[en] Wild bees are declining, mainly due to the expansion of urban habitats that have led to land-use changes. Effects of urbanization on wild bee communities are still unclear, as shown by contrasting reports on their species and functional diversities in urban habitats. To address this current controversy, we built a large dataset, merging 16 surveys carried out in 3 countries of Western Europe during the past decades, and tested whether urbanization influences local wild bee taxonomic and functional community composition. These surveys encompassed a range of urbanization levels, that were quantified using two complementary metrics: the proportion of impervious surfaces and the human population density. Urban expansion, when measured as a proportion of impervious surfaces, but not as human population density, was significantly and negatively correlated with wild bee community species richness. Taxonomic dissimilarity of the bee community was independent of both urbanization metrics. However, occurrence rates of functional traits revealed significant differences between lightly and highly urbanized communities, for both urbanization metrics. With higher human population density, probabilities of occurrence of above-ground nesters, generalist and small species increased. With higher soil sealing, probabilities of occurrence of above-ground nesters, generalists and social bees increased as well. Overall, these results, based on a large European dataset, suggest that urbanization can have negative impacts on wild bee diversity. They further identify some traits favored in urban environments, showing that several wild bee species can thrive in cities.
Disciplines :
Agriculture & agronomy Entomology & pest control Zoology
Author, co-author :
Fauviau, Arthur; Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, iEES-Paris, Paris, France. arthur.fauviau@sorbonne-universite.fr
Baude, Mathilde; Université d'Orléans, Orléans, France ; Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, Institut d'Ecologie et des Sciences de l'Environnement (iEES-Paris), Paris, France
Bazin, Nicolas; RNN des Gorges de l'Ardèche, Saint-Remèze, France
Fisogni, Alessandro; UMR 8198, Evo-Eco-Paleo, CNRS, Université de Lille, Lille, France
Fortel, Laura; INRAE, Unité de Recherche Abeilles & Environnement, Avignon, France
Garrigue, Joseph; RNN Massane, Argelès-sur-Mer, France
Geslin, Benoît; Aix Marseille Université, Université d'Avignon, CNRS, IRD, IMBE, Campus Étoile, Faculté des Sciences St-Jérôme, Marseille, France
Goulnik, Jérémie; LAE, Université de Lorraine, INRAE, Nancy, France ; Association Noé, Paris, France
Guilbaud, Laurent; INRAE, Unité de Recherche Abeilles & Environnement, Avignon, France
Hautekèete, Nina; UMR 8198, Evo-Eco-Paleo, CNRS, Université de Lille, Lille, France
Heiniger, Charlène; HEPIA, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
Kuhlmann, Michael; Zoological Museum, University of Kiel, Kiel, Germany
Lambert, Olivier; Centre Vétérinaire de la Faune Sauvage et des Ecosystèmes/Oniris, Nantes, France
Langlois, Dominique; Conservatoire d'espaces Naturels de Franche-Comté, Cléron, France
Le Féon, Violette
Lopez Vaamonde, Carlos; UR633, Zoologie Forestière, INRAE, Orléans, France ; IRBI, UMR7261 CNRS, Université de Tours, Tours, France
Maillet, Grégory; RNN Tourbière du Grand Lemps, Châbons, France
Massol, François; U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
Michel, Nadia; LAE, Université de Lorraine, INRAE, Nancy, France
Michelot-Antalik, Alice; LAE, Université de Lorraine, INRAE, Nancy, France
Michez, Denis ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Mouret, Hugues; ARTHROPOLOGIA, La-Tour-De-Salvagny, France
Piquot, Yves; UMR 8198, Evo-Eco-Paleo, CNRS, Université de Lille, Lille, France
Potts, Simon G; University of Reading, Berkshire, Great Britain
Roberts, Stuart
Ropars, Lise; ThéMA, UMR 6049 CNRS, Université Bourgogne-Franche-Comté, Besançon, France ; Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, Dijon, France
Schurr, Lucie; Aix Marseille Université, Université d'Avignon, CNRS, IRD, IMBE, Campus Étoile, Faculté des Sciences St-Jérôme, Marseille, France
Van Reeth, Colin; Research Center for Alpine Ecosystems, Chamonix-Mont-Blanc, France
Villalta, Irène; IRBI, UMR7261 CNRS, Université de Tours, Tours, France
Zaninotto, Vincent; Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, iEES-Paris, Paris, France
Dajoz, Isabelle; Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, iEES-Paris, Paris, France ; Université Paris Cité, Paris, France
Henry, Mickaël; INRAE, Unité de Recherche Abeilles & Environnement, Avignon, France
We would like to thank the Institut de la Transition Environnementale—Sorbonne Université (SU-ITE), and the GDR CNRS Pollinéco for funding the project. We also thank all the people who participated in collecting data on the field.
Sattler, T., Duelli, P., Obrist, M. K., Arlettaz, R. & Moretti, M. Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc. Ecol. 25, 941–954 (2010).
Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).
Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. 109, 16083–16088 (2012).
LeBuhn, G. & Vargas Luna, J. Pollinator decline: What do we know about the drivers of solitary bee declines?. Curr. Opin. Insect Sci. 46, 106–111 (2021).
Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946 (2021).
United Nations, Department of Economic and Social Affairs, & Population Division. World urbanization prospects: 2018: highlights. (2019).
Geslin, B. et al. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 6, 6599–6615 (2016).
Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).
Harrison, T. & Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol. 29, 879–888 (2015).
Baldock, K. C. Opportunities and threats for pollinator conservation in global towns and cities. Curr. Opin. Insect Sci. 38, 63–71 (2020).
Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination – A systematic review. Biol. Conserv. 241, 108321 (2020).
Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).
Geslin, B., Le Féon, V., Kuhlmann, M., Vaissière, B. E. & Dajoz, I. The bee fauna of large parks in downtown Paris, France. Ann. Soc. Entomol. Fr. NS 51, 487–493 (2015).
Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 282, 20142849 (2015).
Ropars, L., Dajoz, I. & Geslin, B. La ville un désert pour les abeilles sauvages?. J. Bot. 79, 29–35 (2017).
Banaszak-Cibicka, W., Twerd, L., Fliszkiewicz, M., Giejdasz, K. & Langowska, A. City parks vs. natural areas - is it possible to preserve a natural level of bee richness and abundance in a city park?. Urban Ecosyst. 21, 599–613 (2018).
Fisogni, A. et al. Urbanization drives an early spring for plants but not for pollinators. Oikos 129, 1681–1691 (2020).
Zaninotto, V. & Dajoz, I. Keeping up with insect pollinators in Paris. Animals 12, 923 (2022).
Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
Hall, D. M. et al. The city as a refuge for insect pollinators: Insect pollinators. Conserv. Biol. 31, 24–29 (2017).
Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).
Banaszak-Cibicka, W. & Żmihorski, M. Wild bees along an urban gradient: winners and losers. J. Insect Conserv. 16, 331–343 (2012).
Deguines, N., Julliard, R., Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 6, 1967–1976 (2016).
Villalta, I., Bouget, C., Lopez-Vaamonde, C. & Baude, M. Phylogenetic, functional and taxonomic responses of wild bee communities along urbanisation gradients. Sci. Total Environ. 832, 154926 (2022).
Buchholz, S. & Egerer, M. H. Functional ecology of wild bees in cities: Towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 29, 2779–2801 (2020).
McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).
Zaninotto, V. et al. Seasonal variations of pollinator assemblages among urban and rural habitats: A comparative approach using a standardized plant community. Insects 12, 199 (2021).
Michener, C. D. The Bees of the World, 2nd edition. (2007).
Nieto, A. et al. European red list of bees. (Publications Office, 2014). at < https://data.europa.eu https://doi.org/10.2779/77003 >
Vereecken, N. Découvrir & protéger nos abeilles sauvages. (Glénat, 2017).
Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14, e0225852 (2019).
Persson, A. S., Ekroos, J., Olsson, P. & Smith, H. G. Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landsc. Urban Plan. 204, 103901 (2020).
Kuussaari, M. et al. Butterfly species’ responses to urbanization: Differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527 (2021).
Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).
Salisbury, A. et al. EDITOR’S CHOICE: Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species?. J. Appl. Ecol. 52, 1156–1164 (2015).
Garbuzov, M., Fensome, K. A. & Ratnieks, F. L. W. Public approval plus more wildlife: Twin benefits of reduced mowing of amenity grass in a suburban public park in Saltdean, UK. Insect Conserv. Divers. 8, 107–119 (2015).
Tasker, P., Reid, C., Young, A. D., Threlfall, C. G. & Latty, T. If you plant it, they will come: Quantifying attractiveness of exotic plants for winter-active flower visitors in community gardens. Urban Ecosyst. 23, 345–354 (2020).
Staab, M., Pereira-Peixoto, M. H. & Klein, A.-M. Exotic garden plants partly substitute for native plants as resources for pollinators when native plants become seasonally scarce. Oecologia 194, 465–480 (2020).
Banaszak-Cibicka, W. & Żmihorski, M. Are cities hotspots for bees? Local and regional diversity patterns lead to different conclusions. Urban Ecosyst. 23, 713–722 (2020).
Harrison, T., Gibbs, J. & Winfree, R. Phylogenetic homogenization of bee communities across ecoregions. Glob. Ecol. Biogeogr. 27, 1457–1466 (2018).
Rigal, S. et al. Biotic homogenisation in bird communities leads to large-scale changes in species associations. Oikos 10.1111/oik.08756 (2021). DOI: 10.1111/oik.08756
Graffigna, S., González-Vaquero, R. A., Torretta, J. P. & Marrero, H. J. Importance of urban green areas connectivity for the conservation of pollinators. (In Review, 2022). doi:https://doi.org/10.21203/rs.3.rs-1415794/v1
Fournier, B., Frey, D. & Moretti, M. The origin of urban communities: From the regional species pool to community assemblages in city. J. Biogeogr. 47, 615–629 (2020).
