Pekar, Simon ; Université de Mons - UMONS > Faculté des Sciences > Service de Physique de l'Univers, Champs et Gravitation ; University of Edinburgh [GB] > School of Mathematics and Maxwell Institute
Language :
English
Title :
Introduction to higher-spin theories
Publication date :
24 May 2023
Journal title :
PoS Proceedings of Science
eISSN :
1824-8039
Publisher :
Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
Volume :
Modave2022
Issue :
2023
Pages :
004
Research unit :
S827 - Physique de l'Univers, Champs et Gravitation
X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [1007.0435].
E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141.
E.S. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Annals Phys. 177 (1987) 63.
E.S. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89.
I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114].
E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [hep-th/0205131].
C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624.
C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary Particles in a Curved Space. 7., Phys. Rev. D 20 (1979) 848.
A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic Interaction Terms for Arbitrary Spin, Nucl. Phys. B 227 (1983) 31.
M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378.
M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049].
S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [1110.4386].
O. Aharony, G. Gur-Ari and R. Yacoby, d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [1110.4382].
M. Flato and C. Fronsdal, One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6., Lett. Math. Phys. 2 (1978) 421.
F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit Construction of Conserved Currents for Massless Fields of Arbitrary Spin, Nucl. Phys. B 271 (1986) 429.
M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233].
M.A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177].
N. Bouatta, G. Compere and A. Sagnotti, An Introduction to free higher-spin fields, in 1st Solvay Workshop on Higher Spin Gauge Theories, pp. 79–99, 9, 2004 [hep-th/0409068].
X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, in 1st Solvay Workshop on Higher Spin Gauge Theories, pp. 132–197, 2004 [hep-th/0503128].
X. Bekaert, Comments on higher-spin symmetries, Int. J. Geom. Meth. Mod. Phys. 6 (2009) 285 [0807.4223].
E.D. Skvortsov, Gauge fields in (A)dS(d) and Connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [0904.2919].
A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [1006.5242].
M. Taronna, Higher-Spin Interactions: four-point functions and beyond, JHEP 04 (2012) 029 [1107.5843].
V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, 1401.2975.
M.A. Vasiliev, Introduction into higher-spin gauge theory, Lectures given at Utrecht University (2014) .
R. Rahman, Higher Spin Theory - Part I, PoS ModaveVIII (2012) 004 [1307.3199].
R. Rahman and M. Taronna, From Higher Spins to Strings: A Primer, 1512.07932.
C. Sleight, Metric-like Methods in Higher Spin Holography, PoS Modave2016 (2017) 003 [1701.08360].
P. Kessel, The Very Basics of Higher-Spin Theory, PoS Modave2016 (2017) 001 [1702.03694].
D. Ponomarev, Basic introduction to higher-spin theories, 2206.15385.
D.J. Gross, High-Energy Symmetries of String Theory, Phys. Rev. Lett. 60 (1988) 1229.
G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155].
M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B 266 (1986) 709.
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150].
B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. B Proc. Suppl. 102 (2001) 113 [hep-th/0103247].
M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [1101.2910].
M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [1207.6697].
E.P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math. 40 (1939) 149.
X. Bekaert and N. Boulanger, The unitary representations of the Poincaré group in any spacetime dimension, SciPost Phys. Lect. Notes 30 (2021) 1 [hep-th/0611263].
S. Okubo and J. Patera, General Indices of Representations and Casimir Invariants, J. Math. Phys. 25 (1984) 219.
S.M. Kuzenko and A.E. Pindur, Massless particles in five and higher dimensions, Phys. Lett. B 812 (2021) 136020 [2010.07124].
I.A. Lahlali, N. Boulanger and A. Campoleoni, Coadjoint Orbits of the Poincaré Group for Discrete-Spin Particles in Any Dimension, Symmetry 13 (2021) 1749.
X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [1708.01030].
