Apple; Beta diversity; Climate; Dissimilarity; Malus domestica; Pollinator monitoring; Ecology; Animal Science and Zoology; Agronomy and Crop Science
Abstract :
[en] Safeguarding crop pollination services requires the identification of the pollinator species involved and the provision of their ecological requirements at multiple spatial scales. However, the potential for agroecological intensification of pollinator-dependent crops by harnessing pollinator diversity is limited by our capacity to characterise the community of pollinator species for each crop, and to determine how it is influenced by the different survey methods used, as well as by climatic variables at larger geographic scales. Here, we surveyed wild bees using a standardised protocol at an unprecedented scale including 62 commercial apple orchards in Western and Central Europe (i) to validate recent findings on pollinator community divergence as measured by common survey methods (netting and pan trapping) using conventional and alternative biodiversity metrics (phylogenetic and functional diversity), and (ii) to investigate the impact of climatic variation on the patterns observed. Our results confirm the significant divergence in pollinator communities measured using the two common methods at the larger, sub-continental scale, and we provide evidence for a significant influence of climate on the magnitude of pollinator community divergence (beta diversity and its turnover component) between survey methods, particularly when comparing colder to warmer sites and regions. We also found that warmer sites are more dissimilar than colder sites in terms of species composition, functional traits, or phylogenetic affinities. This result probably stems from the comparatively larger species pool in Southern Europe and because apple flowers are accessible to a wide spectrum of pollinator species; hence, two distant survey localities in Southern Europe are more likely to differ significantly in their pollinator community. Collectively, our results demonstrate the spatially-varying patterns of pollinator communities associated with common survey methods along a climate gradient and at the sub-continental scale in Europe.
Disciplines :
Agriculture & agronomy Entomology & pest control Zoology
Benda, D.; Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
Bevk, D.; National Institute of Biology, Ljubljana, Slovenia
Bogusch, P.; Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
Cejas, D.; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
Drepper, B.; Division of Forest, Nature and Landscape, University of Leuven, Leuven, Belgium
Galloni, M.; Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Gerard, Maxence ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden
Ghisbain, Guillaume ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; Smithsonian Tropical Research Institute, Gamboa, Panama
Hutchinson, L.; School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
Martinet, Baptiste ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Michez, Denis ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Javna Agencija za Raziskovalno Dejavnost RS Fonds De La Recherche Scientifique - FNRS Fonds Wetenschappelijk Onderzoek
Funding text :
This work was supported by the Fonds National de la Recherche Scientifique (F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek (FWO) joint programme “EOS – Excellence Of Science” (Belgium) for the project named “CliPS: Climate change and its effects on Pollination Services (project 30947854 )". This study was also partly supported by the Slovenian Research Agency (Slovenia) (projects P1-0255 and V1-1938 ). Thanks to apple growers who accepted to access to their land. Thanks to L. Bortolotti, A. Danneels, S. De Greef, F. Denis, S. Flaminio, S. Golubovic, H. Hainaut, L. Hlavackova, I. Ledonne, R. Milasin, Ž. Mitrovic, S. Morelli, J. Mrozek, V. Nocent, R.J. Paxton, L. Rodic, F. Sgolastra, S. Slanic, J. Strakova, A. Stuhec, P. Theodorou, G. Toselli, B. Valkenborg, and H. Van Ryckel for undertaking the fieldwork. Thanks to L.M. Baltz, S. Flaminio, A. Gogala, B. Koderman, J. Osterman, A. Pauly, R.J. Paxton, and M. Quaranta for their assistance with the identification of the specimens collected.
Baraloto, C., Hardy, O.J., Paine, C.E.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.-A., Molino, J.-F., Sabatier, D., Savolainen, V., Chave, J., Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J. Ecol. 100 (2012), 690–701, 10.1111/j.1365-2745.2012.01966.x.
Baselga, A., Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19 (2010), 134–143, 10.1111/j.1466-8238.2009.00490.x.
Baselga, A., Orme, C.D.L., Villeger, S., De Bortoli, J., Leprieur, F., betapart: Partit. Beta Divers. into Turnover Nestedness Compon., 2018.
Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Mächler, M., Bolker, B.M., glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9 (2017), 378–400, 10.32614/RJ-2017-066.
Cane, J.H., Estimation of bee size using intertegular span (Apoidea). J. Kans. Entomol. Soc. 60 (1987), 145–147.
Cane, J.H., Habitat fragmentation and native bees: a premature verdict?. Conserv. Ecol., 5, 2001, 3, 10.5751/ES-00265-050103.
Cane, J.H., Minckley, R.L., Kervin, L.J., Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. J. Kans. Entomol. Soc. 73 (2000), 225–231.
