network for Interstellar Chemistry. Astrophys. J. Suppl. 2015, 217, 20. [CrossRef]
McElroy, D.; Walsh, C.; Markwick, A.J.; Cordiner, M.A.; Smith, K.; Millar, T.J. The UMIST database for astrochemistry 2012. Astron. Astrophys. 2013, 550, A36. [CrossRef]
Dubernet, M.L.; Alexander, M.H.; Ba, Y.A.; Balakrishnan, N.; Balança, C.; Ceccarelli, C.; Cernicharo, J.; Daniel, F.; Dayou, F.; Doronin, M.; et al. BASECOL2012: A collisional database repository and web service within the Virtual Atomic and Molecular Data Centre (VAMDC). Astron. Astrophys. 2013, 553, A50. [CrossRef]
Ba, Y.; Dubernet, M.; Moreau, N.; Zwolf, C. BASECOL (basecol.vamdc.org) new technical design. Atoms 2020, 8, 69. [CrossRef]
Vujčič, V.; Jevremović, D.; Mihajlov, A.; Ignjatović, L.M.; Srećković, V.; Dimitrijević, M.; Malović, M. MOL-D: A Collisional Database and Web Service within the Virtual Atomic and Molecular Data Center. J. Astrophys. Astron. 2015, 36. [CrossRef]
Jevremović, D.; Srećković, V.A.; Marinković, B.P.; Vujčić, V. Databases for collisional and radiative processes in small molecules needed for spectroscopy use in astrophysics. Contrib. Astron. Obs. Skaln. Pleso 2020, 50, 44–54. [CrossRef]
Marinković, B.P.; Vujčić, V.; Sushko, G.; Vudragović, D.; Marinković, D.B.; Ðor dević, S.; Ivanović, S.; Nešić, M.; Jevremović, D.; Solov’yov, A.V.; et al. Development of collisional data base for elementary processes of electron scattering by atoms and molecules. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2015, 354, 90–95. [CrossRef]
Gorfinkiel, J.D.; Ptasinska, S. Electron scattering from molecules and molecular aggregates of biological relevance. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 182001. [CrossRef]
Schmitt, B.; Bollard, P.; Damien, A.; Garenne, A.; Bonal, L.; Gorbacheva, M.; the SSHADE Partner’s Consortium. SSHADE: Solid Spectroscopy Hosting Architecture of Databases and Expertise and Its Databases. In Database Infrastructure; OSUG Data Center: Grenoble, France, 2018. Available online: https://www.sshade.eu (accessed on 16 October 2020). [CrossRef]
Malloci, G.; Joblin, C.; Mulas, G. On-line database of the spectral properties of polycyclic aromatic hydrocarbons. Chem. Phys. 2007, 332, 353–359. [CrossRef]
Chubb, K.L.; Rocchetto, M.; Yurchenko, S.N.; Min, M.; Waldmann, I.; Barstow, J.K.; Molliere, P.; Al-Refaie, A.Z.F.; Phillips, M.; Tennyson, J. The ExoMolOP Database: Cross-sections and K-tables for Molecules of Interest in High-Temperature Exoplanet Atmospheres. arXiv 2020, arXiv:2009.00687.
Fivet, V.; Quinet, P.; Palmeri, P.; Biémont, E.; Xu, H. Transition probabilities and lifetimes for atoms and ions from the sixth row of the periodic table and the database DESIRE. J. Electr. Spectrosc. Rel. Phen. 2007, 250, 156–158. [CrossRef]
Quinet, P.; Palmeri, P. Current status and developments of the Atomic Database on Rare-Earths at Mons University (DREAM). Atoms 2020, 8, 18. [CrossRef]
Kwon, D.H.; Chai, K.-B.; and KAERI Atomic Data Center Team. Photonic Electronic Atomic Reaction Laboratory Database. Available online: http://pearl.kaeri.re.kr (accessed on 16 October 2020).
Takayanagi, K.; Suzuki, H. Cross Sections for Atomic Processes Vol.1. Processes Involving Hydrogen Isotopes, Their Ions, Electrons and Photons; Technical Report IPPJ-DT-48; Institute of Plasma Physics, Nagoya University: Nagoya, Japan, 1975.
Takayanagi, K.; Suzuki, H. Cross Sections for Atomic Processes Vol.2. Processes Involving Hydrogen and Helium Isotopes, Their Ions, Electrons and Photons; Technical Report IPPJ-DT-50; Institute of Plasma Physics, Nagoya University: Nagoya, Japan, 1976.