E. Inonu and E.P. Wigner, On the Contraction of groups and their represenations, Proc. Nat. Acad. Sci. 39 (1953) 510.
E. Angelopoulos and M. Laoues, Masslessness in n-dimensions, Rev. Math. Phys. 10 (1998) 271 [hep-th/9806100].
M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211.
S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198].
S. Deser and A. Waldron, Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations, Phys. Lett. B 513 (2001) 137 [hep-th/0105181].
C. de Rham and S. Renaux-Petel, Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity, JCAP 01 (2013) 035 [1206.3482].
C. de Rham, K. Hinterbichler, R.A. Rosen and A.J. Tolley, Evidence for and obstructions to nonlinear partially massless gravity, Phys. Rev. D 88 (2013) 024003 [1302.0025].
E. Joung, K. Mkrtchyan and G. Poghosyan, Looking for partially-massless gravity, JHEP 07 (2019) 116 [1904.05915].
G. Thompson, Killing tensors in spaces of constant curvature, J. Math. Phys. 27 (1986) 2693.
X. Bekaert and N. Boulanger, Gauge invariants and Killing tensors in higher-spin gauge theories, Nucl. Phys. B 722 (2005) 225 [hep-th/0505068].
E.D. Skvortsov and M.A. Vasiliev, Transverse Invariant Higher Spin Fields, Phys. Lett. B 664 (2008) 301 [hep-th/0701278].
A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, JHEP 03 (2013) 168 [1206.5877].
D. Francia, G.L. Monaco and K. Mkrtchyan, Cubic interactions of Maxwell-like higher spins, JHEP 04 (2017) 068 [1611.00292].
B. de Wit and D.Z. Freedman, Systematics of Higher Spin Gauge Fields, Phys. Rev. D 21 (1980) 358.
D. Francia, Generalised connections and higher-spin equations, Class. Quant. Grav. 29 (2012) 245003 [1209.4885].
E. Joung and K. Mkrtchyan, A note on higher-derivative actions for free higher-spin fields, JHEP 11 (2012) 153 [1209.4864].
D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002].
A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257].
N. Boulanger, S. Cnockaert and M. Henneaux, A note on spin s duality, JHEP 06 (2003) 060 [hep-th/0306023].
S. Deser, P.K. Townsend and W. Siegel, Higher Rank Representations of Lower Spin, Nucl. Phys. B 184 (1981) 333.
C.M. Hull, Duality in gravity and higher spin gauge fields, JHEP 09 (2001) 027 [hep-th/0107149].
X. Bekaert and N. Boulanger, On geometric equations and duality for free higher spins, Phys. Lett. B 561 (2003) 183 [hep-th/0301243].
A.S. Matveev and M.A. Vasiliev, On dual formulation for higher spin gauge fields in (A)dS(d), Phys. Lett. B 609 (2005) 157 [hep-th/0410249].
M. Grigoriev, Parent formulations, frame-like Lagrangians, and generalized auxiliary fields, JHEP 12 (2012) 048 [1204.1793].
X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A No go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278].
F.A. Berends, G.J.H. Burgers and H. van Dam, On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles, Nucl. Phys. B 260 (1985) 295.
E. Joung and M. Taronna, Cubic-interaction-induced deformations of higher-spin symmetries, JHEP 03 (2014) 103 [1311.0242].
X. Bekaert, N. Boulanger and S. Leclercq, Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex, J. Phys. A 43 (2010) 185401 [1002.0289].
S.N. Gupta, Gravitation and Electromagnetism, Phys. Rev. 96 (1954) 1683.
R.H. Kraichnan, Special-Relativistic Derivation of Generally Covariant Gravitation Theory, Phys. Rev. 98 (1955) 1118.
S. Weinberg, Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988.
S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023].
D.G. Boulware and S. Deser, Classical General Relativity Derived from Quantum Gravity, Annals Phys. 89 (1975) 193.
F.A. Berends, G.J.H. Burgers and H. Van Dam, On Spin Three Self Interactions, Z. Phys. C 24 (1984) 247.
A.K.H. Bengtsson, I. Bengtsson and N. Linden, Interacting Higher Spin Gauge Fields on the Light Front, Class. Quant. Grav. 4 (1987) 1333.
E.S. Fradkin and R.R. Metsaev, A Cubic interaction of totally symmetric massless representations of the Lorentz group in arbitrary dimensions, Class. Quant. Grav. 8 (1991) L89.
R.R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension, Mod. Phys. Lett. A 8 (1993) 2413.
R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342].
R.R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields, Nucl. Phys. B 859 (2012) 13 [0712.3526].
R. Manvelyan, K. Mkrtchyan and W. Ruhl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [1003.2877].
N. Boulanger and S. Leclercq, Consistent couplings between spin-2 and spin-3 massless fields, JHEP 11 (2006) 034 [hep-th/0609221].
N. Boulanger, S. Leclercq and P. Sundell, On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory, JHEP 08 (2008) 056 [0805.2764].
E. Joung and M. Taronna, Cubic interactions of massless higher spins in (A)dS: metric-like approach, Nucl. Phys. B 861 (2012) 145 [1110.5918].
E. Joung, L. Lopez and M. Taronna, Generating functions of (partially-)massless higher-spin cubic interactions, JHEP 01 (2013) 168 [1211.5912].
E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in (A)dS, JHEP 07 (2012) 041 [1203.6578].
E. Joung, L. Lopez and M. Taronna, Solving the Noether procedure for cubic interactions of higher spins in (A)dS, J. Phys. A 46 (2013) 214020 [1207.5520].
R.R. Metsaev, Poincare invariant dynamics of massless higher spins: Fourth order analysis on mass shell, Mod. Phys. Lett. A 6 (1991) 359.
R.R. Metsaev, S matrix approach to massless higher spins theory. 2: The Case of internal symmetry, Mod. Phys. Lett. A 6 (1991) 2411.
D. Ponomarev and E.D. Skvortsov, Light-Front Higher-Spin Theories in Flat Space, J. Phys. A 50 (2017) 095401 [1609.04655].
C. Sleight and M. Taronna, Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings, Phys. Rev. Lett. 116 (2016) 181602 [1603.00022].
X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory, JHEP 11 (2015) 149 [1508.04292].
C. Sleight and M. Taronna, Higher-Spin Gauge Theories and Bulk Locality, Phys. Rev. Lett. 121 (2018) 171604 [1704.07859].
D. Ponomarev, A Note on (Non)-Locality in Holographic Higher Spin Theories, Universe 4 (2018) 2 [1710.00403].
L. Cappiello, M. Knecht, S. Ouvry and J. Stern, BRST Construction of Interacting Gauge Theories of Higher Spin Fields, Annals Phys. 193 (1989) 10.
X. Bekaert, I.L. Buchbinder, A. Pashnev and M. Tsulaia, On higher spin theory: Strings, BRST, dimensional reductions, Class. Quant. Grav. 21 (2004) S1457 [hep-th/0312252].
A. Fotopoulos and M. Tsulaia, Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [0805.1346].
K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [0910.2690].
N. Boulanger, N. Colombo and P. Sundell, A minimal BV action for Vasiliev’s four-dimensional higher spin gravity, JHEP 10 (2012) 043 [1205.3339].
R.R. Metsaev, BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields, Phys. Lett. B 720 (2013) 237 [1205.3131].
X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,R): Duality and Poincare lemma, Commun. Math. Phys. 245 (2004) 27 [hep-th/0208058].
M.A. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 37 [hep-th/0504090].
N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism, JHEP 07 (2009) 013 [0812.3615].
J.A. Schouten, Uber Differentialkomitanten zweier kontravarianter Grossen, Proc. Kon. Ned. Akad. Wet. Amst. 43 (1940) 449.
A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, I, Indag. Math. 17 (1955) 390.
A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, II, Indag. Math. 17 (1955) 398.
M. Dubois-Violette and P.W. Michor, A Common generalization of the Frohlicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields, Indag. Math., N. S. 6 (1995) 51 [alg-geom/9401006].
A.K.H. Bengtsson and I. Bengtsson, Massless higher-spin fields revisited, Class. Quant. Grav. 3 (1986) 927.
X. Bekaert, N. Boulanger, S. Cnockaert and S. Leclercq, On killing tensors and cubic vertices in higher-spin gauge theories, Fortsch. Phys. 54 (2006) 282 [hep-th/0602092].
C. Sleight and M. Taronna, Higher-Spin Algebras, Holography and Flat Space, JHEP 02 (2017) 095 [1609.00991].
D. Ponomarev, Chiral Higher Spin Theories and Self-Duality, JHEP 12 (2017) 141 [1710.00270].
D. Ponomarev, 3d conformal fields with manifest sl(2, C), JHEP 06 (2021) 055 [2104.02770].
D. Ponomarev, Towards higher-spin holography in flat space, JHEP 01 (2023) 084 [2210.04035].
N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [1305.5180].
A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019.
X. Bekaert, Higher spin algebras as higher symmetries, Ann. U. Craiova Phys. 16 (2006) 58 [0704.0898].
C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations, JHEP 10 (2008) 022 [0806.1942].
E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP 05 (2014) 103 [1401.7977].
M.A. Vasiliev, Consistent Equations for Interacting Massless Fields of All Spins in the First Order in Curvatures, Annals Phys. 190 (1989) 59.
A. Nikitin, Generalized killing tensors of arbitrary rank and order, Ukr. Math. J. 43 (1991), 734–743 (1991) .
A. Shapovalov and I. Shirokov, Symmetry algebras of linear differential equations, Theor. Math. Phys. 92 (1992), 697–703 (1992) .
N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [1107.5028].
S.E. Konshtein and M.A. Vasiliev, Massless Representations and Admissibility Condition for Higher Spin Superalgebras, Nucl. Phys. B 312 (1989) 402.
S.E. Konstein and M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Massless Representations, Nucl. Phys. B 331 (1990) 475.
M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124].
X. Bekaert, Singletons and their maximal symmetry algebras, in 6th Summer School in Modern Mathematical Physics, pp. 71–89, 11, 2011 [1111.4554].
P.A.M. Dirac, A Remarkable representation of the 3 + 2 de Sitter group, J. Math. Phys. 4 (1963) 901.
X. Bekaert and M. Grigoriev, Manifestly conformal descriptions and higher symmetries of bosonic singletons, SIGMA 6 (2010) 038 [0907.3195].
X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [1305.0162].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].
S. Deser and R. Jackiw, Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature, Annals Phys. 153 (1984) 405.
S. Deser, R. Jackiw and G.’t Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, Annals Phys. 152 (1984) 220.
J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207.
A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89.
E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46.
A. Campoleoni, Higher Spins in D = 2 + 1, Subnucl. Ser. 49 (2013) 385 [1110.5841].
A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [1008.4744].
A. Campoleoni and S. Pekar, Carrollian and Galilean conformal higher-spin algebras in any dimensions, JHEP 02 (2022) 150 [2110.07794].
M. Ammon, M. Pannier and M. Riegler, Scalar Fields in 3D Asymptotically Flat Higher-Spin Gravity, J. Phys. A 54 (2021) 105401 [2009.14210].
M. Grigoriev, K. Mkrtchyan and E. Skvortsov, Matter-free higher spin gravities in 3D: Partially-massless fields and general structure, Phys. Rev. D 102 (2020) 066003 [2005.05931].
C.N. Pope, L.J. Romans and X. Shen, W (infinity) and the Racah-wigner Algebra, Nucl. Phys. B 339 (1990) 191.
A.V. Korybut, Covariant structure constants for a deformed oscillator algebra, Theor. Math. Phys. 193 (2017) 1409 [1409.8634].
T. Basile, N. Boulanger and F. Buisseret, Structure constants of shs[λ] : the deformed-oscillator point of view, J. Phys. A 51 (2018) 025201 [1604.04510].
