Adsorption geometries; Experimental spectra; Geometry optimization; Isolated molecules; Molecular identification; Normal mode analysis; Overall accuracies; Surface enhanced Raman spectroscopy; Electronic, Optical and Magnetic Materials; Energy (all); Physical and Theoretical Chemistry; Surfaces, Coatings and Films; General Energy
Abstract :
[en] Surface-enhanced Raman spectroscopy probes adsorbates on a plasmonic substrate and offers high sensitivity with molecular identification capabilities. In this study, we present a refined methodology for considering the supporting substrate in the computation of the Raman spectra. The supporting substrate is taken into account by employing a periodic slab model when doing the geometry optimization and normal mode analysis, and then the Raman spectrum is calculated for the isolated molecule but with the normal modes from the surface structure. We find that the interaction with the surface induces internal distortion in the molecule, and spectral shifts in the computed Raman spectrum. By comparing a low temperature surface-enhanced Raman spectroscopy measurement of Rhodamine 6G (R6G) with the computed Raman spectra of a series of adsorption geometries, we propose that the binding state captured in the experiment tends to possess the least internal distortion. This binding state involves upward orientation of ethylamine on R6G, and our calculations indicate that this is the lowest energy adsorption structure. Following this route, it is possible to infer both a molecular orientation and an adsorption geometry of the molecule from its Raman spectrum. Importantly, we note that, if the substrate correction is established to play a role, we also discuss that this corrected approach still has several shortcomings that significantly limit its overall accuracy in comparison with experimental spectra.
Disciplines :
Chemistry
Author, co-author :
Van Dyck, Colin ; Université de Mons - UMONS > Faculté des Sciences > Service Chimie Physique Théorique
Fu, Bo; Department of Physics and Astronomy, Northwestern University, Evanston, United States
Van Duyne, Richard P. ; Department of Chemistry, Northwestern University, Evanston, United States
Schatz, George C. ; Department of Chemistry, Northwestern University, Evanston, United States
Ratner, Mark A.; Department of Chemistry, Northwestern University, Evanston, United States
Language :
English
Title :
Deducing the Adsorption Geometry of Rhodamine 6G from the Surface-Induced Mode Renormalization in Surface-Enhanced Raman Spectroscopy
Publication date :
11 January 2018
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
Government of Canada U.S. Department of Defense University of Alberta Government of Alberta
Funding text :
We thank Dr. Fredy Aquino for the help with the AOResponse module of the NWChem package. This work was supported by the Air Force Office of Scientific Research MURI project (FA9550-14-1-0003). C.V.D. thanks Dr. Lindsey Madison for useful discussion and the support by the National Institute for Nanotechnology, which is operated as a partnership between the National Research Council, Canada, the University of Alberta, and the Government of Alberta. We gratefully acknowledge the computational resources from the Quest high performance computing facility at Northwestern University and the Extreme Science and Engineering Discovery Environment (XSEDE) program which is supported by National Science Foundation grant number ACI-1053575. We also acknowledge the Center for Nanoscale Materials (Argonne National Lab), an Office of Science user facility, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1-20 10.1016/S0022-0728(77)80224-6
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode Chem. Phys. Lett. 1974, 26, 163-166 10.1016/0009-2614(74)85388-1
Nie, S.; Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering Science 1997, 275, 1102 10.1126/science.275.5303.1102
Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (Sers) Phys. Rev. Lett. 1997, 78, 1667-1670 10.1103/PhysRevLett.78.1667
Hildebrandt, P.; Stockburger, M. Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6g Adsorbed on Colloidal Silver J. Phys. Chem. 1984, 88, 5935-5944 10.1021/j150668a038
Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6g Molecules on Large Ag Nanocrystals J. Am. Chem. Soc. 1999, 121, 9932-9939 10.1021/ja992128q
Michaels, A. M.; Jiang; Brus, L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6g Molecules J. Phys. Chem. B 2000, 104, 11965-11971 10.1021/jp0025476