Ayers, A. C. & Rehan, S. M. Supporting bees in cities: How bees are influenced by local and landscape features. Insects 12, 128 (2021).
Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: Urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731 (2020).
Cane, J. H., Minckley, R. L., Kervin, L. J., Roulston, T. H. & Williams, N. M. Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16, 632–644 (2006).
Matteson, K. C., Ascher, J. S. & Langellotto, G. A. Bee richness and abundance in New York City Urban gardens. Ann. Entomol. Soc. Am. 101, 140–150 (2008).
Threlfall, C. G. et al. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 187, 240–248 (2015).
Lanner, J. et al. City dwelling wild bees: How communal gardens promote species richness. Urban Ecosyst. 23, 271–288 (2020).
Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6, e23459 (2011).
Threlfall, C. G. et al. Variation in vegetation structure and composition across urban green space types. Front. Ecol. Evol. 4, 66 (2016).
Erickson, E. et al. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 49, 178–188 (2020).
da Rocha-Filho, L. C., Ferreira-Caliman, M. J., Garófalo, C. A. & Augusto, S. C. A specialist in an urban area: Are cities suitable to harbour populations of the Oligolectic bee Centris (Melacentris) collaris (Apidae: Centridini)?. Ann. Zool. Fenn. 55, 135–149 (2018).
Banaszak, J., Twerd, L., Ratyńska, H., Banaszak-Cibicka, W. & Zyś, T. Andrena florea Fabricius, 1793 (Hymenoptera, Apoidea, Apiformes): a rare bee species in Poland, related to the expansion of the alien plant Bryonia dioica Jacq. (Cucurbitaceae). Pol. J. Entomol. 87(3), 199–215 (2018).
Eggenberger, H. et al. Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. J. Anim. Ecol. 88, 1522–1533 (2019).
Gathmann, A. & Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764 (2002).
Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).
Gathof, A. K., Grossmann, A. J., Herrmann, J. & Buchholz, S. Who can pass the urban filter? A multi-taxon approach to disentangle pollinator trait–environmental relationships. Oecologia 10.1007/s00442-022-05174-z (2022). DOI: 10.1007/s00442-022-05174-z
Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).
Samuelson, A. E., Gill, R. J., Brown, M. J. F. & Leadbeater, E. Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proc. R. Soc. B Biol. Sci. 285, 20180807 (2018).
Daniels, B., Jedamski, J., Ottermanns, R. & Ross-Nickoll, M. A “plan bee” for cities: Pollinator diversity and plant-pollinator interactions in urban green spaces. PLoS ONE 15, e0235492 (2020).
Shwartz, A., Muratet, A., Simon, L. & Julliard, R. Local and management variables outweigh landscape effects in enhancing the diversity of different taxa in a big metropolis. Biol. Conserv. 157, 285–292 (2013).
Davis, A. Y. et al. Enhancing pollination supply in an urban ecosystem through landscape modifications. Landsc. Urban Plan. 162, 157–166 (2017).
Cohen, H., Philpott, S. M., Liere, H., Lin, B. B. & Jha, S. The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosyst. 24, 275–290 (2021).
Turo, K. J. & Gardiner, M. M. From potential to practical: conserving bees in urban public green spaces. Front. Ecol. Environ. 17, 167–175 (2019).
Observatoire des Abeilles. Oabeilles FR (2022). at
INPN - Inventaire national du patrimoine naturel (INPN). INPN (2022). at < https://inpn.mnhn.fr/accueil/index >
Zurbuchen, A. et al. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143, 669–676 (2010).
Gallego, F. J. A population density grid of the European Union. Popul. Environ. 31, 460–473 (2010).
GEOSTAT - GISCO: Informations géographiques et cartes - Eurostat. Eurostat (2018). at < https://ec.europa.eu/eurostat/fr/web/gisco/geodata/reference-data/population-distribution-demography/geostat >
Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).
Hsieh, T. C. & Chao, K. H. M A. iNEXT: Interpolation and Extrapolation for Species Diversity. (2022). at < https://CRAN.R-project.org/package=iNEXT >
Rousset, F., Ferdy, J.-B., Courtiol, A. & authors (src/gsl_bessel.*), G. S. L. spaMM: Mixed-Effect Models, with or without Spatial Random Effects. (2022). at < https://CRAN.R-project.org/package=spaMM >
Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association TEST. 716–748 (2018).
Fox, J. et al. car: Companion to Applied Regression. (2022). at < https://CRAN.R-project.org/package=car >
Oksanen, J. et al. vegan: Community Ecology Package. (2022). at < https://CRAN.R-project.org/package=vegan >
Brooks, M. E. et al. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 378–400 (2017).
Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. 5 (2005).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.3. (2021). at < https://CRAN.R-project.org/package=DHARMa >
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. (2021). at < https://www.R-project.org/.>