Cariveau, D.P., Nayak, G.K., Bartomeus, I., Zientek, J., Ascher, J.S., Gibbs, J., Winfree, R., The allometry of bee proboscis length and its uses in ecology. PLoS One, 2016, 11, 10.1371/journal.pone.0151482.
Carvalheiro, L.G., Kunin, W.E., Keil, P., Aguirre‐Gutiérrez, J., Ellis, W.N., Fox, R., Groom, Q., Hennekens, S., Landuyt, W., Maes, D., Meutter, F., Michez, D., Rasmont, P., Ode, B., Potts, S.G., Reemer, M., Roberts, S.P.M., Schaminée, J., WallisDeVries, M.F., Biesmeijer, J.C., Species richness declines and biotic homogenisation have slowed down for NW‐European pollinators and plants. Ecol. Lett. 16 (2013), 870–878, 10.1111/ele.12121.
R. Core Team, 2019. R: A Language and Environment for Statistical Computing.
Daru, B.H., Karunarathne, P., Schliep, K., phyloregion: R package for biogeographical regionalization and macroecology. Methods Ecol. Evol. 11 (2020), 1483–1491, 10.1111/2041-210X.13478.
De Cáceres, M., Legendre, P., Associations between species and groups of sites: indices and statistical inference. Ecology 90 (2009), 3566–3574, 10.1890/08-1823.1.
Dötterl, S., Vereecken, N.J., The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can. J. Zool. 88 (2010), 668–697, 10.1139/Z10-031.
Fick, S.E., Hijmans, R.J., WorldClim 2: new 1–km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 (2017), 4302–4315, 10.1002/joc.5086.
Greenleaf, S.S., Williams, N.M., Winfree, R., Kremen, C., Bee foraging ranges and their relationship to body size. Oecologia 153 (2007), 589–596, 10.1007/s00442-007-0752-9.
Hoiss, B., Krauss, J., Potts, S.G., Roberts, S., Steffan-Dewenter, I., Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc. R. Soc. B Biol. Sci. 279 (2012), 4447–4456, 10.1098/rspb.2012.1581.
Hutchinson, L.A., Oliver, T.H., Breeze, T.D., Bailes, E.J., Brünjes, L., Campbell, A.J., Erhardt, A., de Groot, G.A., Földesi, R., García, D., Goulson, D., Hainaut, H., Hambäck, P.A., Holzschuh, A., Jauker, F., Klatt, B.K., Klein, A.-M., Kleijn, D., Kovács-Hostyánszki, A., Krimmer, E., McKerchar, M., Miñarro, M., Phillips, B.B., Potts, S.G., Pufal, G., Radzevičiūtė, R., Roberts, S.P.M., Samnegård, U., Schulze, J., Shaw, R.F., Tscharntke, T., Vereecken, N.J., Westbury, D.B., Westphal, C., Wietzke, A., Woodcock, B.A., Garratt, M.P.D., Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agric. Ecosyst. Environ., 315, 2021, 107447, 10.1016/j.agee.2021.107447.
Hutchinson, L.A., Oliver, T.H., Breeze, T.D., O'Connor, R.S., Potts, S.G., Roberts, S.P.M., Garratt, M.P.D., Inventorying and monitoring crop pollinating bees: evaluating the effectiveness of common sampling methods. Insect Conserv. Divers., 2021, 1–13, 10.1111/icad.12557.
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26 (2010), 1463–1464, 10.1093/bioinformatics/btq166.
Kendall, L.K., Rader, R., Gagic, V., Cariveau, D.P., Albrecht, M., Baldock, K.C.R., Freitas, B.M., Hall, M., Holzschuh, A., Molina, F.P., Morten, J.M., Pereira, J.S., Portman, Z.M., Roberts, S.P.M., Rodriguez, J., Russo, L., Sutter, L., Vereecken, N.J., Bartomeus, I., Pollinator size and its consequences: robust estimates of body size in pollinating insects. Ecol. Evol. 9 (2019), 1702–1714, 10.1002/ece3.4835.
