Electronic structure; Group theory; Halide perovskites; Nanomaterials; Optical properties; Electronic and optical properties; Exciton fine structure; Layered perovskite; Optoelectronic properties; Spatial confinement; Structural diversity; Technological exploitation; Materials Science (all); Condensed Matter Physics; Atomic and Molecular Physics, and Optics; General Materials Science
Abstract :
[en] Metal halide perovskite-based nanostructures, nanosheets and nanoparticles at the forefront, show attractive optoelectronic properties, suitable for photovoltaics and light emission applications. Achieving a sounded understanding of these basic electronic and optical properties represents therefore a crucial step for the full technological exploitation of this class of semiconductors. The rapidly expanding chemical engineering and their unusual structural diversity is fascinating but also challenging for a rational description on par with those well-known for conventional semiconductors. In this sense, group theory-based symmetry analyses offer a general and rigorous approach to understand the properties of various bulk perovskites and perovskite-based nanostructures. In this work, we review the electronic and optical response of metal halide perovskite semiconductors using symmetry analysis from group theory, recalling the main results for the prototypical cubic Pm-3m lattice of AMX3 bulk perovskites (where A is cation, M metal and X halide), then extending the analysis to three cases of technological interest: AMX3 nanoparticles, A4MX6 isolated octahedra, A2MX4 layered systems, and recently introduced deficient halide perovskites (d-HP). On the basis of symmetry arguments, we will stress analogies and differences in the electronic and optical properties of these materials, as induced by the spatial confinement and dimensionality. Meanwhile, we will take advantage of this analysis to discuss recent results and debates from the literature, as the energetics of dark/bright states in the band-edge exciton fine structure of perovskite nanoparticles and nanosheets. From the present work, we also anticipate that the band-edge exciton fine structure of d-HP does not present optically dark states, in striking contrast to AMX3 nanoparticles and layered perovskites, a fact that can have important consequences on the photophysics of these novel perovskitoids.
Disciplines :
Chemistry
Author, co-author :
Quarti, Claudio ; Université de Mons - UMONS ; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, France
Katan, Claudine; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, France
Even, Jacky; Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France
Language :
English
Title :
Physical properties of bulk, defective, 2D and 0D metal halide perovskite semiconductors from a symmetry perspective
Research Institute for Materials Science and Engineering Research Institute for Complex Systems
Funders :
Agence Nationale de la Recherche Horizon 2020 Framework Programme
Funding text :
The authors acknowledge support from Agence Nationale pour la Recherche (MORELESS project). J.E acknowledges the financial support from the Institut Universitaire de France. This project has received funding from the European Union’s Horizon 2020 program through an IA innovation action under the Grant Agreement No 861985.
Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells J. Am. Chem. Soc. 131 6050–1
Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites Science 338 643–7
Liu M, Johnston M B and Snaith H J 2013 Efficient planar heterojunction perovskite solar cells by vapour deposition Nature 501 395–8
Heo J H et al 2013 Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors Nat. Photonics 7 486–91
Zhou H, Chen Q, Li G, Luo S, Song T, Duan H-S, Hong Z, You J, Liu Y and Yang Y 2014 Interface engineering of highly efficient perovskite solar cells Science 345 542–6
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Compositional engineering of perovskite materials for high-performance solar cells Nature 517 476–80
Grancini G et al 2017 One-year stable perovskite solar cells by 2D/3D interface engineering Nat. Commun. 8 15684
Jeon N J, Na H, Jung E H, Yang T, Lee Y G, Kim G, Shin H-W, Seok S I, Lee J and Seo J 2018 A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells Nat. Energy 3 682–9