Kato, T.; Itikawa, Y.; Kanada, Y.; Watanabe, R. Database and Retrieval-Display System of Atomic Data for Fusion. Phys. Scr. 1981, 23, 198–201. [CrossRef]
Murakami, I.; Kato, M.; Emoto, M.; Kato, D.; Sakaue, H.A.; Kawate, T. NIFS Atomic and Molecular Database for collision processes. Atoms 2020, in press. [CrossRef]
Biémont, E.; Palmeri, P.; Quinet, P. A New Database of Astrophysical Interest. Astrophys. Space Sci. 1999, 269, 635–637. [CrossRef]
Pakhomov, Y.V.; Ryabchikova, T.A.; Piskunov, N.E. Hyperfine Splitting in the VALD Database of Spectral-line Parameters. Astron. Rep. 2019, 63, 1010–1021. [CrossRef]
Ryabchikova, T.; Piskunov, N.; Sitnova, T. Evaluation of the Recent Atomic Data for Fe uc(i) Lines Based on Solar and Stellar Spectra. Sol. Phys. 2019, 294, 156. [CrossRef]
Pakhomov, Y.V.; Ryabchikova, T.A. Evolution of spectral line parameters database VALD. INASAN Sci. Rep. 2019, 4, 79–84. [CrossRef]
Ryabchikova, T.; Pakhomov, Y.; Piskunov, N. VALD: The Meeting Point of Data Producers and Data Users. Galaxies 2018, 5, 93. [CrossRef]
Pakhomov, Y.V.; Ryabchikova, T.A. Virtual atomic and molecular data centre VAMDC. In Stars and Satellites, Proceedings of the Memorial Conference Devoted to A.G. Masevich 100th Anniversary; Shustov, B.M., Wiebe, D.S., Eds.; Yanus-K: Moscow, Russia, 2018; pp. 402–408. [CrossRef]
Pakhomov, Y.V. Method of spectral wavelength calibration using the VALD database. In Stars and Satellites, Proceedings of the Memorial Conference Devoted to A.G. Masevich 100th Anniversary; Shustov, B.M., Wiebe, D.S., Eds.; Yanus-K: Moscow, Russia, 2018; pp. 374–379. [CrossRef]
Pakhomov, Y.; Piskunov, N.; Ryabchikova, T. VALD3: Current Developments. In Stars: From Collapse to Collapse; Astronomical Society of the Pacific Conference Series; Balega, Y.Y., Kudryavtsev, D.O., Romanyuk, I.I., Yakunin, I.A., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2017; Volume 510, p. 518.
Kramida, A. NIST Atomic Spectroscopy Bibliographic Databases; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: https://www.nist.gov/pml/nist-atomic-spectra-bibliographic-databases (accessed on 9 July 2020).
Kramida, A.; Olsen, K.; Ralchenko, Y. NIST LIBS Database; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html (accessed on 9 July 2020).
Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E.; Mason, H.E. CHIANTI—An atomic database for emission lines. Version 8. Astron. Astrophys. 2015, 582, A56. [CrossRef]
Dere, K.P.; Del Zanna, G.; Young, P.R.; Landi, E.; Sutherland, R.S. CHIANTI—An Atomic Database for Emission Lines. XV. Version 9, Improvements for the X-ray Satellite Lines. Astrophys. J. Suppl. 2019, 241, 22. [CrossRef]
Seaton, M.J. Atomic data for opacity calculations. I. General description. J. Phys. B Atom. Mol. Phys. 1987, 20, 6363–6378. [CrossRef]
Cunto, W.; Mendoza, C. The Opacity Project—The Topbase Atomic Database. Rev. Mex. De Astron. Y AstrofíSica 1992, 23, 107.
Ballance, C.P.; Griffin, D.G. Relativistic radiatively damped R-matrix calculation of the electron-impact excitation of W46+. J. Phys. B 2006, 39, 3617. [CrossRef]
Badnell, N.R. A Breit-Pauli distorted wave implementation for AUTOSTRUCTURE. Comput. Phys. Commun. 2011, 182, 1528–1535. [CrossRef]
Delahaye, F.; Zwölf, C.M.; Zeippen, C.J.; Mendoza, C. IPOPv2 online service for the generation of opacity tables. J. Quant. Spectrosc. Radiat. Transf. 2016, 171, 66–72. [CrossRef]
Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The Stark-B Database as a Resource for “Stark” Widths and Shifts Data: State of Advancement and Program of Development. Adv. Space Res. 2014, 54, 1148–1151. [CrossRef]
Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The Stark-B Database VAMDC node: A Repository for Spectral Line Broadening and Shifts Due to Collisions with Charged Particles. Phys. Scr. 2015, 50, 054008. [CrossRef]
Dimitrijević, M.S.; Sahal-Bréchot, S.; Moreau, N. The Stark-B Database, A Node of Virtual Atomic and Molecular Data Center (VAMDC). Publ. Astron. Obs. Belgrade 2018, 98, 285–288.
Sahal-Brćhot.; Dimitrijević, M.S.; Ben Nessib, N. Widths and Shifts of Isolated Lines of Neutral and Ionized Atoms Perturbed by Collisions With Electrons and Ions: An Outline of the Semiclassical Perturbation (SCP) Method and of the Approximations Used for the Calculations. Atoms 2014, 2, 225–252.
