light-matter interaction; metallic cavities; steady-state and time-resolved fluorescence spectroscopy; strong-coupling; Materials Science (all); Instrumentation; Engineering (all); Process Chemistry and Technology; Computer Science Applications; Fluid Flow and Transfer Processes; General Engineering; General Materials Science
Abstract :
[en] Under exceptional circumstances, light and molecules bond together, creating new hybrid light–matter states with far-reaching consequences for these strongly coupled entities. The present article describes the quantum-mechanical foundation of strong-coupling and experimental evidence for molding the radiation properties of nanoprobes by strong-coupling. When applied to tracing and marking, the new fluorometry technique proposed here, which harnesses strong-coupling, has a triple advantage compared to its classical counterparts such as DNA tracing. It is fast, and its signal-to-noise ratio can be improved by spectral filtering; moreover, it reveals a specific quantum signature of the strong-coupling, which is extremely difficult to reproduce classically, thereby opening the door to new anti-counterfeiting strategies.
Disciplines :
Physics
Author, co-author :
Hatifi, Mohamed; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, Marseille, France ; Quantum Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
Mara, Dimitrije ; Institute of General and Physical Chemistry, Belgrade, Serbia
Bokic, Bojana ; Center for Photonics, Institute of Physics, University of Belgrade, Belgrade, Serbia
Van Deun, Rik ; L3—Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Ghent, Belgium
Stout, Brian; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, Marseille, France
Lassalle, Emmanuel ; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, Marseille, France ; Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
Kolaric, Branko ; Université de Mons - UMONS ; Center for Photonics, Institute of Physics, University of Belgrade, Belgrade, Serbia
Durt, Thomas; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, Marseille, France
Language :
English
Title :
Fluorimetry in the Strong-Coupling Regime: From a Fundamental Perspective to Engineering New Tools for Tracing and Marking Materials and Objects
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funding text :
All authors acknowledge the support of Sylvain Desprez-Materia Nova regarding metal deposition. B.K. acknowledge support of the project Biological and bioinspired structures for multispectral surveillance, funded by NATO SPS (NATO Science for Peace and Security) 2019–2022. B.B. and B.K. acknowledge funding provided by the Institute of Physics Belgrade, through the institutional funding by the Ministry of Education, Science, and Technological Development of the Republic of Serbia. D.M., B.B. and B.K. acknowledge the support of the Office of Naval Research Global through the Research Grant N62902-22-1-2024. Additionally, B.K. acknowledges support from F.R.S.-FNRS Belgium. E.L. acknowledges support from Ecole Doctorale 352, Aix-Marseille. M.H. acknowledges support from the John Templeton foundation (grant 60230, Non-Linearity and Quantum Mechanics: Limits of the No-Signaling Condition, 2016–2019).
Sengupta P. Khanra K. Chowdhury A.R. Datta P. Lab-on-a-chip sensing devices for biomedical applications Bioelectronics and Medical Devices from Materials to Devices—Fabrication, Applications and Reliability 1st ed. Pal K. Kraatz H.-B. Khasnobish A. Bag S. Banerjee I. Kuruganti U. Woodhead Publishing Sawston, UK 2019 47 95
Lakowicz J.R. Principles of Fluorescence Spectroscopy 3rd ed. Springer New York, NY, USA 2006 623 740
Kolaric B. Maes B. Clays K. Durt T. Caudano Y. Strong Light-Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum Approach Adv. Quantum Technol. 2018 1 1800001 10.1002/qute.201800001