Hayazawa, N.; Inouye, Y.; Sekkat, Z.; Kawata, S. Near-Field Raman Scattering Enhanced by a Metallized Tip Chem. Phys. Lett. 2001, 335, 369-374 10.1016/S0009-2614(01)00065-3
Anger, P.; Feltz, A.; Berghaus, T.; Meixner, A. J. Near-Field and Confocal Surface-Enhanced Resonance Raman Spectroscopy at Cryogenic Temperatures J. Microsc. 2003, 209, 162-166 10.1046/j.1365-2818.2003.01089.x
Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; Van Duyne, R. P. A Frequency Domain Existence Proof of Single-Molecule Surface-Enhanced Raman Spectroscopy J. Am. Chem. Soc. 2007, 129, 16249-16256 10.1021/ja077243c
Shim, S.; Stuart, C. M.; Mathies, R. A. Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6g from Broadband Stimulated Raman Spectroscopy ChemPhysChem 2008, 9, 697-699 10.1002/cphc.200700856
Dieringer, J. A.; Wustholz, K. L.; Masiello, D. J.; Camden, J. P.; Kleinman, S. L.; Schatz, G. C.; Van Duyne, R. P. Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6g Molecule J. Am. Chem. Soc. 2009, 131, 849-854 10.1021/ja8080154
Klingsporn, J. M.; Jiang, N.; Pozzi, E. A.; Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; Hersam, M. C.; Duyne, R. P. V. Intramolecular Insight Into Adsorbate-Substrate Interactions Via Low-Temperature, Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy J. Am. Chem. Soc. 2014, 136, 3881-3887 10.1021/ja411899k
Zaleski, S.; Cardinal, M. F.; Klingsporn, J. M.; Van Duyne, R. P. Observing Single, Heterogeneous, One-Electron Transfer Reactions J. Phys. Chem. C 2015, 119, 28226-28234 10.1021/acs.jpcc.5b10652
Zaleski, S.; Cardinal, M. F.; Chulhai, D. V.; Wilson, A. J.; Willets, K. A.; Jensen, L.; Van Duyne, R. P. Toward Monitoring Electrochemical Reactions with Dual-Wavelength Sers: Characterization of Rhodamine 6g (R6g) Neutral Radical Species and Covalent Tethering of R6g to Silver Nanoparticles J. Phys. Chem. C 2016, 120, 24982-24991 10.1021/acs.jpcc.6b09022
Watanabe, H.; Hayazawa, N.; Inouye, Y.; Kawata, S. Dft Vibrational Calculations of Rhodamine 6g Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy J. Phys. Chem. B 2005, 109, 5012-5020 10.1021/jp045771u
Jensen, L.; Schatz, G. C. Resonance Raman Scattering of Rhodamine 6g as Calculated Using Time-Dependent Density Functional Theory J. Phys. Chem. A 2006, 110, 5973-5977 10.1021/jp0610867
Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of Plasmon and Molecular Resonances for Rhodamine 6g Adsorbed on Silver Nanoparticles J. Am. Chem. Soc. 2007, 129, 7647-7656 10.1021/ja0707106
Guthmuller, J.; Champagne, B. Resonance Raman Scattering of Rhodamine 6g as Calculated by Time-Dependent Density Functional Theory: Vibronic and Solvent Effects J. Phys. Chem. A 2008, 112, 3215-3223 10.1021/jp7112279
Fu, B.; Van Dyck, C.; Zaleski, S.; Van Duyne, R. P.; Ratner, M. A. Single Molecule Electrochemistry: Impact of Surface Site Heterogeneity J. Phys. Chem. C 2016, 120, 27241-27249 10.1021/acs.jpcc.6b05252
Jensen, L.; Autschbach, J.; Schatz, G. C. Finite Lifetime Effects on the Polarizability within Time-Dependent Density-Functional Theory J. Chem. Phys. 2005, 122, 224115 10.1063/1.1929740
Aquino, F. W.; Schatz, G. C. Time-Dependent Density Functional Methods for Raman Spectra in Open-Shell Systems J. Phys. Chem. A 2014, 118, 517-525 10.1021/jp411039m
Neugebauer, J.; Reiher, M.; Kind, C.; Hess, B. A. Quantum Chemical Calculation of Vibrational Spectra of Large Molecules-Raman and Ir Spectra for Buckminsterfullerene J. Comput. Chem. 2002, 23, 895-910 10.1002/jcc.10089
Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; Van Duyne, R. P. The Origin of Relative Intensity Fluctuations in Single-Molecule Tip-Enhanced Raman Spectroscopy J. Am. Chem. Soc. 2013, 135, 17187-17192 10.1021/ja408758j
Pozzi, E. A.; Sonntag, M. D.; Jiang, N.; Chiang, N.; Seideman, T.; Hersam, M. C.; Van Duyne, R. P. Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy with Picosecond Excitation J. Phys. Chem. Lett. 2014, 5, 2657-2661 10.1021/jz501239z
Zhao; Jensen, L.; Schatz, G. C. Pyridine-Ag20 Cluster: A Model System for Studying Surface-Enhanced Raman Scattering J. Am. Chem. Soc. 2006, 128, 2911-2919 10.1021/ja0556326
Zhao, L. L.; Jensen, L.; Schatz, G. C. Surface-Enhanced Raman Scattering of Pyrazine at the Junction Between Two Ag20 Nanoclusters Nano Lett. 2006, 6, 1229-1234 10.1021/nl0607378
Morton, S. M.; Jensen, L. Understanding the Molecule-Surface Chemical Coupling in Sers J. Am. Chem. Soc. 2009, 131, 4090-4098 10.1021/ja809143c