Dimitrijević, M.S.; Konjević, N. Stark broadening of doubly and triply ionized atoms. J. Quant. Spectrosc. Radiat. Transf. 1980, 24, 451–459. [CrossRef]
Sahal-Bréchot, S.; Dimitrijević, M.S.; Ben Nessib, N. Comparisons and comments on electron and ion impact profiles of spectral lines. Balt. Astron. 2011, 20, 523–530. [CrossRef]
Pearson, J.C.; Mueller, H.S.P.; Pickett, H.M.; Cohen, E.A.; Drouin, B.J. Introduction to submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1614–1616. [CrossRef]
Endres, C.; Schlemmer, S.; Drouin, B.; Pearson, J.; Müller, H.S.P.; Schilke, P.; Stutzki, J. Improved Infrastucture for Cdms and JPL Molecular Spectroscopy Catalogues. In Proceedings of the 69th International Symposium on Molecular Spectroscopy, Champaign, IL, USA, 16–20 June 2014.
Müller, H.S.P.; Thorwirth, S.; Roth, D.A.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS. Astron. Astrophys. 2001, 370, L49–L52. [CrossRef]
Müller, H.S.P.; Schlöder, F.; Stutzki, J.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists. J. Mol. Struct. 2005, 742, 215–227. [CrossRef]
Rothman, L.S.; Gamache, R.; Tipping, R.; Rinsland, C.; Smith, M.; Benner, D.; Devi, V.; Flaud, J.M.; Camy-Peyret, C.; Perrin, A.; et al. The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transf. 1992, 48, 469–507. [CrossRef]
Rothman, L.S.; Rinsland, C.; Goldman, A.; Massie, S.T.; Edwards, D.P.; Flaud, J.M.; Perrin, A.; Camy-Peyret, C.; Dana, V.; Mandin, J.; et al. The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 665–710. [CrossRef]
Rothman, L.S.; Barbe, A.; Chris Benner, D.; Brown, L.; Camy-Peyret, C.; Carleer, M.; Chance, K.; Clerbaux, C.; Dana, V.; Devi, V.; et al. The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transf. 2003, 82, 5–44. [CrossRef]
Rothman, L.S.; Jacquemart, D.; Barbe, A.; Chris Benner, D.; Birk, M.; Brown, L.; Carleer, M.; Chackerian, C.; Chance, K.; Coudert, L.; et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 139–204. [CrossRef]
Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [CrossRef]
Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [CrossRef]
Hill, C.; Gordon, I.E.; Kochanov, R.V.; Barrett, L.; Wilzewski, J.S.; Rothman, L.S. HITRANonline: An online interface and the flexible representation of spectroscopic data in the HITRAN database. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 4–14. [CrossRef]
Skinner, F.M.; Gordon, I.E.; Hill, C.; Hargreaves, R.J.; Lockhart, K.E.; Rothman, L.S. Referencing Sources of Molecular Spectroscopic Data in the Era of Data Science: Application to the HITRAN and AMBDAS Databases. Atoms 2020, 8, 16. [CrossRef]
Li, G.; Gordon, I.E.; Rothman, L.S.; Tan, Y.; Hu, S.M.; Kassi, S.; Campargue, A.; Medvedev, E.S. Rovibrational Line Lists for Nine Isotopologues of the CO Molecule in the X1Σ+ Ground Electronic State. Astrophys. J. Suppl. Ser. 2015, 216, 15. [CrossRef]
Hargreaves, R.J.; Gordon, I.E.; Rothman, L.S.; Tashkun, S.A.; Perevalov, V.I.; Lukashevskaya, A.A.; Yurchenko, S.N.; Tennyson, J.; Müller, H.S. Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database. J. Quant. Spectrosc. Radiat. Transf. 2019, 232, 35–53. [CrossRef]
Hargreaves, R.J.; Gordon, I.E.; Rey, M.; Nikitin, A.V.; Tyuterev, V.G.; Kochanov, R.V.; Rothman, L.S. An Accurate, Extensive, and Practical Line List of Methane for the HITEMP Database. Astrophys. J. Suppl. 2020, 247, 55. [CrossRef]
Kochanov, R.; Gordon, I.; Rothman, L.S.; Shine, K.; Sharpe, S.; Johnson, T.; Wallington, T.; Harrison, J.; Bernath, P.; Birk, M.; et al. Infrared absorption cross-sections in HITRAN2016 and beyond: Expansion for climate, environment, and atmospheric applications. J. Quant. Spectrosc. Radiat. Transf. 2019, 230, 172–221. [CrossRef]
Karman, T.; Gordon, I.E.; van der Avoird, A.; Baranov, Y.I.; Boulet, C.; Drouin, B.J.; Groenenboom, G.C.; Gustafsson, M.; Hartmann, J.M.; Kurucz, R.L.; et al. Update of the HITRAN collision-induced absorption section. Icarus 2019, 328, 160–175. [CrossRef]