www.nrel.gov/pv/cell-efficiency.html
www.nrel.gov/pv/module-efficiency.html
Tan Z-K et al 2014 Bright light-emitting diodes based on organometal halide perovskite Nat. Nanotechnol. 9 687–92
Yuan M et al 2016 Perovskite energy funnels for efficient light-emitting diodes Nat. Nanotechnol. 11 872–7
Lin K et al 2018 Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent Nature 562 245–8
Xu W et al 2019 Rational molecular passivation for high-performance perovskite light-emitting diodes Nat. Photonics 13 418–24
De Wolf S, Holovsky J, Moon S-J, Löper P, Nielsen B, Ledinsky M, Haug F-J, Yum J-H and Ballif C 2014 Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance J. Phys. Chem. Lett. 5 1035–9
Meggiolaro D, Motti S G, Mosconi E, Barker Alex J, Ball J, Perini C A R, Deschler F, Petrozza A and De Angelis F 2018 Iodine chemistry determines the defect tolerance of lead-halide perovskites Energy Environ. Sci. 11 702–13
Kang J and Wang L-W 2017 High defect tolerance in lead halide perovskite CsPbBr3 J. Phys. Chem. Lett. 8 489–93
Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L 2014 Charge carrier mobilities and life- times in organolead trihalide perovskites Adv. Mater. 26 1584–9
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L, Petrozza A and Snaith H J 2013 Electron-Hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber Science 342 341–4
Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3 Science 342 344–7
Ke W et al 2017 Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite enFASnI3 Sci. Adv 3 e1701293
Tsai C-M, Lin Y-P, Pola M K, Narra S, Jokar E, Wang Y-W and Diau E W-G 2018 Control of crystal structures and optical properties with hybrid formamidinium and 2-hydroxyethylammonium cations for mesoscopic carbon-electrode tin-based perovskite solar cells ACS Energy Lett. 3 2077–85
Spanopoulos I, Ke W, Stoumpos C C, Schuelle E C, Kontsevoi Oleg Y, Seshadri R and Kanatzidis M G 2018 Unraveling the chemical nature of the 3D “hollow” hybrid halide perovskites J. Am. Chem. Soc. 140 5728–42
Leblanc A, Mercier N, Allain M, Dittmer J, Fernandez V and Pauporté T 2017 Lead- and iodide-deficient (CH3NH3)PbI3 (d-MAPI): the bridge between 2D and 3D hybrid perovskites Angew. Chem. Int. Ed. 56 16067–72
Leblanc A, Mercier N, Allain M, Dittmer J, Pauporté T, Fernandez V, Boucher F, Kepenekian M and Katan C 2019 Enhanced stability and band gap tuning of α-[HC(NH2)2]PbI3 hybrid perovskite by large cation integration ACS Appl. Mater. Interfaces 11 20743–51
Grancini G and Nazeeruddin M K 2019 Dimensional tailoring of hybrid perovskites for photovoltaics Nat. Rev. Mater. 4 4–22
Saidaminov M I, Mohammed O F and Bakr O M 2017 Low-dimensional-networked metal halide perovskites: the next big thing ACS Energy Lett. 2 889–96
Huang X, Guo Q, Yang D, Xiao X, Liu X, Xia Z, Fan F, Qiu J and Dong G 2020 Reversible 3D laser printing of perovskite quantum dots inside a transparent medium Nat. Photon. 14 82–88
Zheng K, Zhu Q, Abdellah M, Messing M A, Zhang W, Generalov A, Niu Y, Ribaud L, Canton S E and Pullerits T 2015 Exciton binding energy and the nature of emissive states in organometal halide perovskites J. Phys. Chem. Lett. 6 2969–75
Zhao Q et al 2019 High efficiency perovskite quantum dot solar cells with charge separating heterostructure Nat. Commun. 10 2842
Hao M et al 2020 Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation Nat. Energy 5 79–88
Mitzi D B, Feild C A, Harrison W T A and Guloy A M 1994 Conducting tin halides with a layered organic-based perovskite structure Nature 369 467–9
Smith M D, Connor B A and Karunadasa H I 2019 Tuning the luminescence of layered halide perovskites Chem. Rev. 119 3104–39
Katan C, Mercier N and Even J 2019 Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors Chem. Rev. 119 3140–92
Dou L et al 2015 Atomically thin two-dimensional organic-inorganic hybrid perovskites Science 349 1518–21
Tsai H et al 2018 Stable light-emitting diodes using phase-pure Ruddlesden–Popper layered perovskites Adv. Mater. 30 1704217
Tsai H et al 2016 High-efficiency two-dimensional Ruddlesden–popper perovskite solar cells Nature 536 312–6
Zheng C, Rubel O, Kepenekian M, Rocquefelte X and Katan C 2019 Electronic properties of Pb-I deficient lead halide perovskites J. Chem. Phys. 151 234704
Marronnier A, Lee H, Geffroy B, Even J, Bonnassieux Y and Roma G 2017 Structural instabilities related to highly anharmonic phonons in halide perovskites J. Phys. Chem. Lett. 8 2659–65
Carignano M, Assa Aravind S, Roqan I S, Even J and Katan C 2017 Critical fluctuations and anharmonicity in lead iodide perovskites from molecular dynamics supercell simulations J. Phys. Chem. C 121 20729–38
Quarti C, Mosconi E, Ball J, D’Innocenzo V, Tao C, Pathak S, Snaith H J, Petrozza A and De Angelis F 2016 Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells Energy Environ. Sci. 9 155–63
Even J, Pedesseau L, Jancu J-M and Katan C 2013 Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications J. Phys. Chem. Lett. 4 2999–3005
Umari P, Mosconi E and De Angelis F 2015 Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications Sci. Rep. 4 4467
Brivio F, Butler K T, Walsh A and van Schilfgaarde M 2014 Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers 89 155204
Umari P, Mosconi E and De Angelis F 2018 Infrared dielectric screening determines the low exciton binding energy of metal-halide perovskites J. Phys. Chem. Lett. 9 620–7
Mattoni A, Filippetti A, Saba M I and Delugas P 2015 Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: the role of temperature J. Phys. Chem. C 119 17421–8
Lahnsteiner J, Jinnouchi R and Bokdam M 2019 Long-range order imposed by short-range interactions in methylammonium lead iodide: comparing point-dipole models to machine-learning force fields Phys. Rev. B 100 094106
Poncé S, Schlipf M and Giustino F 2019 Origin of low carrier mobilities in halide perovskites ACS Energy Lett. 4 456–63
Hedley G J, Quarti C, Harwell J, Prezhdo O V, Beljonne D and Samuel I D W 2018 Hot-hole cooling controls the initial ultrafast relaxation in methylammonium lead iodide perovskite Sci. Rep. 8 8115
Thouin F, Valverde-Chavéz D A, Quarti C, Cortecchia D, Bargigia I, Beljonne D, Petrozza A, Silva C and Kandada A R S 2019 Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites Nat. Mater. 18 349–56
Even J, Pedesseau L, Jancu J-M and Katan C 2014 DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells Phys. Status Solidi RRL 8 31
Blancon J-C et al 2018 Scaling law for excitons in 2D perovskite quantum wells Nat. Commun. 9 2254
Boyer-Richard S, Katan C, Traoré B, Scholz R, Jancu J-M and Even J 2016 Symmetry-based tight binding modeling of halide perovskite semiconductors J. Phys. Chem. Lett. 7 3833–40
Even J 2015 Pedestrian guide to symmetry properties of the reference cubic structure of 3D all-inorganic and hybrid perovskites J. Phys. Chem. Lett. 6 2238–42
Even J, Pedesseau L, Sapori D, Rolland A, Kepenekian M and Katan C 2016 Electronic properties of metal halide perovskites Unconventional Thin Film Photovoltaics (Cambridge: Royal Society of Chemistry) pp 202–33
Ben Aich R, Ben Radhia S, Boujdaria K, Chamarro M and Testelin C 2020 Multiband k.p model for tetragonal crystals: application to hybrid halide perovskite nanocrystals J. Phys. Chem. Lett. 11 808–18
Poglitsch A and Weber D 1987 Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy J. Chem. Phys. 87 6373–8
Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J-M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G and Even J 2018 Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells ACS Nano 12 3477–86
Yu P Y and Cardona M 2005 Fundamentals of Semiconductors (Berlin: Springer)
Bloch F 1929 Über die Quantenmechanik der Elektronen in Kristallgittern Z. Phys. 52 555–600
Umebayashi T, Asai K, Kondo T and Nakao A 2003 Electronic structures of lead iodide based low-dimensional crystals Phys. Rev. B 67 155405
Katan C, Pedesseau L, Kepenekian M, Rolland A and Even J 2015 Interplay of spin–orbit coupling and lattice distortion in metal substituted 3D tri-chloride hybrid perovskites J. Mater. Chem. A 3 9232–40
Even J, Pedesseau L, Dupertuis M-A, Jancu J-M and Katan C 2012 Electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling Phys. Rev. B 86 205301
Schaak R E and Mallouk T E 2002 Chem. Mater. 14 1455–71
Maughan A E, Ganose A X, Scanlon D O and Neilson J R 2019 Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors Chem. Mater. 31 1184–95
Dalpian G M, Liu Q, Stoumpos C C, Douvalis A P, Balasubramanian M, Kanatzidis M G and Zunger A 2017 Changes in charge density vs changes in formal oxidation states: the case of Sn halide perovskites and their ordered vacancy analogues Phys. Rev. Mater. 1 025401
Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A, Begum R, Pan J, Cho N, Mohammed O F and Bakr O M 2016 Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids ACS Energy Lett. 1 840–5
Almutlaq J, Yin J, Mohammed O F and Bakr O M 2018 The benefit and challenges of zero-dimensional perovskites J. Phys. Chem. Lett. 9 4131–8
Robert C et al 2016 Electronic wave functions and optical transitions in (In,Ga)As/GaP quantum dots Phys. Rev. B 94 075445
Dalessi S and Dupertuis M-A 2010 Maximal symmetrization and reduction of fields: application to wave functions in solid-state nanostructures Phys. Rev. B 81 125106
Svendsen G K, Skaar J, Weman H and Dupertuis M-A 2015 Symmetries and optical transitions of hexagonal quantum dots in GaAs/AlGaAs nanowires Phys. Rev. B 92 205303
Grundmann M, Stier O and Bimberg D 1995 InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure Phys. Rev. B 52 11969
Tadic M, Peeters F M and Janssens J 2002 Effect of isotropic versus anisotropic elasticity on the electronic structure of cylindrical InP/In0.49Ga0.51P self-assembled quantum dots Phys. Rev. B 65 165333
Even J, Doré F, Cornet C and Pedesseau L 2008 Semianalytical model for simulation of electronic properties of narrow-gap strained semiconductor quantum nanostructures Phys. Rev. B 77 085305
Even J 2009 Symmetry analysis and exact model for the elastic, piezoelectric, and electronic properties of inhomogeneous and strained wurtzite quantum nanostructures Appl. Phys. Lett. 94 102105
Fu M, Tamarat P, Huang H, Even J and Lounis B 2017 Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy Nano Lett. 17 2895–901
Ramade J et al 2018 Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr3 single nanocrystals Nanoscale 10 6393–401
Becker M A et al 2018 Bright triplet excitons in caesium lead halide perovskites Nature 553 189–93
Nestoklon M O et al 2018 Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystal Phys. Rev. B 97 235304
Tamarat P, Bodnarchuk M I, Trebbia J-B, Rolf E, Kovalenko M V, Even J and Lounis B 2019 The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state Nat. Mater. 18 717–24
Klingshirn C F 2012 Semiconductor Optics (Berlin: Springer)
Pope M and Swenberg C E 1999 Electronic Processes in Organic Crystals and Polymers (Oxford: Oxford University Press)
Fang -H-H, Wang F, Adjokatse S, Zhao N, Even J and Loi M A 2016 Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications Light Sci. Appl. 5 E16056
Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T-W, Stranks S D, Snaith H J and Nicholas R J 2015 Direct measurement of the exciton binding energy and effective masses for charge carriers in an organic–inorganic tri-halide perovskite Nat. Phys. 11 582–7
Baranowski M and Plochocka P 2020 Excitons in metal-halide perovskites Adv. Energy Mater. 10 1903659
Andrews R H, Clark S J and Donaldson J D 1983 Solid-state properties of materials of the type Cs4MXs(where M = Sn or Pb and X = CI or Br) J. Chem. Soc. Dalton Trans. 10 1903659
Chen D, Wan Z, Chen X, Yuan Y and Zhong J 2016 Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores J. Chem. Mater. C 4 10646
Wang L, Liu H, Zhang Y and Mohammed O F 2020 Photoluminescence origin of zero-dimensional Cs4PbBr6 perovskite ACS Energy Lett. 5 87–99
Tanaka K, Takahashi T, Kondo T, Umeda K, Ema K, Umebayashi T, Asai K, Uchida K and Miura N 2005 Electronic and excitonic structures of inorganic–organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4 Jpn. J. Appl. Phys. 44 5923–32
Ema K, Umeda K, Toda K, Yajima C, Arai Y and Kunugita H 2006 Huge exchange energy and fine structure of excitons in an organic–inorganic quantum well material Phys. Rev. B 73 241310
Ema K, Inomata M, Kato Y, Kunugita H and Era K 2008 Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials Phys. Rev. Lett. 100 257401
Takagi H, Kunugita H and Ema K 2013 Influence of the image charge effect on excitonic energy structure in organic-inorganic multiple quantum well crystals Phys. Rev. B 87 125421
Fang -H-H, Yang J, Adjokatse S, Tekelenburg E, Kamminga M E, Duim H, Ye J, Blake G R, Even J and Loi M A 2020 Band-edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites Adv. Funct. Mater. 30 1907979