Aehle, M., Bork, K., Schaepe, S., Kuprijanov, A., Horstkorte, R., Simutis, R., and Lubbert, A. (2012). Increasing batchto-batch reproducibility of cho-cell cultures using a model predictive control approach. Cytotechnology, 64, 623-634.
Banik, G. and Heath, C. (1995). Partial and total cell retention in a filtration base homogeneous perfusion reactor. Biotechnology Progress, 11, 584-588.
Camacho, E. and Bordons, C. (1999). Model Predictive Control. Springer-Verlag, London.
Dalm, M., Cuijten, S., van Grunsven, W., Tramper, J., and Martens, D. (2004). Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: Part 1. cell density, viability and cell-cycle distribution. Biotechnology &Bioengineering, 88, 547-557.
de Tremblay,M., Perrier,M., Chavarie, C., and Archambault, J. (1992). Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed cases. Bioprocess Engineering, 7, 229-234.
Deschenes, J.S., Desbiens, A., Perrier, M., and Kamen, A. (2006a). Multivariable nonlinear control of biomass and metabolite concentrations in a high-cell-density perfusion bioreactor. Ind. Eng. Chem. Res., 45, 8985-8997.
Deschenes, J.S., Desbiens, A., Perrier, M., and Kamen, A. (2006b). Use of cell bleed in a high cell density perfusion culture and multivariable control of biomass and metabolite concentrations. Asia-Pac. J. Chem. Eng, 1, 82-91.
Dewasme, L., Coutinho, D., and Vande Wouwer, A. (2011). Adaptive and robust linearizing control strategies for fed-batch cultures of microorganisms exhibiting overflow metabolism. In J.A. Cetto, J.L. Ferrier, and J. Filipe (eds.), Informatics in Control, Automation and Robotics, volume LNEE 89, 283-305.
Spinger. Dowd, J., Kwok, K., and Piret, J. (2001a). Glucose-based optimization of CHO-cell perfusion cultures. Biotechnology &Bioengineering, 75, 252-256.
Dowd, J., Kwok, K., and Piret, J. (2001b). Predictive modeling and loose-loop control for perfusion bioreactors. Biochemical Engineering Journal, 9, 1-9.
Jain, E. and Kumar, A. (2008). Upstream processes in antibody production: Evaluation of critical parameters. Biotechnology Advances, 26, 46-72.
Komolpis, K., Udomchokmongkol, C., Phutong, S., and T.Palaga (2010). Comparative production of a monoclonal antibody specific for enrofloxacin in a stirred-tank bioreactor. Journal of Industrial and Engineering Chemistry, 16, 567-571.
Leith, D.J. and Leithead, W.E. (2000). Survey of gainscheduling analysis and design. International Journal of Control, 73, 1001-1025.
Nolan, R. and Lee, K. (2011). Dynamic model of cho cell metabolism. Metabolic Engineering, 3, 108-124.
Ozturk, S., Thrift, J., Blackie, J., and Naveh, D. (1997). Realtime monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnology &Bioengineering, 53, 372-378.
Sbarciog, M., Saraiva, I., and Vande Wouwer, A. (2012). Accelerating animal cell growth in perfusionmode bymultivariable control: Simulation studies. Bioprocess and Biosystems Engineering, in press.
Yang, J., Angelillo, Y., Chaudhry, M., Goldenberg, C., and Goldenberg, D. (2000). Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process. Biotechnology&Bioengineering, 69, 74-82.