Kochanov, R.; Gordon, I.; Rothman, L.S.; Wcisło, P.; Hill, C.; Wilzewski, J. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 15–30. [CrossRef]
Mikhailenko, S.; Barbe, A. High resolution infrared spectrum of16O3: The 3600–4300 cm−1 range reinvestigated. J. Quant. Spectrosc. Radiat. Transf. 2020, 244, 106823. [CrossRef]
Starikova, E.; Barbe, A.; Tyuterev, V. The ν3 bands of17O17O18O and17O18O17O ozone isotopomers. J. Quant. Spectrosc. Radiat. Transf. 2019, 232, 87–92. [CrossRef]
Barbe, A.; Starikova, E.; De Backer, M.; Tyuterev, V. Analyses of infrared FT spectra of asymmetric ozone isotopologue16O16O18O in the range 950–3850 cm−1. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 231–247. [CrossRef]
Tyuterev, V.; Kochanov, R.; Tashkun, S. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands. J. Chem. Phys. 2017, 146, 064304. [CrossRef] [PubMed]
Tyuterev, V.; Barbe, A.; Jacquemart, D.; Janssen, C.; Mikhailenko, S.; Starikova, E. Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 µm ranges. J. Chem. Phys. 2019, 150. [CrossRef]
Boudon, V.; Champion, J.P.; Gabard, T.; Loëte, M.; Rotger, M.; Wenger, C. Spherical Top Theory and Molecular Spectra. In Handbook of High-Resolution Spectroscopy; Quack, M., Merkt, F., Eds.; Wiley: Chichester, UK, 2011; Volume 3, pp. 1437–1460.
Wenger, C.; Boudon, V.; Rotger, M.; Sanzharov, J.P.; Champion, J.P. XTDS and SPVIEW: Graphical tools for the analysis and simulation of high-resolution molecular spectra. J. Mol. Spectrosc. 2008, 251, 102–113. [CrossRef]
Boudon, V.; Champion, J.P.; Gabard, T.; Loëte, M.; Michelot, F.; Pierre, G.; Rotger, M.; Wenger, C.; Rey, M. Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups. J. Mol. Spectrosc. 2004, 228, 620–634. [CrossRef]
Ba, Y.A.; Wenger, C.; Surleau, R.; Boudon, V.; Rotger, M.; Daumont, L.; Bonhommeau, D.A.; Tyuterev, V.G.; Dubernet, M.L. MeCaSDa and ECaSDa: Methane and ethene calculated spectroscopic databases for the virtual atomic and molecular data centre. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 62–68. [CrossRef]
Person, W.; Krohn, B. Coriolis intensity perturbations of the ν4 band of SF6. J. Mol. Spectrosc. 1983, 98, 229–257. [CrossRef]
Aldridge, J.; Brock, E.; Filip, H.; Flicker, H.; Fox, K.; Galbraith, H.; Holland, R.; Kim, K.; Krohn, B.; Magnuson, D.; et al. Measurement and analysis of the infrared-active stretching fundamental (ν3) of UF6. J. Chem. Phys. 1985, 83, 34–48. [CrossRef]
De Roure, D.; Jennings, N.R.; Shadbolt, N.R. The Semantic Grid: A Future e-Science Infrastructure. In Grid Computing: Making the Global Infrastructure a Reality; EPSRC/DTI Core e-Science Programme Wiley: Hoboken, NJ, USA 2001; pp. 437–470. [CrossRef]
Gruber, T. Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 1995, 43, 907–928. [CrossRef]
Lavrentiev, N.; Privezentsev, A.; Fazliev, A. Tabular and Graphic Resources in Quantitative Spectroscopy. In Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2018. Communications in Computer and Information Science; Springer: Berlin, Germany, 2019; Volume 1003, pp. 55–69. [CrossRef]
Lavrentiev, N.; Privezentsev, A.; Fazliev, A. Applied Ontologies for Managing Graphic Resources in Quantitative Spectroscopy. In Data Analytics and Management in Data Intensive Domains DAMDID/RCDL 2019. Communications in Computer and Information Science; Springer: Berlin, Germany, 2020; Volume 1223, Chapter 6. [CrossRef]
Millar, T.J.; Bennett, A.; Rawlings, J.M.C.; Brown, P.D.; Charnley, S.B. Gas phase reactions and rate coefficients for use in astrochemistry—The UMIST ratefile. Astron. Astrophys. Sup. 1991, 87, 585–619.
Dubernet, M.L.; Nenadovic, L. SPECTCOL: Spectroscopic and Collisional Data Retrieval; Record ascl:1111.005; Astrophysics Source Code Library. 2011. Available online: http://ascl.net/1111.005 (accessed on 9 July 2020).