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L.G., Henry, M., Isaacs, R., Klein, A.-M., Kremen, C., M'Gonigle, L.K., Rader, R., Ricketts, T.H., Williams, N.M., Lee Adamson, N., Ascher, J.S., Báldi, A., Batáry, P., Benjamin, F., Biesmeijer, J.C., Blitzer, E.J., Bommarco, R., Brand, M.R., Bretagnolle, V., Button, L., Cariveau, D.P., Chifflet, R., Colville, J.F., Danforth, B.N., Elle, E., Garratt, M.P.D., Herzog, F., Holzschuh, A., Howlett, B.G., Jauker, F., Jha, S., Knop, E., Krewenka, K.M., Le Féon, V., Mandelik, Y., May, E.A., Park, M.G., Pisanty, G., Reemer, M., Riedinger, V., Rollin, O., Rundlöf, M., Sardiñas, H.S., Scheper, J., Sciligo, A.R., Smith, H.G., Steffan-Dewenter, I., Thorp, R., Tscharntke, T., Verhulst, J., Viana, B.F., Vaissière, B.E., Veldtman, R., Ward, K.L., Westphal, C., Potts, S.G., Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun., 6, 2015, 7414, 10.1038/ncomms8414.
Kuhlman, M.P., Burrows, S., Mummey, D.L., Ramsey, P.W., Hahn, P.G., Relative bee abundance varies by collection method and flowering richness: implications for understanding patterns in bee community data. Ecol. Solut. Evid. 2 (2021), 1–11, 10.1002/2688-8319.12071.
Laliberté, E., Legendre, P., A distance-based framework for measuring functional diversity from multiple traits. Ecology 91 (2010), 299–305, 10.1890/08-2244.1.
Marini, L., Quaranta, M., Fontana, P., Biesmeijer, J.C., Bommarco, R., Landscape context and elevation affect pollinator communities in intensive apple orchards. Basic Appl. Ecol. 13 (2012), 681–689, 10.1016/j.baae.2012.09.003.
Michener, C.D., Biogeography of the bees. Ann. Mo. Bot. Gard., 66, 1979, 277, 10.2307/2398833.
Michener, C.D., The Bees of the World. second ed., 2007, The John Hopkins University Press, Baltimore.
Michez, D., Rasmont, P., Terzo, M., Vereecken, N.J., Bees of Europe. N.A.P Edit, 2019.
Nielsen, A., Steffan-Dewenter, I., Westphal, C., Messinger, O., Potts, S.G., Roberts, S.P.M., Settele, J., Szentgyörgyi, H., Vaissière, B.E., Vaitis, M., Woyciechowski, M., Bazos, I., Biesmeijer, J.C., Bommarco, R., Kunin, W.E., Tscheulin, T., Lamborn, E., Petanidou, T., Assessing bee species richness in two Mediterranean communities: Importance of habitat type and sampling techniques. Ecol. Res. 26 (2011), 969–983, 10.1007/s11284-011-0852-1.
Nieto, A., Roberts, S.P.M., Kemp, J., Rasmont, P., Kuhlmann, M., García Criado, M., Biesmeijer, J.C., Bogusch, P., Dathe, H.H., De la Rúa, P., De Meulemeester, T., Dehon, M., Dewulf, A., Ortiz-Sánchez, F.J., Lhomme, P., Pauly, A., Potts, S.G., Praz, C., Q., Window, J., Michez, D, 2014. European Red List of Bees, Luxembourg: Publication Office of the European Union.
O'Connor, R.S., Kunin, W.E., Garratt, M.P.D., Potts, S.G., Roy, H.E., Andrews, C., Jones, C.M., Peyton, J.M., Savage, J., Harvey, M.C., Morris, R.K.A., Roberts, S.P.M., Wright, I., Vanbergen, A.J., Carvell, C., Monitoring insect pollinators and flower visitation: the effectiveness and feasibility of different survey methods. Methods Ecol. Evol. 10 (2019), 2129–2140, 10.1111/2041-210X.13292.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019. vegan: Community Ecology Package.
Orr, M.C., Hughes, A.C., Chesters, D., Pickering, J., Zhu, C.-D., Ascher, J.S., Global patterns and drivers of bee distribution. Curr. Biol. 31 (2021), 451–458, 10.1016/j.cub.2020.10.053.
Paradis, E., Schliep, K., ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35 (2018), 526–528, 10.1093/bioinformatics/bty633.
Pardo, A., Borges, P.A.V., Worldwide importance of insect pollination in apple orchards: a review. Agric. Ecosyst. Environ., 293, 2020, 106839, 10.1016/j.agee.2020.106839.
Pérez‐Méndez, N., Andersson, G.K.S., Requier, F., Hipólito, J., Aizen, M.A., Morales, C.L., García, N., Gennari, G.P., Garibaldi, L.A., The economic cost of losing native pollinator species for orchard production. J. Appl. Ecol. 57 (2020), 599–608, 10.1111/1365-2664.13561.
Pisanty, G., Mandelik, Y., Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecol. Appl. 25 (2015), 742–752, 10.1890/14-0910.1.