Shalabney A. George J. Hiura H. Hutchison J.A. Genet C. Hellwig P. Ebbesen T.W. Enhanced Raman Scattering from Vibro-Polariton Hybrid States Angew. Chem. Int. Ed. 2015 54 7971 7975 10.1002/anie.201502979
Orgiu E. George J. Hutchison J.A. Devaux E. Dayen J.F. Doudin B. Stellacci F. Genet C. Schachenmayer J. Genes C. et al. Conductivity in organic semiconductors hybridized with the vacuum field Nat. Mater. 2015 14 1123 1129 10.1038/nmat4392 26366850
Vergauwe R.M.A. George J. Chervy T. Hutchison J.A. Shalabney A. Torbeev V.Y. Ebbesen T.W. Quantum Strong Coupling with Protein Vibrational Modes J. Phys. Chem. Lett. 2016 7 4159 10.1021/acs.jpclett.6b01869
Ramezani M. Berghuis M. Gómez Rivas J. Strong light–matter coupling and exciton-polariton condensation in lattices of plasmonic nanoparticles (Review) J. Opt. Soc. Am. B Opt. Phys. 2019 36 E88 E103 10.1364/JOSAB.36.000E88
Pelton M. Storm S.D. Leng H. Strong coupling of emitters to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting Nanoscale 2019 11 14540 14552 10.1039/C9NR05044B
Pappu R. Recht B. Taylor R. Gershenfeld N. Physical One-Way Functions Science 2002 297 2026 2030 10.1126/science.1074376 12242435
Pavlović D. Rabasović M.D. Krmpot A.J. Lazović V. Ćurčić S. Stojanović D.V. Jelenković B. Zhang W. Zhang D. Vukmirović N. et al. Naturally safe: Cellular noise for document security J. Biophotonics 2019 12 e201900218 10.1002/jbio.201900218
Wiesner Quantum Money Available online: https://wiki.veriqloud.fr/index.php?title=WiesnerQuantumMoney (accessed on 1 September 2022)
Jaynes E.T. Cummings F.W. Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser Proc. IEEE 1963 51 89 109 10.1109/PROC.1963.1664
Bina M. The coherent interaction between matter and radiation Eur. Phys. J. Spec. Top. 2012 203 163 183 10.1140/epjst/e2012-01541-3
Haroche S. Raimond J.M. Exploring the Quantum—Atoms, Cavities and Photons Oxford University Press Oxford, UK 2007
Carminati R. Greffet J.J. Henkel C. Vigoureux J. Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle Opt. Commun. 2006 261 368 375 10.1016/j.optcom.2005.12.009
Lassalle E. Environment Induced Modifications of Spontaneous Quantum Emissions Ph.D. Thesis University of Marseille Marseille, France 2019
Dutra S.M. Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box 1st ed. John Wiley & Sons Hoboken, NJ, USA 2005
Grynberg G. Aspect A. Fabre C. Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light 1st ed. Cambridge University Press Cambridge, UK 2010
Debierre V. Goessens I. Brainis E. Durt T. Fermi’s golden rule beyond the zeno regime Phys. Rev. A 2015 92 023825 10.1103/PhysRevA.92.023825
Weisskopf V. Wigner E. Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie Z. Für Phys. 1930 63 54 73 10.1007/BF01336768
Hunton J. Nelmes R.J. Moyer G.M. Eriksson V.R. High resolution study of cubic perovskites by elastic neutron diffraction: CsPbCl3 J. Phys. C Solid State Phys. 1979 12 5393
Anti-Counterfeiting Technology Guide European Union Intellectual Property Office Alicante, Spain 2021
Trace Chemical Sensing of Explosives 1st ed. Woodfin R.L. Wiley Hoboken, NJ, USA 2006
Chan W.P. Chen J.H. Chou W.L. Chen W.Y. Liu H.Y. Hu H.C. Jeng C.C. Li J.R. Chen C. Chen S.Y. Efficient DNA-Driven Nanocavities for Approaching Quasi-Deterministic Strong Coupling to a Few Fluorophores ACS Nano 2021 15 13085 13093 10.1021/acsnano.1c02331 34313105
Punj D. Regmi R. Devilez A. Plauchu R. Moparthi S.B. Stout B. Bonod N. Rigneault H. Wenger J. Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations ACS Photonics 2015 2 1099 1107 10.1021/acsphotonics.5b00152
Busson M. Rolly B. Stout B. Bonod N. Bidault S. Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA Nat. Commun. 2012 3 962 10.1038/ncomms1964 22805569
Busson M.P. Rolly B. Stout B. Bonod N. Wenger J. Bidault S. Photonic Engineering of Hybrid Metal—Organic Chromophores Angew. Chem. Int. Ed. 2012 51 11083 11087 10.1002/anie.201205995 23037885