Srećković, V.A.; Ignjatović, L.M.; Jevremović, D.; Vujčić, V.; Dimitrijević, M.S. Radiative and Collisional Molecular Data and Virtual Laboratory Astrophysics. Atoms 2017, 5, 31. [CrossRef]
Ignjatovic, L.M.; Sreckovic, V.; Dimitrijevic, M. Photoionization of the alkali molecular ions in geo-cosmical plasmas. Contrib. Astron. Obs. Skaln. Pleso 2020, 50, 187–192. [CrossRef]
Marinković, B.P.; Srećković, V.A.; Vujčić, V.; Ivanović, S.; Uskoković, N.; Nešić, M.; Ignjatović, L.M.; Jevremović, D.; Dimitrijević, M.S.; Mason, N.J. BEAMDB and MOLD—Databases at the Serbian Virtual Observatory for Collisional and Radiative Processes. Atoms 2019, 7, 11. [CrossRef]
Marinković, B.P.; Jevremović, D.; Srećković, V.A.; Vujčić, V.; Ignjatović, L.M.; Dimitrijević, M.S.; Mason, N.J. BEAMDB and MolD—Databases for atomic and molecular collisional and radiative processes: Belgrade nodes of VAMDC. Eur. Phys. J. D 2017, 71. [CrossRef]
Predojević, B.; Šević, D.; Marinković, B.P.; McEachran, R.P.; Blanco, F.; García, G.; Brunger, M.J. Joint theoretical and experimental study on elastic electron scattering from bismuth. Phys. Rev. A 2020, 101, 032704. [CrossRef]
McEachran, R.P.; Marinković, B.P.; García, G.; White, R.D.; Stokes, P.W.; Jones, D.B.; Brunger, M.J. Integral Cross Sections for Electron–Zinc Scattering over a Broad Energy Range (0.01–5000 eV). J. Phys. Chem. Ref. Data 2020, 49, 013102. [CrossRef]
Marinković, B.; Bredehöft, J.; Vujčić, V.; Jevremović, D.; Mason, N. Rosetta Mission: Electron Scattering Cross Sections—Data Needs and Coverage in BEAMDB Database. Atoms 2017, 5, 46. [CrossRef]
Marinković, B.P.; Pejčev, V.; Filipović, D.M.; Šević, D.; Milosavljević, A.R.; Milisavljević, S.; Rabasović, M.S.; Pavlović, D.; Maljković, J.B. Cross section data for electron collisions in plasma physics. J. Phys. Conf. Ser. 2007, 86, 012006. [CrossRef]
Denifl, S.; Garcia, G.; Huber, B.A.; Marinković, B.P.; Mason, N.; Postler, J.; Rabus, H.; Rixon, G.; Solovyov, A.V.; Suraud, E.; et al. Radiation damage of biomolecules (RADAM) database development: Current status. J. Phys. Conf. Ser. 2013, 438, 012016. [CrossRef]
Bartschat, K.; Zatsarinny, O. Benchmark calculations of atomic data for plasma and lighting applications. Plasma Sources Sci. Technol. 2011, 20, 024012. [CrossRef]
Nina, A.; Radovanovic, M.; Srećković, V. Integrations of Satellite and Ground-Based Observations and Multi-Disciplinarity in Research and Prediction of Different Types of Hazards in Solar System, Book of Abstracts; Geographical Institute “Jovan Cvijić” of Serbian Academy of Sciences and Arts: Belgrade, Serbia, 2019.
Baratta, G.A.; Domingo, M.; Ferini, G.; Leto, G.; Palumbo, M.E.; Satorre, M.A.; Strazzulla, G. Ion irradiation of CH4-containing icy mixtures. Nucl. Instrum. Methods Phys. Sect. B 2003, 209, 283. [CrossRef]
Leto, G.; Baratta, G.A. Ly-alpha photon induced amorphization of Ic water ice at 16 Kelvin. Effects and quantitative comparison with ion irradiation. Astron. Astrophys. 2003, 397, 7–13. [CrossRef]
Tennyson, J.; Yurchenko, S.N. ExoMol: Molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 2012, 425, 21–33. [CrossRef]
Tennyson, J.; Hill, C.; Yurchenko, S.N. Data structures for ExoMol: Molecular line lists for exoplanet and oth er atmospheres. In 6th International Conference on Atomic and Molecular Data and Their Applications ICAMDATA-2012; AIP: New York, NY, USA, 2013; Volume 1545, pp. 186–195. [CrossRef]
Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.Z.F.; Barton, E.J.; Chubb, K.L.; Coles, P.A.; Diamantopoulou, S.; Gorman, M.N.; Hill, C.; Lam, A.Z.; et al. The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Mol. Spectrosc. 2016, 327, 73–94. [CrossRef]
Tennyson, J.; Yurchenko, S.N.; abd, V.H.J.; Clark, K.L.; Chubb, A.F.A.R.; Conway, E.K.; Dewan, A.; Gorman, M.N.; Hill, C.; Lynas-Gray, A.E.; et al. The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 2020, 255, 107228. [CrossRef]
Lacis, A.A.; Oinas, V. A description of the correlated k distributed method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 1991, 96, 9027. [CrossRef]
Bernath, P.F. MoLLIST: Molecular Line Lists, Intensities and Spectra. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 106687. [CrossRef]
Hill, C.; Dubernet, M.L.; Endres, C.; Karwasz, G.; Marinković, B.; Marquart, T.; Heinola, K.; Zwolf, C.M.; Moreau, N. Classification of Processes in Plasma Physics; Technical Report INDC(NDS)-0812; IAEA: Vienna, Austria, 2020.
