V. J. Abhyankar and V. N. Bhat-Nayak. Easiest graceful labeling of olive trees. Bull. Bombay Math. Coll., 14:16-25, 2000.
R. E. L. Aldred and B. D. McKay. Graceful and harmonious labellings of trees. Personal communication to Gallian (Gallian (2009)).
M. Alfalayleh, L. Brankovic, H. Giggins, and Md. Zahidul Islam. Towards the graceful tree conjecture: a survey. In Proceedings of AWOCA2004, Ballina, Australia, 2004.
J. C. Bermond and D. Sotteau. Graph decompositions and g-design. In Proc. 5th British Combin. Conf., 1975, volume XV of Congr. Numer., pages 53-72, 1976.
C. P. Bonnington and J. Širáň. Bipartite labeling of trees with maximum degree three. J. Graph Theory, 31 (1):7-15, 1999. (Pubitemid 129558976)
L. Brankovic, C. Murch, J. Pond, and A. Rosa. α-size of trees with maximum degree three and perfect matching. In Proceedings of the Sixteenth Australasian Workshop on Combinatorial Algorithms (AWOCA 2005), Ballarat, Australia, 2005a. Ballarat, Vic.
L. Brankovic, A. Rosa, and J. Širáň. Labellings of trees with maximum degree three-an improved bound. J. Combin. Math. Combin. Comput., 55:159-169, 2005b.
J. Gallian. A dynamic survey of graph labeling. Electron. J. Combin., January 2009.
P. Hrnčiar and A. Haviar. All trees of diameter five are graceful. Discrete Math., 233:133-150, 2001. (Pubitemid 33660399)
C. Huang, A. Kotzig, and A. Rosa. Further results on tree labellings. Util. Math., 21c:31-48, 1982.
G. Li and F. Ruskey. The advantages of forward thinking in generating rooted and free trees. In 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages S939-940, 1999.
B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45-87, 1981.
B. D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306-324, 1998. (Pubitemid 128638721)
G. Navisch and E. Lev. Nonattacking queens on a triangle. Mathematics Magazine, 78:399-403, 2005.
A. M. Pastel and H. Raynaud. Numérotation gracieuse des oliviers. In Colloq. Grenoble, pages 218-223. Publications Université de Grenoble, 1978.
S. Poljak and M. Sûra. An algorithm for graceful labeling of a class of symmetrical trees. Ars Combin., 14: 57-66, 1982.
A. Rosa. On certain valuations of the vertices of a graph. In Theory of Graphs (Internat. Symposium, Rome, July 1966), pages 349-355. Gordon and Breach, N.Y. and Dunod, Paris, 1967.
A. Rosa and J. Širáň. Bipartite labelings of trees and the gracesize. J. Graph Theory, 19:201-205, 1995.
F. Van Bussel. Towards the graceful tree conjecture. Master's thesis, Department of Computer Science, University of Toronto, 2000.
S. Zhao. All trees of diameter four are graceful. In Graph Theory and its Applications: East and West (Jinan 1986), volume 576 of Ann. New York Acad. Sci., pages 700-706. New York Acad. Sci., New York, 1989.