Conjugated backbones; Intermolecular interactions; Metal organic framework; Metal organic materials; Metalorganic frameworks (MOFs); Polarized fluorescence; Polarized luminescence; Structural stabilities; Chemistry (all); Chemical Engineering (all); Materials Chemistry; General Chemical Engineering; General Chemistry
Abstract :
[en] Hybrid fluorescent metal-organic frameworks (MOFs) use long-range intermolecular structural motifs in which the properties of the scaffold molecular system can be designed for specific applications. In this work, we constructed a MOF-chromophore system with a strongly polarized fluorescence and a large emission wavelength shift. To achieve this, we first devised a fluorophore with a linear conjugated backbone, bulky and noninteracting side chains, and easily accessible nitrogen atoms on its pyridine end groups. The linear nature of the conjugated backbone can lead to a strongly polarized luminescence, the side groups assist structural stability and minimize intermolecular interactions, and the sterically accessible pyridines provide a large fluorescence color-changing ability. These features were demonstrated by synthesizing a planar Zn-based MOF in which the linear backbone of the chromophore molecules was highly aligned. The MOFs demonstrated a strong polarization effect and a color-shifting ability from green-yellow to orange. The results show that hybrid metal-organic materials can be designed to generate a strong command of the material luminescence, in terms of both emission color and polarization.
Disciplines :
Chemistry
Author, co-author :
Wang, Hui; Department of Physics, University of Alberta, Edmonton, Canada
Vagin, Sergei Igorevich; Department of Chemistry, Technical University of Munich, Garching bei München, Germany
Lane, Stephen; Department of Physics, University of Alberta, Edmonton, Canada
Lin, Wei; Department of Physics, University of Alberta, Edmonton, Canada
Shyta, Vira; Department of Physics, University of Alberta, Edmonton, Canada
Heinz, Werner Reinhold; Department of Chemistry, Technical University of Munich, Garching bei München, Germany
Van Dyck, Colin ; Université de Mons - UMONS > Faculté des Sciences > Service Chimie Physique Théorique
Bergren, Adam Johan; Nanotechnology Research Centre, National Research Council of Canada, Edmonton, Canada
Gardner, Kirsty; Department of Physics, University of Alberta, Edmonton, Canada
Rieger, Bernhard ; Department of Chemistry, Technical University of Munich, Garching bei München, Germany
Meldrum, Alkiviathes ; Department of Physics, University of Alberta, Edmonton, Canada
Language :
English
Title :
Metal-Organic Framework with Color-Switching and Strongly Polarized Emission
National Research Council Canada Deutsche Forschungsgemeinschaft University of Alberta Natural Sciences and Engineering Research Council of Canada
Funding text :
The authors thank DFG (IRTG 2022) and NSERC (CREATE grant 463990-2015) for financial support of the Alberta/Technische Universität München Graduate School for Functional Hybrid Materials (ATUMS) and Future Energy Systems. This work was supported in part by the Nanotechnology Initiative, a collaboration between the National Research Council, Canada, and the University of Alberta. C.V.D. thanks the Laboratory for Chemistry of Novel Materials at the Université de Mons in Belgium for access to their computing facilities.
Reddy, E. R.; Yellanki, S.; Medishetty, R.; Konada, L.; Alamuru, N. P.; Haldar, D.; Parsa, K. V. L.; Kulkarni, P.; Rajadurai, M. Red Fluorescent Organic Nanoparticle Bioprobes: A Photostable Cytoplasmic Stain for Long Term In Vitro and In Vivo Visualization. ChemNanoMat 2015, 1, 567-576, 10.1002/cnma.201500108