Quinet, P.; Palmeri, P.; Biémont, E.; McCurdy, M.; Rieger, G.; Pinnington, E.; Wickliffe, M.; Lawler, J. Experimental and theoretical lifetimes, branching fractions and oscillator strengths in Lu II. Mon. Not. R. Astron. Soc. 1999, 307, 934. [CrossRef]
Quinet, P.; Palmeri, P.; Biémont, E.; Li, Z.; Zhang, Z.; Svanberg, S. Radiative lifetime measurements and transition probability calculations in lanthanide ions. J. Alloy Compd. 2002, 344, 255–259. [CrossRef]
Rahman, M.A.; Krishnakumar, E. Absolute partial and total electron ionization cross sections of uracil. Int. J. Mass Spetrom 2015, 392, 145–153. [CrossRef]
Rahman, M.A.; Krishnakumar, E. Electron ionization of DNA bases. J. Chem. Phys. 2016, 144, 161102. [CrossRef] [PubMed]
Tadsare, V. Dissociative Electron Attachment to Organic Molecules. Ph.D. Thesis, Tata Institute of Fundamental Research, TIFR, Mumbai, India, 2018.
Sinha, N.; Gupta, D.; Antony, B. Electron impact ionisation cross sections for complex molecules. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 145202. [CrossRef]
Modak, P.; Antony, B. Electron scattering from FO. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 095202. [CrossRef]
Nahar, S.; Antony, B. Review: Positron scattering from atoms and molecules. Atoms 2020, 8, 29. [CrossRef]
Sinha, N.; Sahoo, A.; Antony, B. Positron scattering from pyridine and pyrimidine. J. Phys. Chem. A 2020, 124, 5147–5156. [CrossRef]
Modak, P.; Antony, B. Photoionization of CO using R-matrix theory. Astrophys. J. 2019, 887, 262. [CrossRef]
Modak, P.; Antony, B. Probing photon interaction with H2O and D2O. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 045202. [CrossRef]
Kwon, D.H.; Savin, D.W. Electron-impact ionization of P-like ions forming Si-like ions. Astrophys. J. 2014, 784, 13. [CrossRef]
Kwon, D.H.; Savin, D.W. Effects of configuration interaction for dielectronic recombination of Na-like ions forming Mg-like ions. Astrophys. J. 2011, 734, 2. [CrossRef]
Kim, D.S.; Kwon, D.H. Theoretical photoionization spectra for Mg-isoelectronic Cl5+ and Ar6+ ions. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 105004. [CrossRef]
Zhang, D.H.; Kwon, D.H. Theoretical electron-impact ionization of W17+ forming W18+. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 075202. [CrossRef]
Chai, K.B.; Kwon, D.H. Optical emission spectroscopy and collisional-radiative modeling for low temperature Ar plasmas. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 136–144. [CrossRef]
Ralser, S.; Postler, J.; Harnisch, M.; Ellis, A.M.; Scheier, P. Extracting cluster distributions from mass spectra: IsotopeFit. Int. J. Mass Spectrom. 2015, 379, 194–199. [CrossRef]
Scheier, P.; Märk, T. Doubly charged argon clusters and their critical size. J. Chem. Phys. 1987, 86, 3056–3057. [CrossRef]
Schöbel, H.; Bartl, P.; Leidlmair, C.; Denifl, S.; Echt, O.; Märk, T.; Scheier, P. High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton. Eur. Phys. J. D 2011, 63, 209–214. [CrossRef]
Regandell, S.; Marquart, T.; Piskunov, N. Inside a VAMDC data node—Putting standards into practical software. Phys. Scr. 2018, 93, 035001. [CrossRef]
Zwölf, C.M.; Moreau, N.; Dubernet, M.L. New model for datasets citation and extraction reproducibility in VAMDC. J. Mol. Spectrosc. 2016, 327, 122–137. [CrossRef]
