Martínez, S.; Veth, L.; Lainer, B.; Dydio, P. Challenges and Opportunities in Multicatalysis. ACS Catal. 2021, 11 (7), 3891-3915, 10.1021/acscatal.0c05725
Motokura, K. Multifunctional Solid Surfaces for Enhanced Catalysis. ChemCatChem. 2014, 6 (11), 3067-3068, 10.1002/cctc.201402585
Margelefsky, E. L.; Zeidan, R. K.; Davis, M. E. Cooperative Catalysis by Silica-Supported Organic Functional Groups. Chem. Soc. Rev. 2008, 37 (6), 1118-1126, 10.1039/b710334b
Díaz, U.; Brunel, D.; Corma, A. Catalysis Using Multifunctional Organosiliceous Hybrid Materials. Chem. Soc. Rev. 2013, 42 (9), 4083-4097, 10.1039/c2cs35385g
Chandra, P.; Jonas, A. M.; Fernandes, A. E. Spatial Coordination of Cooperativity in Silica-Supported Cu/TEMPO/Imidazole Catalytic Triad. ACS Catal. 2018, 8 (7), 6006-6011, 10.1021/acscatal.8b01399
Fernandes, A. E.; Jonas, A. M. Design and Engineering of Multifunctional Silica-Supported Cooperative Catalysts. Catal. Today 2019, 334, 173-186, 10.1016/j.cattod.2018.11.040
Fernandes, A. E.; Riant, O.; Jensen, K. F.; Jonas, A. M. Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols. Angew. Chem., Int. Ed. 2016, 128 (37), 11210-11214, 10.1002/ange.201603673
Chandra, P.; Jonas, A. M.; Fernandes, A. E. Sequence and Surface Confinement Direct Cooperativity in Catalytic Precision Oligomers. J. Am. Chem. Soc. 2018, 140 (15), 5179-5184, 10.1021/jacs.8b00872
Prathap, K. J.; Maayan, G. Metallopeptoids as Efficient Biomimetic Catalysts. Chem. Commun. 2015, 51, 11096-11099, 10.1039/C5CC04266F
Girvin, Z. C.; Gellman, S. H. Exploration of Diverse Reactive Diad Geometries for Bifunctional Catalysis via Foldamer Backbone Variation. J. Am. Chem. Soc. 2018, 140 (39), 12476-12483, 10.1021/jacs.8b05869
Meier, M. A. R.; Barner-Kowollik, C. A New Class of Materials: Sequence-Defined Macromolecules and Their Emerging Applications. Adv. Mater. 2019, 31 (26), 1806027, 10.1002/adma.201806027
Aksakal, R.; Mertens, C.; Soete, M.; Badi, N.; Du Prez, F. Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. Adv. Sci. 2021, 8, 2004038, 10.1002/advs.202004038
Hoover, J. M.; Ryland, B. L.; Stahl, S. S. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems. ACS Catal. 2013, 3 (11), 2599-2605, 10.1021/cs400689a
Hoover, J. M.; Stahl, S. S. Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols. J. Am. Chem. Soc. 2011, 133, 16901-16910, 10.1021/ja206230h
Ryland, B. L.; McCann, S. D.; Brunold, T. C.; Stahl, S. S. Mechanism of Alcohol Oxidation Mediated by Copper(II) and Nitroxyl Radicals. J. Am. Chem. Soc. 2014, 136 (34), 12166-12173, 10.1021/ja5070137
Hoover, J. M.; Ryland, B. L.; Stahl, S. S. Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation. J. Am. Chem. Soc. 2013, 135 (6), 2357-2367, 10.1021/ja3117203
Li, J.; Leclercq, M.; Fossepré, M.; Surin, M.; Glinel, K.; Jonas, A. M.; Fernandes, A. E. Discrete Multifunctional Sequence-Defined Oligomers with Controlled Chirality. Polym. Chem. 2020, 11 (24), 4040-4046, 10.1039/D0PY00537A
Leophairatana, P.; Samanta, S.; De Silva, C. C.; Koberstein, J. T. Preventing Alkyne-Alkyne (i.e., Glaser) Coupling Associated with the ATRP Synthesis of Alkyne-Functional Polymers/Macromonomers and for Alkynes under Click (i.e., CuAAC) Reaction Conditions. J. Am. Chem. Soc. 2017, 139 (10), 3756-3766, 10.1021/jacs.6b12525
Jover, J.; Spuhler, P.; Zhao, L.; McArdle, C.; Maseras, F. Toward a Mechanistic Understanding of Oxidative Homocoupling: The Glaser-Hay Reaction. Catal. Sci. Technol. 2014, 4 (12), 4200-4209, 10.1039/C4CY00322E
Hay, A. S. Oxidative Coupling of Acetylenes. J. Org. Chem. 1960, 25 (7), 1275-1276, 10.1021/jo01077a633
da Penha Valente, R. P.; de Souza, R. C.; de Medeiros Muniz, G.; Ferreira, J. E. V.; de Miranda, R. M.; Lima e Lima, A. H.; da Silva Gonçalves Vianez Junior, J. L. Using Accelerated Molecular Dynamics Simulation to Elucidate the Effects of the T198F Mutation on the Molecular Flexibility of the West Nile Virus Envelope Protein. Sci. Rep. 2020, 10 (1), 9625, 10.1038/s41598-020-66344-8
Dong, Y.; Liao, M.; Meng, X.; Somero, G. N. Structural Flexibility and Protein Adaptation to Temperature: Molecular Dynamics Analysis of Malate Dehydrogenases of Marine Molluscs. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (6), 1274, 10.1073/pnas.1718910115
David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular Representations in AI-Driven Drug Discovery: A Review and Practical Guide. J. Cheminformatics 2020, 12 (1), 56, 10.1186/s13321-020-00460-5
Brinda, K. V.; Vishveshwara, S. A Network Representation of Protein Structures: Implications for Protein Stability. Biophys. J. 2005, 89 (6), 4159-4170, 10.1529/biophysj.105.064485
Benson, N. C.; Daggett, V. A Comparison of Multiscale Methods for the Analysis of Molecular Dynamics Simulations. J. Phys. Chem. B 2012, 116 (29), 8722-8731, 10.1021/jp302103t
Valverde, I. E.; Mindt, T. L. 1,2,3-Triazoles as Amide-Bond Surrogates in Peptidomimetics. Chimia Int. J. Chem. 2013, 67, 262-266, 10.2533/chimia.2013.262