Adsorption energy distribution; Cyclic voltammograms; Electrochemical behaviors; Electron transfer process; Metastable adsorption; Periodic density functional theory; Single electron transfer; Single molecule surface enhanced Raman spectroscopies; Electronic, Optical and Magnetic Materials; Energy (all); Physical and Theoretical Chemistry; Surfaces, Coatings and Films; General Energy
Abstract :
[en] Probing the electrochemistry of single molecules is a direct pathway toward a microscopic understanding of a variety of electron transfer processes related to energy science, such as electrocatalysis and solar fuel cells. In this context, Zaleski et al. recently studied the single electron transfer reaction of the dye molecule rhodamine-6G (R6G) by electrochemical single molecule surface-enhanced Raman spectroscopy (EC-SMSERS) (J. Phys. Chem. C 2015, 119, 28226-28234). In that work, the reductions of the dye molecule R6G were not only observed in the same potential range as in the ensemble surface cyclic voltammogram but also seen under some less negative potentials. Aiming to understand and explain this experiment theoretically, we relate the binding energy of R6G+ adsorbed on a silver nanoparticle (AgNP) to its reduction potential and further use periodic density functional theory to calculate this adsorption energy at different local surface sites. Well-defined crystal facets and defective surfaces, are considered. We find that the calculated adsorption energy distribution of the strongest binding states at each surface site closely matches the potential range of the experimentally observed Faradaic events. Moreover, the underpotential events are explained by the metastable adsorption states with less binding strength compared with those corresponding to Faradaic events. Our study reveals the importance of the heterogeneity of surface structures on the AgNP and offers a new perspective on understanding single molecule electrochemical behavior. (Graph Presented).
Disciplines :
Chemistry
Author, co-author :
Fu, Bo; Department of Physics and Astronomy, Northwestern University, Evanston, United States
Van Dyck, Colin ; Université de Mons - UMONS > Faculté des Sciences > Service Chimie Physique Théorique
Zaleski, Stephanie; Department of Chemistry, Northwestern University, Evanston, United States
Van Duyne, Richard P.; Department of Chemistry, Northwestern University, Evanston, United States ; Department of Biomedical Engineering, Northwestern University, Evanston, United States ; Program in Applied Physics, Northwestern University, Evanston, United States
Ratner, Mark A.; Department of Chemistry, Northwestern University, Evanston, United States
Language :
English
Title :
Single Molecule Electrochemistry: Impact of Surface Site Heterogeneity
Publication date :
08 December 2016
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
This work was supported by Air Force Office of Scientific Research MURI (FA9550-14-1-0003). We gratefully acknowledge the computational resources from the Quest high performance computing facility at Northwestern University and the Extreme Science and Engineering Discovery Environment (XSEDE) Program, which is supported by National Science Foundation Grant ACI-1053575. S.Z. acknowledges Michael Mattei for helpful discussions.
Fan, F. R.; Bard, A. J. Electrochemical Detection of Single Molecules Science 1995, 267, 871-874 10.1126/science.267.5199.871
Anderson, L. B.; Reilley, C. N. Thin-Layer Electrochemistry: Use of Twin Working Electrodes for the Study of Chemical Kinetics J. Electroanal. Chem. (1959-1966) 1965, 10, 538-552 10.1016/0022-0728(65)80054-7
Anderson, L. B.; Reilley, C. N. Thin-Layer Electrochemistry: Steady-State Methods of Studying Rate Processes J. Electroanal. Chem. (1959-1966) 1965, 10, 295-305 10.1016/0022-0728(65)85063-X
Lemay, S. G.; Kang, S.; Mathwig, K.; Singh, P. S. Single-Molecule Electrochemistry: Present Status and Outlook Acc. Chem. Res. 2013, 46, 369-377 10.1021/ar300169d
Mathwig, K.; Aartsma, T. J.; Canters, G. W.; Lemay, S. G. Nanoscale Methods for Single-Molecule Electrochemistry Annu. Rev. Anal. Chem. 2014, 7, 383-404 10.1146/annurev-anchem-062012-092557
Hill, C. M.; Clayton, D. A.; Pan, S. Combined Optical and Electrochemical Methods for Studying Electrochemistry at the Single Molecule and Single Particle Level: Recent Progress and Perspectives Phys. Chem. Chem. Phys. 2013, 15, 20797-20807 10.1039/c3cp52756e