Walton, N.; Astrogrid Consortium. Meeting the User Science Challenge for a Virtual Universe. In Toward an International Virtual Observatory; Quinn, P.J., Górski, K.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; p. 187. [CrossRef]
Moreau, N.; Zwolf, C.M.; Ba, Y.A.; Richard, C.; Boudon, V.; Dubernet, M.L. The VAMDC Portal as a Major Enabler of Atomic and Molecular Data Citation. Galaxies 2018, 6, 105. [CrossRef]
Taylor, M.B.; Boch, T.; Taylor, J. SAMP, the Simple Application Messaging Protocol: Letting applications talk to each other. Astron. Comput. 2015, 11, 81–90. [CrossRef]
Heller, S.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. InChI, the IUPAC International Chemical Identifier. J. Cheminform. 2015, 7, 23. [CrossRef]
Zwölf, C.; Moreau, N.; Yaya-Awa, B.; Dubernet, M.L. Implementing in the VAMDC the New Paradigms for Data Citation from the Research Data Alliance. Data Sci. J. 2018, 1, 4. [CrossRef]
Rey, M.; Nikitin, A.V.; Babikov, Y.L.; Tyuterev, V.G. TheoReTS—An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces. J. Mol. Spectrosc. 2016, 327, 138–158. [CrossRef]
Huang, X.; Schwenke, D.W.; Lee, T.J. Quantitative validation of Ames IR intensity and new line lists for32/33/34S16O2,32S18O2 and16O32S18O. J. Quant. Spectrosc. Radiat. Transf. 2019, 225, 327–336. [CrossRef]
Owens, A.; Yachmenev, A.; Tennyson, J.; Thiel, W.; Yurchenko, S.N. ExoMol Molecular line lists XXIX: The rotation-vibration spectrum of methyl chloride up to 1200 K. Mon. Not. R. Astron. Soc. 2018, 479, 3002–3010. [CrossRef]
Rey, M.; Chizhmakova, I.; Nikitin, A.; Tyuterev, V. Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: The case of CF4. Phys. Chem. Chem. Phys. 2018, 20, 21008–21033. [CrossRef]
Egorov, O.; Nikitin, A.; Rey, M.; Rodina, A.; Tashkun, S.; Tyuterev, V. Global modeling of NF3 line positions and intensities from far to mid-infrared up to 2200 cm−1. J. Quant. Spectrosc. Radiat. Transf. 2019, 239, 106668. [CrossRef]
Rey, M.; Nikitin, A.V.; Tyuterev, V.G. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications. Astrophys. J. 2017, 847, 105. [CrossRef]
Yurchenko, S.N.; Amundsen, D.S.; Tennyson, J.; Waldmann, I.P. A hybrid line list for CH4 and hot methane continuum. Astron. Astrophys. 2017, 605, A95. [CrossRef]
Wong, A.; Bernath, P.; Rey, M.; Nikitin, A.; Tyuterev, V. Atlas of Experimental and Theoretical High-temperature Methane Cross Sections from T = 295 to 1000 K in the Near-infrared. Astrophys. J. Suppl. 2019, 240. [CrossRef]
Erard, S.; Cecconi, B.; Le Sidaner, P.; Berthier, J.; Henry, F.; Molinaro, M.; Giardino, M.; Bourrel, N.; André, N.; Gangloff, M.; et al. The EPN-TAP protocol for the Planetary Science Virtual Observatory. Astron. Comput. 2014, 7–8, 52–61. [CrossRef]
van der Tak, F.F.S.; Lique, F.; Faure, A.; Black, J.H.; van Dishoeck, E.F. The Leiden Atomic and Molecular Database (LAMDA): Current Status, Recent Updates, and Future Plans. Atoms 2020, 8, 15. [CrossRef]
Möller, T.; Endres, C.; Schilke, P. eXtended CASA Line Analysis Software Suite (XCLASS). Astron. Astrophys. 2017, 598, A7. [CrossRef]
Möller, T.; Bernst, I.; Panoglou, D.; Muders, D.; Ossenkopf, V.; Röllig, M.; Schilke, P. Modeling and Analysis Generic Interface for eXternal numerical codes (MAGIX). Astron. Astrophys. 2013, 549, A21. [CrossRef]
Endres, C.P.; Martin-Drumel, M.A.; Zingsheim, O.; Bonah, L.; Pirali, O.; Zhang, T.; Sánchez-Monge, Á.; Möller, T.; Wehres, N.; Schilke, P.; et al. SOLEIL and ALMA views on prototypical organic nitriles: C2H5CN. J. Mol. Spectrosc. 2020, submitted.