Saini, A.; Thomas, K. R. J.; Sachdev, A.; Gopinath, P. Photophysics, Electrochemistry, Morphology, and Bioimaging Applications of New 1,8-Naphthalimide Derivatives Containing Different Chromophores. Chem.-Asian J. 2017, 12, 2612-2622, 10.1002/asia.201700968
Liu, Y.; Wolstenholme, C. H.; Carter, G. C.; Liu, H.; Hu, H.; Grainger, L. S.; Miao, K.; Fares, M.; Hoelzel, C. A.; Yennawar, H. P.; Ning, G.; Du, M.; Bai, L.; Li, X.; Zhang, X. Modulation of Fluorescent Protein Chromophores To Detect Protein Aggregation with Turn-On Fluorescence. J. Am. Chem. Soc. 2018, 140, 7381-7384, 10.1021/jacs.8b02176
Wu, R.-Z.; Yang, X.; Zhang, L.-W.; Zhou, P.-P. Luminescent lanthanide metal-organic frameworks for chemical sensing and toxic anion detection. Dalton Trans. 2017, 46, 9859-9867, 10.1039/C7DT01790A
Roik, N. V.; Belyakova, L. A.; Dziazko, M. O. Optically transparent silica film with pH-sensing properties: Influence of chemical immobilization and presence of β-cyclodextrin on protolytic properties of alizarin yellow. Sens. Actuators., B 2018, 273, 1103-1112, 10.1016/j.snb.2018.07.033
Higase, Y.; Morita, S.; Fujii, T.; Takahashi, S.; Yamashita, K.; Sasaki, F. High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide. Opt. Lett. 2018, 43, 1714-1717, 10.1364/OL.43.001714
Martelo, L. M.; das Neves, T. F. P.; Figueiredo, J.; Marques, L.; Fedorov, A.; Charas, A.; Berberan-Santos, M. N.; Burrows, H. D. Towards the Development of a Low-Cost Device for the Detection of Explosives Vapors by Fluorescence Quenching of Conjugated Polymers in Solid Matrices. Sensors 2017, 17, 2532 10.3390/s17112532
Germain, M. E.; Knapp, M. J. Optical explosives detection: from color changes to fluorescence turn-on. Chem. Soc. Rev. 2009, 38, 2543-2555, 10.1039/b809631g
Tian, Z.; Wu, W.; Wan, W.; Li, A. D. Q. Single-Chromophore-Based Photoswitchable Nanoparticles Enable Dual-Alternating-Color Fluorescence for Unambiguous Live Cell Imaging. J. Am. Chem. Soc. 2009, 131, 4245-4254, 10.1021/ja805150g
Lane, S.; Vagin, S.; Wang, H.; Heinz, W. R.; Morrish, W.; Zhao, Y.; Rieger, B.; Meldrum, A. Wide-gamut lasing from a single organic chromophore. Light: Sci. Appl. 2018, 7, 101 10.1038/s41377-018-0102-1
Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties. J. Am. Chem. Soc. 2015, 137, 11590-11593, 10.1021/jacs.5b07394
Khanapurmath, N.; Kulkarni, M. V.; Pallavi, L.; Yenagi, J.; Tonannavar, J. Solvatochromic studies on 4-Bromomethyl-7-methyl coumarins. J. Mol. Struct. 2018, 1160, 50-56, 10.1016/j.molstruc.2018.01.070
Srividya, N.; Ramamurthy, P.; Ramakrishnan, V. T. Solvent effects on the absorption and fluorescence spectra of some acridinedione dyes: determination of ground and excited state dipole moments. Spectrochim. Acta, Part A 1997, 53, 1743-1753, 10.1016/S1386-1425(97)00091-7
Deshpande, S. S.; Kumbhar, H. S.; Shankarling, G. S. Solvatochromic fluorescence properties of phenothiazine-based dyes involving thiazolo[4,5-b]quinoxaline and benzo[e]indole as strong acceptors. Spectrochim. Acta, Part A 2017, 174, 154-163, 10.1016/j.saa.2016.10.045
Kabatc, J.; Ośmiałowski, B.; Paczkowski, J. The experimental studies on the determination of the ground and excited state dipole moments of some hemicyanine dyes. Spectrochim. Acta, Part A 2006, 63, 524-531, 10.1016/j.saa.2005.05.039
Kubota, Y.; Sakuma, Y.; Funabiki, K.; Matsui, M. Solvatochromic fluorescence properties of pyrazine-boron complex bearing a beta-iminoenolate ligand. J. Phys. Chem. A 2014, 118, 8717-8729, 10.1021/jp506680g
Acemioǧlu, B.; Arlk, M.; Efeoǧlu, H.; Onganer, Y. Solvent effect on the ground and excited state dipole moments of fluorescein. J. Mol. Struct.: THEOCHEM 2001, 548, 165-171, 10.1016/S0166-1280(01)00513-9
He, J.; Chen, J. S. The Solvatochromic Materials: A Progress Review. Mater. Sci. Forum 2018, 914, 182-192, 10.4028/www.scientific.net/MSF.914.182
Nigam, S.; Rutan, S. Principles and Applications of Solvatochromism. Appl. Spectrosc. 2001, 55, 362A-370A, 10.1366/0003702011953702
Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319-2358, 10.1021/cr00032a005
Gong, T.; Li, P.; Sui, Q.; Zhou, L. J.; Yang, N. N.; Gao, E. Q. Switchable Ferro-, Ferri-, and Antiferromagnetic States in a Piezo-and Hydrochromic Metal-Organic Framework. Inorg. Chem. 2018, 57, 6791-6794, 10.1021/acs.inorgchem.8b01141
Hu, S.; Zhang, J.; Chen, S.; Dai, J.; Fu, Z. Efficient Ultraviolet Light Detector Based on a Crystalline Viologen-Based Metal-Organic Framework with Rapid Visible Color Change under Irradiation. ACS Appl. Mater. Interfaces 2017, 9, 39926-39929, 10.1021/acsami.7b13367
Strutt, N. L.; Fairen-Jimenez, D.; Iehl, J.; Lalonde, M. B.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T.; Stoddart, J. F. Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal-organic framework. J. Am. Chem. Soc. 2012, 134, 17436-17439, 10.1021/ja3082523
Wang, K.; Huang, S.; Zhang, Y.; Zhao, S.; Zhang, H.; Wang, Y. Multicolor fluorescence and electroluminescence of an ICT-type organic solid tuned by modulating the accepting nature of the central core. Chem. Sci. 2013, 4, 3288 10.1039/c3sc51091c
Zhang, J.; Chen, J.; Xu, B.; Wang, L.; Ma, S.; Dong, Y.; Li, B.; Ye, L.; Tian, W. Remarkable fluorescence change based on the protonation-deprotonation control in organic crystals. Chem. Commun. 2013, 49, 3878 10.1039/c3cc41171k
Shen, X. Y.; Wang, Y. J.; Zhao, E.; Yuan, W. Z.; Liu, Y.; Lu, P.; Qin, A.; Ma, Y.; Sun, J. Z.; Tang, B. Z. Effects of Substitution with Donor-Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism. J. Phys. Chem. C 2013, 117, 7334-7347, 10.1021/jp311360p
Chen, J.; Ma, S.; Zhang, J.; Wang, L.; Ye, L.; Li, B.; Xu, B.; Tian, W. Proton-Triggered Hypsochromic Luminescence in 1,1′-(2,5-Distyryl-1,4-phenylene) Dipiperidine. J. Phys. Chem. Lett. 2014, 5, 2781-2784, 10.1021/jz501383d
Dong, Y.; Zhang, J.; Tan, X.; Wang, L.; Chen, J.; Li, B.; Ye, L.; Xu, B.; Zou, B.; Tian, W. Multi-stimuli responsive fluorescence switching: the reversible piezochromism and protonation effect of a divinylanthracene derivative. J. Mater. Chem. C 2013, 1, 7554 10.1039/c3tc31553c
Zhou, X.-J.; Chen, C.; Ren, C.-X.; Sun, J.-K.; Zhang, J. Tunable solid-state photoluminescence based on proton-triggered structural transformation of 4,4′-bipyridinium derivative. J. Mater. Chem. C 2013, 1, 744-750, 10.1039/C2TC00111J
Ma, S.; Zhang, J.; Liu, Y.; Qian, J.; Xu, B.; Tian, W. Direct Observation of the Symmetrical and Asymmetrical Protonation States in Molecular Crystals. J. Phys. Chem. Lett. 2017, 8, 3068-3072, 10.1021/acs.jpclett.7b01454
Li, Z.-Z.; Wang, X.-D.; Liao, L.-S. Luminescence-/morphology-modulation of organic microcrystals by a protonation process. J. Mater. Chem. C 2017, 5, 6661-6666, 10.1039/C7TC02013A
Qin, Z.; Wang, Y.; Lu, X.; Chen, Y.; Peng, J.; Zhou, G. Multistimuli-Responsive Luminescence Switching of Pyrazine Derivative Based Donor-Acceptor-Donor Luminophores. Chem. Asian J 2016, 11, 285-293, 10.1002/asia.201501054
Wu, S.-H.; Wang, S.; Fang, W.-L.; Guo, X.-F.; Wang, H. An exceptionally stable Zr-based fluorescent metal-organic framework for highly selective detection of pH. Anal. Methods 2019, 11, 36-43, 10.1039/C8AY01998C
Shi, Z.-Q.; Guo, Z.-J.; Zheng, H.-G. Two luminescent Zn(ii) metal-organic frameworks for exceptionally selective detection of picric acid explosives. Chem. Commun. 2015, 51, 8300-8303, 10.1039/C5CC00987A
Ye, J.; Zhao, L.; Bogale, R. F.; Gao, Y.; Wang, X.; Qian, X.; Guo, S.; Zhao, J.; Ning, G. Highly selective detection of 2,4,6-trinitrophenol and Cu(2+) ions based on a fluorescent cadmium-pamoate metal-organic framework. Chem.-Eur. J. 2015, 21, 2029-2037, 10.1002/chem.201405267
Gole, B.; Bar, A. K.; Mukherjee, P. S. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives. Chem. Commun. 2011, 47, 12137-12139, 10.1039/c1cc15594f
Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352, 10.1039/b802352m
Yan, D.; Lloyd, G. O.; Delori, A.; Jones, W.; Duan, X. Tuning Fluorescent Molecules by Inclusion in a Metal-Organic Framework: An Experimental and Computational Study. ChemPlusChem 2012, 77, 1112-1118, 10.1002/cplu.201200245
Gładysiak, A.; Nguyen, T. N.; Anderson, S. L.; Boyd, P. G.; Palgrave, R. G.; Bacsa, J.; Smit, B.; Rosseinsky, M. J.; Stylianou, K. C. Shedding Light on the Protonation States and Location of Protonated N Atoms of Adenine in Metal-Organic Frameworks. Inorg. Chem. 2018, 57, 1888-1900, 10.1021/acs.inorgchem.7b02761
Vagin, S. I.; Ott, A. K.; Hoffmann, S. D.; Lanzinger, D.; Rieger, B. Synthesis and properties of (triptycenedicarboxylatio)zinc coordination networks. Chem.-Eur. J. 2009, 15, 5845-5853, 10.1002/chem.200802691
Snyder, L. R. Classification of the Solvent Properties of Common Liquids. J. Chromatogr. A 1974, 92, 223-230, 10.1016/S0021-9673(00)85732-5
Zuehlsdorff, T. J.; Haynes, P. D.; Payne, M. C.; Hine, N. D. Predicting solvatochromic shifts and colours of a solvated organic dye: The example of nile red. J. Chem. Phys. 2017, 146, 124504 10.1063/1.4979196
Qi, J.; Liu, D.; Liu, X.; Guan, S.; Shi, F.; Chang, H.; He, H.; Yang, G. Fluorescent pH Sensors for Broad-Range pH Measurement Based on a Single Fluorophore. Anal. Chem. 2015, 87, 5897-5904, 10.1021/acs.analchem.5b00053
Yu, K.-K.; Tseng, W.-B.; Wu, M.-J.; Alagarsamy, A. S. K. K.; Tseng, W.-L.; Lin, P.-C. Polyadenosine-based fluorescent probe for reversible pH sensing based on protonated adenine-adenine base pairs: Applications to sensing of enzyme-substrate system and enzymatic logic gates. Sens. Actuators., B 2018, 273, 681-688, 10.1016/j.snb.2018.06.116
Brasselet, S.; Moerner, W. E. Fluorescence Behavior of Single-Molecule pH-Sensors. Single Mol. 2000, 1, 17-23, 10.1002/(SICI)1438-5171(200004)1:1<17::AID-SIMO17>3.0.CO;2-E
Martin, R. L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 154104 10.1063/1.1558471
Yan, D.; Gao, R.; Wei, M.; Li, S.; Lu, J.; Evans, D. G.; Duan, X. Mechanochemical synthesis of a fluorenone-based metal organic framework with polarized fluorescence: an experimental and computational study. J. Mater. Chem. C 2013, 1, 997-1004, 10.1039/C2TC00591C
Estager, J.; Nockemann, P.; Seddon, K. R.; Swadzba-Kwasny, M.; Tyrrell, S. Validation of speciation techniques: a study of chlorozincate(II) ionic liquids. Inorg. Chem. 2011, 50, 5258-5271, 10.1021/ic200586u
Hoffmüller, W.; Polborn, K.; Beck, W. Metal Complexes of Biologically Important Ligands, CXIX [1]. A Tetrahedral Zinc Complex (L-tert-Leucine)2ZnCl2 of Carboxylate Coordinated L-tert-Leucine in the Zwitterionic Form. Z. Naturforsch., B: J. Chem. Sci. 1999, 54, 734-736, 10.1515/znb-1999-0605
Liu, J. Q.; Jiang, Z. J.; Xu, Z. H.; Zhang, Y. Poly[chlorido[mu(4)-2,2′-(2-methyl-1 H-benzimidazol-3-ium-1,3-di-yl)diacetato]-zin c]. Acta Crystallogr., Sect. E: Struct. Rep. Online 2012, E68, m751 10.1107/S1600536812020077
Monguzzi, A.; Ballabio, M.; Yanai, N.; Kimizuka, N.; Fazzi, D.; Campione, M.; Meinardi, F. Highly Fluorescent Metal-Organic-Framework Nanocomposites for Photonic Applications. Nano Lett. 2018, 18, 528-534, 10.1021/acs.nanolett.7b04536