Lei, C.; Hu, D.; Ackerman, E. J. Single-Molecule Fluorescence Spectroelectrochemistry of Cresyl Violet Chem. Commun. 2008, 5490-5492 10.1039/b812161c
Cortés, E.; Etchegoin, P. G.; Le Ru, E. C.; Fainstein, A.; Vela, M. E.; Salvarezza, R. C. Monitoring the Electrochemistry of Single Molecules by Surface-Enhanced Raman Spectroscopy J. Am. Chem. Soc. 2010, 132, 18034-18037 10.1021/ja108989b
Cortes, E.; Etchegoin, P. G.; Le Ru, E. C.; Fainstein, A.; Vela, M. E.; Salvarezza, R. C. Strong Correlation between Molecular Configurations and Charge-Transfer Processes Probed at the Single-Molecule Level by Surface-Enhanced Raman Scattering J. Am. Chem. Soc. 2013, 135, 2809-2815 10.1021/ja312236y
Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the Computational Design of Solid Catalysts Nat. Chem. 2009, 1, 37-46 10.1038/nchem.121
Liu, P.; Rodriguez, J. A. Catalysts for Hydrogen Evolution from the [Nife] Hydrogenase to the Ni2p(001) Surface: The Importance of Ensemble Effect J. Am. Chem. Soc. 2005, 127, 14871-14878 10.1021/ja0540019
Greeley, J.; Nørskov, J. K.; Kibler, L. A.; El-Aziz, A. M.; Kolb, D. M. Hydrogen Evolution over Bimetallic Systems: Understanding the Trends ChemPhysChem 2006, 7, 1032-1035 10.1002/cphc.200500663
Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic Hydrogen Evolution: Mos2 Nanoparticles as Catalyst for Hydrogen Evolution J. Am. Chem. Soc. 2005, 127, 5308-5309 10.1021/ja0504690
Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Norskov, J. K.; Chorkendorff, I. Hydrogen Evolution on Nano-Particulate Transition Metal Sulfides Faraday Discuss. 2009, 140, 219-231 10.1039/B803857K
Datta, P.; Sardar, D.; Saha, R.; Mondal, T. K.; Sinha, C. Structure, Photophysics, Electrochemistry and Dft Calculations of [Ruh(Co) (Pph3)2(Coumarinyl-Azo-Imidazole)] Polyhedron 2013, 53, 193-201 10.1016/j.poly.2013.01.041
Stadelman, B. S.; Kimani, M. M.; Bayse, C. A.; McMillen, C. D.; Brumaghim, J. L. Synthesis, Characterization, Dft Calculations, and Electrochemical Comparison of Novel Iron(Ii) Complexes with Thione and Selone Ligands Dalton Transactions 2016, 45, 4697-4711 10.1039/C5DT03384E
Zaleski, S.; Cardinal, M. F.; Klingsporn, J. M.; Van Duyne, R. P. Observing Single, Heterogeneous, One-Electron Transfer Reactions J. Phys. Chem. C 2015, 119, 28226-28234 10.1021/acs.jpcc.5b10652
Rowe, G. K.; Carter, M. T.; Richardson, J. N.; Murray, R. W. Consequences of Kinetic Dispersion on the Electrochemistry of an Adsorbed Redox-Active Monolayer Langmuir 1995, 11, 1797-1806 10.1021/la00005a059
Hill, C. M.; Pan, S. A Dark-Field Scattering Spectroelectrochemical Technique for Tracking the Electrodeposition of Single Silver Nanoparticles J. Am. Chem. Soc. 2013, 135, 17250-17253 10.1021/ja4075387
Liau, Y.-H.; Scherer, N. F.; Rhodes, K. Nanoscale Electrical Conductivity and Surface Spectroscopic Studies of Indium-Tin Oxide J. Phys. Chem. B 2001, 105, 3282-3288 10.1021/jp0040749
Hansen, K. H.; Worren, T.; Stempel, S.; Lægsgaard, E.; Bäumer, M.; Freund, H. J.; Besenbacher, F.; Stensgaard, I. Palladium Nanocrystals on Al2o3: Structure and Adhesion Energy Phys. Rev. Lett. 1999, 83, 4120-4123 10.1103/PhysRevLett.83.4120
Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsøe, H. Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals Science 2002, 295, 2053-2055 10.1126/science.1069325
Hansen, T. W.; Wagner, J. B.; Hansen, P. L.; Dahl, S.; Topsøe, H.; Jacobsen, C. J. H. Atomic-Resolution in Situ Transmission Electron Microscopy of a Promoter of a Heterogeneous Catalyst Science 2001, 294, 1508-1510 10.1126/science.1064399
Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia Synthesis from First-Principles Calculations Science 2005, 307, 555-558 10.1126/science.1106435
Nørskov, J. K. et al. Universality in Heterogeneous Catalysis J. Catal. 2002, 209, 275-278 10.1006/jcat.2002.3615
Hoshi, N.; Kato, M.; Hori, Y. Electrochemical Reduction of Co2 on Single Crystal Electrodes of Silver Ag(111), Ag(100) and Ag(110) J. Electroanal. Chem. 1997, 440, 283-286 10.1016/S0022-0728(97)00447-6
Eberhardt, D.; Santos, E.; Schmickler, W. Hydrogen Evolution on Silver Single Crystal Electrodes - First Results1 J. Electroanal. Chem. 1999, 461, 76-79 10.1016/S0022-0728(98)00093-X