Moscadelli, L.; Rivilla, V.M.; Cesaroni, R.; Beltrán, M.T.; Sánchez-Monge, Á.; Schilke, P.; Mottram, J.C.; Ahmadi, A.; Allen, V.; Beuther, H.; et al. The feedback of an HC HII region on its parental molecular core. The case of core A1 in the star-forming region G24.78+0.08. Astron. Astrophys. 2018, 616, A66. [CrossRef]
Dimitrijević, M.S.; Sahal-Bréchot, S. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach. Atoms 2014, 2, 357–377. [CrossRef]
Dreizler, S. HST Spectroscopy of PG 1159 Stars: The Boundary of the GW VIR Instability Strip. Balt. Astron. 1998, 7, 71–82. [CrossRef]
Dojčinović, I.P.; Trklja, N.; Tapalaga, I.; Purić, J. Investigation of Stark line broadening within spectral series of potassium and copper isoelectronic sequences. Mon. Not. R. Astron. Soc. 2019, 489, 2997–3002. [CrossRef]
Lavrentyev, N.; Makogon, M.; Fazliev, A. Comparison of the HITRAN and GEISA Spectral Databases Taking into Account the Restriction on Publication of Spectral Data. Atmos. Ocean. Opt. 2011, 24, 436–451. [CrossRef]
Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [CrossRef] [PubMed]
Lavrentiev, N.; Rodimova, O.; Fazliev, A. Systematization of published scientific graphics characterizing the water vapor continuum absorption: I. Publications of 1898–1980. In Proceedings of the 24-th International Symposium on Atmospheric and Oceanic Optics: Atmopheric Physics, Tomsk, Russia, 2–5 July 2018. [CrossRef]
Lavrentiev, N.; Rodimova, O.; Fazliev, A. Systematization of graphically plotted published spectral functions of weakly bound water complexes. In Proceedings of the 22-nd International Symposium on Atmosperic and Oceanic Optics: Atmopheric Physics, Tomsk, Russia, 30 June–3 July 2016. [CrossRef]
Laverick, M.; Lobel, A.; Merle, T.; Royer, P.; Martayan, C.; David, M.; Hensberge, H.; Thienpont, E. The Belgian repository of fundamental atomic data and stellar spectra (BRASS). I. Cross-matching atomic databases of astrophysical interest. Astron. Astrophys. 2018, 612, A60. [CrossRef]
Available online: http://dataosu.obs-besancon.fr (accessed on 16 October 2020).
Atherton, C.J.; Barton, T.; Basney, J.; Broeder, D.; Costa, A.; van Daalen, M.; Dyke, S.; Elbers, W.; Enell, C.F.; Fasanelli, E.M.V.; et al. Federated Identity Management for Research Collaborations. In Standard, Research Data Alliance; Zenodo: Geneva, Swissland, 2019. [CrossRef]
Zwölf, C.M.; Rixon, G. Authentication, Authorisation and Accounting Strategy; Technical Delivrable; VAMDC Consortium; Zenodo: Geneva, Swissland, 2015. [CrossRef]
Wittenburg, P.; Hellström, M.; Zwölf, C.M.; Abroshan, H.; Asmi, A.; Di Bernardo, G.; Couvreur, D.; Gaizer, T.; Holub, P.; Hooft, R.; et al. Persistent identifiers: Consolidated assertions. In Standard, Research Data Alliance; Zenodo: Geneva, Swissland, 2017. [CrossRef]
Collins, S.; Genova, F.; Harrower, N.; Hodson, S.; Jones, S.; Laaksonen, L.; Mietchen, D.; Petrauskaité, R.; Wittenburg, P. Turning FAIR into Reality—Final Report and Action Plan from the European Commission Expert Group on FAIR Data; Report; Publications Office of the European Union: Brussel, Belgium, 2018. [CrossRef]
Berners-Lee, T.; Hendler, J.; Lassila, O. Toward principles for the design of ontologies used for knowledge sharing. Semant. Web 2001, 43, 907–928.
Group, W.O.W. OWL 2 Web Ontology Language Document Overview, W3C Recommendation 27 October 2009, 1st ed.; The World Wide Web Consortium (W3C): 2009. Available online: https://www.w3.org/(accessed on 16 October 2020).
Privezentsev, A.; Tsarkov, D.; Fazliev, A.; Tennyson, J. Computed Knowledge Base for Description of Information Resources of Water Spectroscopy. In Proceedings of the 7th International Workshop on OWL: Experiences and Directions (OWLED 2010), San Francisco, CA, USA, 21–22 June 2010.
Fazliev, A.; Privezentsev, A.; Tsarkov, D.; Tennyson, J. Ontology-Based Content Trust Support of Expert Information Resources in Quantitative Spectroscopy. In Knowledge Engineering and the Semantic Web, Communications in Computer and Information Science; Springer: Berlin, Germany, 2013; Volume 394, pp. 15–28. [CrossRef]
Voronina, V.; Privezentsev, A.; Tsarkov, D.; Fazliev, A. An Ontological Description of States and Transitions in Quantitative Spectroscopy. In Proceedings of the XX-th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 23–27 June 2014.[CrossRef]
Akhlestin, A.; Lavrentiev, N.; Rodimova, O.; Fazliev, A. The continuum absorption: Trust assessment of published graphical information. In Proceedings of the 25-th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 30 June–5 July 2019. [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional