Thermodynamic modeling of CO2 absorption in aqueous solutions of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propanediamine (MAPA) and their mixtures for carbon capture process simulation
[en] Carbone capture by absorption-regeneration technology is a well-known process. However, the development and utilization of new solvents remains crucial to lower its energy consumption. Therefore, an accurate thermodynamic modeling is essential for the process simulation and optimization. This work focuses on the thermodynamic modeling of CO2 absorption in aqueous solutions of N,N-diethylethanolamine (DEEA), N-methyl- 1,3-propanediamine (MAPA) and their mixtures using electrolyte NRTL model. A novel thermodynamic modeling of DEEA-H2O-CO2, MAPA-H2O-CO2 and DEEA-MAPA-H2O-CO2 systems was developed. The modeling was carried out by considering the pure vapor pressures, excess enthalpies, dielectric constants, physical solubilities of CO2, partial and total pressures experimental data. The predicted and correlated data such as vapor-liquid equilibrium (VLE) and heat ofCO2 absorption were compared favorably to experimental data from the literature. Liquid-liquid phase separation of a specific mixture of these two amines was also highlighted. Subsequently, the developed model could be used for further simulations at large scale considering that successful validation was performed at pilot scale.
Disciplines :
Chemical engineering Environmental sciences & ecology Chemistry
De Weireld, Guy ; Université de Mons > Faculté Polytechnique > Service de Thermodynamique, Physique mathématiques
Thomas, Diane ; Université de Mons > Faculté Polytechnique > Service de Génie des Procédés chimiques et biochimiques
Language :
English
Title :
Thermodynamic modeling of CO2 absorption in aqueous solutions of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propanediamine (MAPA) and their mixtures for carbon capture process simulation
Publication date :
04 March 2020
Journal title :
Chemical Engineering Research and Design
ISSN :
0263-8762
eISSN :
1744-3563
Publisher :
Institute of Chemical Engineers, United Kingdom
Volume :
158
Pages :
46-63
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F505 - Génie des Procédés chimiques et biochimiques F506 - Thermodynamique, Physique mathématiques
Arshad, M.W., Fosbøl, P.L., Von Solms, N., Svendsen, H.F., Thomsen, K., Heat of absorption of CO2 in phase change solvents: 2-(diethylamino)ethanol and 3-(methylamino)propylamine. J. Chem. Eng. Data 58 (2013), 1974–1988 https://doi.org/10.1021/je400289v.
Arshad, M.W., Svendsen, H.F., Fosbøl, P.L., Von Solms, N., Thomsen, K., Equilibrium total pressure and CO2 solubility in binary and ternary aqueous solutions of 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA). J. Chem. Eng. Data 59 (2014), 764–774 https://doi.org/10.1021/je400886w.
Arshad, M.W., von Solms, N., Thomsen, K., Thermodynamic modeling of liquid–liquid phase change solvents for CO2 capture. Int. J. Greenh. Gas Control 53 (2016), 401–424 https://doi.org/10.1016/j.ijggc.2016.08.014.
Austgen, D.M., Rochelle, G.T., Chen, C.C., Peng, X., Model of vapor–liquid equilibria for aqueous acid gas–alkanolamine systems using the electrolyte-NRTL equation. Ind. Eng. Chem. Res. 28 (1989), 1060–1073 https://doi.org/10.1021/ie00091a028.
Bernhardsen, I.M., Krokvik, I.R.T., Perinu, C., Pinto, D.D.D., Jens, K.J., Knuutila, H.K., Influence of pKa on solvent performance of MAPA promoted tertiary amines. Int. J. Greenh. Gas Control 68 (2018), 68–76 https://doi.org/10.1016/j.ijggc.2017.11.005.
Brúder, P., Owrang, F., Svendsen, H.F., Pilot study-CO2 capture into aqueous solutions of 3-methylaminopropylamine (MAPA) activated dimethyl-monoethanolamine (DMMEA). Int. J. Greenh. Gas Control 11 (2012), 98–109 https://doi.org/10.1016/j.ijggc.2012.07.004.
Chen, C.C., Evans, L.B., A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J. 32 (1986), 444–454 https://doi.org/10.1002/aic.690320311.
Chen, C., Britt, H.l., Boston, J.F., Evans, L.B., Local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J. 28 (1982), 588–596.
Ciftja, A.F., Hartono, A., Svendsen, H.F., Experimental study on phase change solvents in CO2 capture by NMR spectroscopy. Chem. Eng. Sci. 102 (2013), 378–386 https://doi.org/10.1016/j.ces.2013.08.036.
Dash, S.K., Bandyopadhyay, S.S., Studies on the effect of addition of piperazine and sulfolane into aqueous solution of N-methyldiethanolamine for CO2 capture and VLE modelling using eNRTL equation. Int. J. Greenh. Gas Control 44 (2016), 227–237 https://doi.org/10.1016/j.ijggc.2015.11.007.
Daubert, T.E., Danner, R.P., Sibul, H.M., Stebbins, C.C., Data Compilation of Pure Compound Properties. 1993, DIPPR.
Du, Y., Yuan, Y., Rochelle, G.T., Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture. Chem. Eng. Sci. 155 (2016), 397–404 https://doi.org/10.1016/j.ces.2016.08.017.
Dubois, L., Etude de la capture du CO2 en postcombustion par absorption dans des solvants aminés: application aux fumées issues de cimenteries. PhD thesis. 2013, MONS University.
Dubois, L., Thomas, D., Comparison of various configurations of the absorption–regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases. Int. J. Greenh. Gas Control 69 (2018), 20–35 https://doi.org/10.1016/j.ijggc.2017.12.004.
Garcia, M., Knuutila, H.K., Gu, S., Thermodynamic modelling of unloaded and loaded N,N-diethylethanolamine solutions. Green Energy Environ. 1 (2016), 246–257 https://doi.org/10.1016/j.gee.2016.11.003.
Garcia, M., Knuutila, H.K., Edwin, U., Gu, S., Influence of substitution of water by organic solvents in amine solutions on absorption of CO2. Int. J. Greenh. Gas Control 78 (2018), 286–305 https://doi.org/10.1016/j.ijggc.2018.07.029.
Hartono, A., Saleem, F., Arshad, M.W., Usman, M., Svendsen, H.F., Binary and ternary VLE of the 2-(diethylamino)-ethanol (DEEA)/3-(methylamino)-propylamine (MAPA)/water system. Chem. Eng. Sci. 101 (2013), 401–411 https://doi.org/10.1016/j.ces.2013.06.052.
Hessen, E.T., Haug-Warberg, T., Svendsen, H.F., The refined e-NRTL model applied to CO2–H2O-alkanolamine systems. Chem. Eng. Sci. 65 (2010), 3638–3648 https://doi.org/10.1016/j.ces.2010.03.010.
Idem, R., Supap, T., Shi, H., Gelowitz, D., Ball, M., Campbell, C., Tontiwachwuthikul, P., Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. Int. J. Greenh. Gas Control 40 (2015), 6–25 https://doi.org/10.1016/j.ijggc.2015.06.005.
Khan, A.A., Halder, G.N., Saha, A.K., Comparing CO2 removal characteristics of aqueous solutions of monoethanolamine, 2-amino-2-methyl-1-propanol, methyldiethanolamine and piperazine through absorption process. Int. J. Greenh. Gas Control 50 (2016), 179–189 https://doi.org/10.1016/j.ijggc.2016.04.034.
Kim, I., Heat of Reaction and VLE of Post Combustion CO2 Absorbents. PhD Thesis. 2009, Norwegian University of Science and Technology, Trondheim, Norway.
Kim, I., Svendsen, H.F., Børresen, E., Ebulliometric determination of vapor-liquid equilibria for pure water, monoethanolamine, N-methyldiethanolamine, 3-(methylamino)-propylamine, and their binary and ternary solutions. Chem. Eng., 2008, 2521–2531.
Laribi, S., Dubois, L., De Weireld, G., Thomas, D., Study of the post-combustion CO2 capture process by absorption–regeneration using amine solvents applied to cement plant flue gases with high CO2 contents. Int. J. Greenh. Gas Control, 90, 2019, 102799 https://doi.org/10.1016/j.ijggc.2019.102799.
le Bouhelec, E.B., Mougin, P., Barreau, A., Solimando, R., Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions. Energy Fuels 21 (2007), 2044–2055 https://doi.org/10.1021/ef0605706.
Li, H., Le Moullec, Y., Lu, J., Chen, J., Valle Marcos, J.C., Chen, G., Chopin, F., CO2 solubility measurement and thermodynamic modeling for 1-methylpiperazine/water/CO2. Fluid Phase Equilib. 394 (2015), 118–128 https://doi.org/10.1016/j.fluid.2015.03.021.
Lide, D.R., CRC Handbook of Chemistry and Physics. 2005, CRC Press, Taylor and Francis, Boca Raton FL https://doi.org/10.1016/0165-9936(91)85111-4.
Liebenthal, U., Di, D., Pinto, D., Monteiro, J.G.M., Hallvard, F., Kather, A., Overall process analysis and optimisation for CO2 capture from coal fired power plants based on phase change solvents forming two liquid phases. Energy Procedia 37 (2013), 1844–1854 https://doi.org/10.1016/j.egypro.2013.06.064.
Luo, X., Chen, N., Liu, S., Rongwong, W., Idem, R.O., Paitoon, T., Liang, Z., Experiments and modeling of vapor-liquid equilibrium data in DEEA-CO2–H2O system. Int. J. Greenh. Gas Control 53 (2016), 160–168.
Ma'mun, S., Svendsen, H.F., Solubility of N2O in aqueous monoethanolamine and 2-(2-aminoethyl-amino)ethanol solutions from 298 to 343 K. Energy Procedia 1 (2009), 837–843 https://doi.org/10.1016/j.egypro.2009.01.111.
Mathonat, C., Oratoire, D., Maham, Y., Mather, A.E., Hepler, L.G., Excess molar enthalpies of (water + monoalkanolamine) mixtures at 298.15 K and 308.15 K. J. Chem. Eng. Data, 1997, 993–995.
Mondal, B.K., Bandyopadhyay, S.S., Samanta, A.N., Vapor–liquid equilibrium measurement and ENRTL modeling of CO2 absorption in aqueous hexamethylenediamine. Fluid Phase Equilib. 402 (2015), 102–112 https://doi.org/10.1016/j.fluid.2015.05.033.
Monteiro, J., Svendsen, H.F., The N2O analogy in the CO2 capture context: literature review and thermodynamic modelling considerations. Chem. Eng. Sci. 126 (2015), 455–470 https://doi.org/10.1016/j.ces.2014.12.026.
Monteiro, J., Pinto, D., Zaidy, S., Hartono, A., Svendsen, H., VLE data and modelling of aqueous N,N-diethylethanolamine (DEEA) solutions. Int. J. Greenh. Gas Control 19 (2013), 432–440 https://doi.org/10.1016/j.ijggc.2013.10.001.
Monteiro, J., Hussain, S., Majeed, H., Mba, E.O., Hartono, A., Knuutila, H., Svendsen, H.F., Kinetics of CO2 absorption by aqueous 3-(methylamino) propylamine solutions: experimental results and modeling. AIChE, 2014, 1–12 https://doi.org/10.1002/aic.
Monteiro, J., Knuutila, H., Nathalie, J.M.C., Elk, P., Versteeg, G., Svendsen, H.F., Kinetics of CO2absorption by aqueous N,N-diethylethanolamine solutions: literature review, experimental results and modelling. Chem. Eng. Sci. 127 (2015), 1–12 https://doi.org/10.1016/j.ces.2014.12.061.
Monteiro, J., Majeed, H., Knuutila, H., Svendsen, H.F., Kinetics of CO2 absorption in aqueous blends of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propane-diamine (MAPA). Chem. Eng. Sci. 129 (2015), 145–155.
Perinu, C., Bernhardsen, I.M., Pinto, D.D.D., Knuutila, H.K., Jens, K., NMR Speciation of Aqueous MAPA, Tertiary Amines, and Their Blends in the Presence of CO2: Influence of pKa and Reaction Mechanisms. 2018 https://doi.org/10.1021/acs.iecr.7b03795.
Perinu, C., Bernhardsen, I.M., Pinto, D.D.D., Knuutila, H.K., Jens, K.J., Aqueous MAPA, DEEA, and their blend as CO2 absorbents: interrelationship between NMR speciation, pH, and heat of absorption data. Ind. Eng. Chem. Res. 58 (2019), 9781–9794 https://doi.org/10.1021/acs.iecr.9b01437.
Pinto, D.D.D., CO2 Capture Solvents: Modeling and Experimental Characterization. PhD Thesis. 2014, Norwegian University of Science and Technology, Trondheim, Norway.
Pinto, D.D.D., Knuutila, H., Fytianos, G., Haugen, G., Mejdell, T., Svendsen, H.F., CO2 post combustion capture with a phase change solvent. Pilot plant campaign. Int. J. Greenh. Gas Control 31 (2014), 153–164 https://doi.org/10.1016/j.ijggc.2014.10.007.
Pinto, D.D.D., Zaidy, S.A.H., Hartono, A., Svendsen, H.F., Evaluation of a phase change solvent for CO2 capture: absorption and desorption tests. Int. J. Greenh. Gas Control 28 (2014), 318–327 https://doi.org/10.1016/j.ijggc.2014.07.002.
Pinto, D.D.D., Johnsen, B., Awais, M., Svendsen, H.F., Knuutila, H.K., Viscosity measurements and modeling of loaded and unloaded aqueous solutions of MDEA, DMEA, DEEA and MAPA. Chem. Eng. Sci. 171 (2017), 340–350 https://doi.org/10.1016/j.ces.2017.05.044.
Prausnitz, J.M., Lichtenthaler, R.N., Gomes de Azevedo, E., Molecular Thermodynamics of Fluid-Phase Equilibria. third ed., 1999, Prentice Hall International Series, New Jersey.
Raynal, L., Alix, P., Bouillon, P.A., Gomez, A., Le Febvre De Nailly, M., Jacquin, M., Kittel, J., Di Lella, A., Mougin, P., Trapy, J., The DMX TM process: an original solution for lowering the cost of post-combustion carbon capture. Energy Procedia 4 (2011), 779–786 https://doi.org/10.1016/j.egypro.2011.01.119.
Renon, H., Prausnitz, J.M., Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14 (1968), 135–144 https://doi.org/10.1002/aic.690140124.
Sander, B., Fredenslund, A., Rasmussen, P., Calculation of vapour–liquid equilibria in mixed solvent/salt systems using an extended uniquac equation. Chem. Eng. Sci. 41 (1986), 1171–1183.
Singh, P., Van Swaaij, W.P.M., Brilman, D.W.F., Energy efficient solvents for CO2 absorption from flue gas: vapor liquid equilibrium and pilot plant study. Energy Procedia 37 (2013), 2021–2046 https://doi.org/10.1016/j.egypro.2013.06.082.
Trollebøa, A.A., Saeeda, M., Hartonoa, A., Kimb, I., Svendsena, H.F., Vapour–liquid equilibrium for novel solvents for CO2 post combustion capture. Energy Procedia 37 (2013), 2066–2075 https://doi.org/10.1016/j.egypro.2013.06.085.
Xiao, M., Liu, H., Gao, H., Liang, Z., CO2absorption with aqueous tertiary amine solutions: equilibrium solubility and thermodynamic modeling. J. Chem. Thermodyn. 122 (2018), 170–182 https://doi.org/10.1016/j.jct.2018.03.020.
Xu, Z., Wang, S., Qi, G., Trollebø, A.A., Svendsen, H.F., Vapor liquid equilibria and heat of absorption of CO2 in aqueous 2-(diethylamino)-ethanol solutions. Int. J. Greenh. Gas Control 29 (2014), 92–103 https://doi.org/10.1016/j.ijggc.2010.04.005.
Zhang, Y., Chen, C., Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind. Eng. Chem. Res. 50 (2011), 163–175.
Zhao, X., Smith, K.H., Simioni, M.A., Tao, W., Kentish, S.E., Fei, W., Stevens, G.W., Comparison of several packings for CO2 chemical absorption in a packed column. Int. J. Greenh. Gas Control 5 (2011), 1163–1169 https://doi.org/10.1016/j.ijggc.2011.07.006.