Portman, Z.M., Bruninga-Socolar, B., Cariveau, D.P., The state of bee monitoring in the United States: a call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am., 2020, 1–6, 10.1093/aesa/saaa010.
Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., Safeguarding pollinators and their values to human well-being. Nature 540 (2016), 220–229, 10.1038/nature20588.
Potts, S.G., Dauber, J., Hochkirch, A., Oteman, B., Roy, D.B., Ahnre, K., Biesmeijer, K., Breeze, T., Carvell, C., Ferreira, C., Fitzpatrick, Ú., Isaac, N.J.B., Kuussaari, M., Ljubomirov, T., Maes, J., Ngo, H., Pardo, A., Polce, C., Quaranta, M., Settele, J., Sorg, M., Stefanescu, C., Vujic, A., 2020. Proposal for an EU Pollinator Monitoring Scheme. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/881843.
Prendergast, K.S., Menz, M.H.M., Dixon, K.W., Bateman, P.W., The relative performance of sampling methods for native bees: an empirical test and review of the literature. Ecosphere, 2020, 11, 10.1002/ecs2.3076.
Rasmussen, C., Engel, M.S., Vereecken, N.J., A primer of host-plant specialization in bees. Emerg. Top. Life Sci. 4 (2020), 7–17, 10.1042/ETLS20190118.
Roulston, T.H., Smith, S.A., Brewster, A.L., A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) Fauna. J. Kans. Entomol. Soc. 80 (2007), 179–181, 10.2317/0022-8567(2007)80[179:ACOPTA]2.0.CO;2.
RStudio Team, 2018. RStudio: Integrated Development for R. RStudio.
Scheper, J., Holzschuh, A., Kuussaari, M., Potts, S.G., Rundlöf, M., Smith, H.G., Kleijn, D., Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss - a meta-analysis. Ecol. Lett. 16 (2013), 912–920, 10.1111/ele.12128.
Sheffield, C.S., Ngo, H.T., Azzu, N., 2016. A Manual on Apple Pollination. Food and Agriculture Organization of the United Nations (FAO), Rome.
Sydenham, M.A.K., Moe, S.R., Totland, Ø., Eldegard, K., Does multi-level environmental filtering determine the functional and phylogenetic composition of wild bee species assemblages?. Ecography 38 (2015), 140–153, 10.1111/ecog.00938.
Thompson, A., Frenzel, M., Schweiger, O., Musche, M., Groth, T., Roberts, S.P.M., Kuhlmann, M., Knight, T.M., Pollinator sampling methods influence community patterns assessments by capturing species with different traits and at different abundances. Ecol. Indic., 132, 2021, 108284, 10.1016/j.ecolind.2021.108284.
Vereecken, N.J., Weekers, T., Leclercq, N., De Greef, S., Hainaut, H., Molenberg, J.-M., Martin, Y., Janssens, X., Noël, G., Pauly, A., Roberts, S.P.M., Marshall, L., Insect biomass is not a consistent proxy for biodiversity metrics in wild bees. Ecol. Indic., 2021, 121, 10.1016/j.ecolind.2020.107132.
Wagner, D.L., Insect declines in the anthropocene. Annu. Rev. Entomol. 65 (2020), 457–480, 10.1146/annurev-ento-011019-025151.
Weekers, T., Marshall, L., Leclercq, N., Wood, T.J., Cejas, D., Drepper, B., Hutchinson, L., Michez, D., Molenberg, J.-M., Smagghe, G., Vandamme, P., Vereecken, N.J., Dominance of honey bees is negatively associated with wild bee diversity in commercial apple orchards regardless of management practices. Agric. Ecosyst. Environ., 323, 2022, 107697, 10.1016/j.agee.2021.107697.
Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, N., Petanidou, T., Potts, S.G., Roberts, S.P.M., Szentgyörgyi, H., Tscheulin, T., Vaissière, B.E., Woyciechowski, M., Biesmeijer, J.C., Kunin, W.E., Settele, J., Steffan-Dewenter, I., Measuring bee diversity in different european habitats and biogeographical regions. Ecol. Monogr. 78 (2008), 653–671, 10.1890/07-1292.1.
Wilson, J.S., Griswold, T., Messinger, O.J., Sampling bee communities (Hymenoptera: Apiformes) in a desert landscape: are pan traps sufficient?. J. Kans. Entomol. Soc. 81 (2008), 288–300, 10.2317/JKES-802.06.1.
Winfree, R., Reilly, J.R., Bartomeus, I., Cariveau, D.P., Williams, N.M., Gibbs, J., Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359 (2018), 791–793, 10.1126/science.aao2117.
Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., Dorn, S., Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143 (2010), 669–676, 10.1016/j.biocon.2009.12.003.