Shi, C.; Hansen, H. A.; Lausche, A. C.; Norskov, J. K. Trends in Electrochemical Co2 Reduction Activity for Open and Close-Packed Metal Surfaces Phys. Chem. Chem. Phys. 2014, 16, 4720-4727 10.1039/c3cp54822h
Pozun, Z. D.; Tran, K.; Shi, A.; Smith, R. H.; Henkelman, G. Why Silver Nanoparticles Are Effective for Olefin/Paraffin Separations J. Phys. Chem. C 2011, 115, 1811-1818 10.1021/jp110579s
Rocca, M. et al. Phase Transition of Dissociatively Adsorbed Oxygen on Ag(001) Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 213-227 10.1103/PhysRevB.61.213
de Mongeot, F. B.; Cupolillo, A.; Valbusa, U.; Rocca, M. O2 Dissociation on Ag(001): The Role of Kink Sites Chem. Phys. Lett. 1997, 270, 345-350 10.1016/S0009-2614(97)00381-3
Kokalj, A.; Dal Corso, A.; de Gironcoli, S.; Baroni, S. The Interaction of Ethylene with Perfect and Defective Ag(001) Surfaces J. Phys. Chem. B 2002, 106, 9839-9846 10.1021/jp025823k
Klingsporn, J. M.; Jiang, N.; Pozzi, E. A.; Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; Hersam, M. C.; Duyne, R. P. V. Intramolecular Insight into Adsorbate-Substrate Interactions Via Low-Temperature, Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy J. Am. Chem. Soc. 2014, 136, 3881-3887 10.1021/ja411899k
Plieth, W. J. Electrochemical Properties of Small Clusters of Metal Atoms and Their Role in the Surface Enhanced Raman Scattering J. Phys. Chem. 1982, 86, 3166-3170 10.1021/j100213a020
Ivanova, O. S.; Zamborini, F. P. Size-Dependent Electrochemical Oxidation of Silver Nanoparticles J. Am. Chem. Soc. 2010, 132, 70-72 10.1021/ja908780g
Greeley, J.; Nørskov, J. K.; Mavrikakis, M. Electronic Structure and Catalysis on Metal Surfaces Annu. Rev. Phys. Chem. 2002, 53, 319-348 10.1146/annurev.physchem.53.100301.131630
Mavrikakis, M.; Stoltze, P.; Nørskov, J. K. Making Gold Less Noble Catal. Lett. 2000, 64, 101-106 10.1023/A:1019028229377
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
Blöchl, P. E. Projector Augmented-Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953-17979 10.1103/PhysRevB.50.17953
Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775 10.1103/PhysRevB.59.1758
Methfessel, M.; Paxton, A. T. High-Precision Sampling for Brillouin-Zone Integration in Metals Phys. Rev. B: Condens. Matter Mater. Phys. 1989, 40, 3616-3621 10.1103/PhysRevB.40.3616
Pulay, P. Convergence Acceleration of Iterative Sequences. The Case of Scf Iteration Chem. Phys. Lett. 1980, 73, 393-398 10.1016/0009-2614(80)80396-4
Ashcroft, N. W.; Mermin, D. N. Solid State Physics; Holt, Rinehart and Winston: New York, 1976.
Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data Phys. Rev. Lett. 2009, 102, 073005 10.1103/PhysRevLett.102.073005
Lüder, J.; Sanyal, B.; Eriksson, O.; Puglia, C.; Brena, B. Comparison of Van Der Waals Corrected and Sparse-Matter Density Functionals for the Metal-Free Phthalocyanine/Gold Interface Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 045416 10.1103/PhysRevB.89.045416
Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set Comput. Mater. Sci. 1996, 6, 15-50 10.1016/0927-0256(96)00008-0
Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186 10.1103/PhysRevB.54.11169
Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251-14269 10.1103/PhysRevB.49.14251
Makov, G.; Payne, M. C. Periodic Boundary Conditions in Ab Initio Calculations Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 51, 4014-4022 10.1103/PhysRevB.51.4014
Yu, M.; Trinkle, D. R. Accurate and Efficient Algorithm for Bader Charge Integration J. Chem. Phys. 2011, 134, 064111 10.1063/1.3553716
Chidsey, C. E. D. Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface Science 1991, 251, 919 10.1126/science.251.4996.919
Feldberg, S. W. Implications of Marcus-Hush Theory for Steady-State Heterogeneous Electron Transfer at an Inlaid Disk Electrode Anal. Chem. 2010, 82, 5176-5183 10.1021/ac1004162
Costentin, C.; Robert, M.; Saveant, J.-M. Reorganization Energies and Pre-Exponential Factors in the One-Electron Electrochemical and Homogeneous Oxidation of Phenols Coupled with an Intramolecular Amine-Driven Proton Transfer Phys. Chem. Chem. Phys. 2010, 12, 13061-13069 10.1039/c0cp00017e
Laborda, E.; Henstridge, M. C.; Batchelor-McAuley, C.; Compton, R. G. Asymmetric Marcus-Hush Theory for Voltammetry Chem. Soc. Rev. 2013, 42, 4894-4905 10.1039/c3cs35487c