Moore, J. E.; Morton, S. M.; Jensen, L. Importance of Correctly Describing Charge-Transfer Excitations for Understanding the Chemical Effect in Sers J. Phys. Chem. Lett. 2012, 3, 2470-2475 10.1021/jz300492p
Mullin, J. M.; Autschbach, J.; Schatz, G. C. Time-Dependent Density Functional Methods for Surface Enhanced Raman Scattering (Sers) Studies Comput. Theor. Chem. 2012, 987, 32-41 10.1016/j.comptc.2011.08.027
Plieth, W. J. Electrochemical Properties of Small Clusters of Metal Atoms and Their Role in the Surface Enhanced Raman Scattering J. Phys. Chem. 1982, 86, 3166-3170 10.1021/j100213a020
Ivanova, O. S.; Zamborini, F. P. Size-Dependent Electrochemical Oxidation of Silver Nanoparticles J. Am. Chem. Soc. 2010, 132, 70-72 10.1021/ja908780g
Hansen, K. H.; Worren, T.; Stempel, S.; Lægsgaard, E.; Bäumer, M.; Freund, H. J.; Besenbacher, F.; Stensgaard, I. Palladium Nanocrystals on Al2O3: Structure and Adhesion Energy Phys. Rev. Lett. 1999, 83, 4120-4123 10.1103/PhysRevLett.83.4120
Hansen, T. W.; Wagner, J. B.; Hansen, P. L.; Dahl, S.; Topsøe, H.; Jacobsen, C. J. H. Atomic-Resolution in Situ Transmission Electron Microscopy of a Promoter of a Heterogeneous Catalyst Science 2001, 294, 1508-1510 10.1126/science.1064399
Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsøe, H. Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals Science 2002, 295, 2053-2055 10.1126/science.1069325
Marks, L. D. Experimental Studies of Small Particle Structures Rep. Prog. Phys. 1994, 57, 603 10.1088/0034-4885/57/6/002
Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles Science 2002, 298, 2176 10.1126/science.1077229
Barmparis, G. D.; Lodziana, Z.; Lopez, N.; Remediakis, I. N. Nanoparticle Shapes by Using Wulff Constructions and First-Principles Calculations Beilstein J. Nanotechnol. 2015, 6, 361-368 10.3762/bjnano.6.35
Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set Comput. Mater. Sci. 1996, 6, 15-50 10.1016/0927-0256(96)00008-0
Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186 10.1103/PhysRevB.54.11169
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data Phys. Rev. Lett. 2009, 102, 073005 10.1103/PhysRevLett.102.073005
Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors J. Phys. Chem. 1996, 100, 16502-16513 10.1021/jp960976r
Andersson, M. P.; Uvdal, P. New Scale Factors for Harmonic Vibrational Frequencies Using the B3lyp Density Functional Method with the Triple-Z Basis Set 6-311+G(D,P) J. Phys. Chem. A 2005, 109, 2937-2941 10.1021/jp045733a
Alecu, I. M.; Zheng, J.; Zhao, Y.; Truhlar, D. G. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries J. Chem. Theory Comput. 2010, 6, 2872-2887 10.1021/ct100326h
Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L. et al. Nwchem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations Comput. Phys. Commun. 2010, 181, 1477-1489 10.1016/j.cpc.2010.04.018
Jensen, L.; Autschbach, J.; Schatz, G. C. Finite Lifetime Effects on the Polarizability within Time-Dependent Density-Functional Theory J. Chem. Phys. 2005, 122, 224115 10.1063/1.1929740
Pople, J. A.; Gordon, M. Molecular Orbital Theory of the Electronic Structure of Organic Compounds. I. Substituent Effects and Dipole Moments J. Am. Chem. Soc. 1967, 89, 4253-4261 10.1021/ja00993a001
Durig, J. R.; Li, Y. S. Raman Spectra of Gases. XVIII. Internal Rotational Motions in Ethylamine and Ethylamine-D2 J. Chem. Phys. 1975, 63, 4110-4113 10.1063/1.431181
Silverstein, D. W.; Jensen, L. Understanding the Resonance Raman Scattering of Donor-Acceptor Complexes Using Long-Range Corrected DFT J. Chem. Theory Comput. 2010, 6, 2845-2855 10.1021/ct1002779
Ratner, M. A.; Gerber, R. B. Excited Vibrational States of Polyatomic Molecules: The Semiclassical Self-Consistent Field Approach J. Phys. Chem. 1986, 90, 20-30 10.1021/j100273a008
Nagalakshmi, V.; Lakshminarayana, V.; Sumithra, G.; Durga Prasad, M. Durga Prasad, M. Coupled Cluster Description of Anharmonic Molecular Vibrations. Application to O3 and So2 Chem. Phys. Lett. 1994, 217, 279-282 10.1016/0009-2614(93)E1380-Y
Gieseking, R. L.; Ratner, M. A.; Schatz, G. C. Semiempirical Modeling of Electrochemical Charge Transfer Faraday Discuss. 2017, 199, 547-563 10.1039/C6FD00234J
Gieseking, R. L.; Ratner, M. A.; Schatz, G. C. Semiempirical Modeling of Ag Nanoclusters: New Parameters for Optical Property Studies Enable Determination of Double Excitation Contributions to Plasmonic Excitation J. Phys. Chem. A 2016, 120, 4542-4549 10.1021/acs.jpca.6b04520