M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2+1), Class. Quant. Grav. 6 (1989) 443.
E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys. 128 (1990) 213.
M. Henneaux and S.-J. Rey, Nonlinear Winfinty as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [1008.4579].
H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 Gravity in Three-Dimensional Flat Space, Phys. Rev. Lett. 111 (2013) 121603 [1307.4768].
H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [1307.5651].
M. Ammon, D. Grumiller, S. Prohazka, M. Riegler and R. Wutte, Higher-Spin Flat Space Cosmologies with Soft Hair, JHEP 05 (2017) 031 [1703.02594].
A. Campoleoni, H.A. Gonzalez, B. Oblak and M. Riegler, BMS Modules in Three Dimensions, Int. J. Mod. Phys. A 31 (2016) 1650068 [1603.03812].
S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236].
A. Strominger, w(1+infinity) and the Celestial Sphere, 2105.14346.
L. Freidel, D. Pranzetti and A.-M. Raclariu, Higher spin dynamics in gravity and w1+∞ celestial symmetries, Phys. Rev. D 106 (2022) 086013 [2112.15573].
M.A. Vasiliev, Free Massless Fields of Arbitrary Spin in the De Sitter Space and Initial Data for a Higher Spin Superalgebra, Fortsch. Phys. 35 (1987) 741.
M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Realizations in Terms of Quantum Operators, Fortsch. Phys. 36 (1988) 33.
M.A. Vasiliev, Linearized Curvatures for Auxiliary Fields in the De Sitter Space, Nucl. Phys. B 307 (1988) 319.
M. Grigoriev, I. Lovrekovic and E. Skvortsov, New Conformal Higher Spin Gravities in 3d, JHEP 01 (2020) 059 [1909.13305].
E.D. Skvortsov, T. Tran and M. Tsulaia, Quantum Chiral Higher Spin Gravity, Phys. Rev. Lett. 121 (2018) 031601 [1805.00048].
E. Skvortsov, T. Tran and M. Tsulaia, More on Quantum Chiral Higher Spin Gravity, Phys. Rev. D 101 (2020) 106001 [2002.08487].
K. Krasnov, E. Skvortsov and T. Tran, Actions for Self-dual Higher Spin Gravities, 2105.12782.
L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari and T. Stemberga, HS in flat spacetime. YM-like models, 1812.05030.
L. Bonora and S. Giaccari, HS Yang-Mills-like models: a review, Ann. U. Craiova Phys. 30 (2020) 1 [2103.10105].
T. Adamo and T. Tran, Higher-spin Yang-Mills, amplitudes and self-duality, 2210.07130.
J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630.
J. Fang and C. Fronsdal, Massless, Half Integer Spin Fields in De Sitter Space, Phys. Rev. D 22 (1980) 1361.
K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov, Uniformizing higher-spin equations, J. Phys. A 48 (2015) 015401 [1409.6507].
E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP 01 (2016) 003 [1508.07332].
C. Brust and K. Hinterbichler, Partially Massless Higher-Spin Theory, JHEP 02 (2017) 086 [1610.08510].
A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. I. Bose Fields, Nucl. Phys. B 815 (2009) 289 [0810.4350].
A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. II. Fermi Fields, Nucl. Phys. B 828 (2010) 405 [0904.4447].
A. Campoleoni, Metric-like Lagrangian Formulations for Higher-Spin Fields of Mixed Symmetry, Riv. Nuovo Cim. 33 (2010) 123 [0910.3155].
S. Deser and R.I. Nepomechie, Gauge Invariance Versus Masslessness in De Sitter Space, Annals Phys. 154 (1984) 396.
L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898.
L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case, Phys. Rev. D 9 (1974) 910.
D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav. 34 (2017) 015009 [1108.5735].
O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [1207.4593].
G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP 11 (2015) 013 [1507.04378].
J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [1112.1016].
V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d=4, 1307.8092.
V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions, JHEP 03 (2016) 044 [1510.02535].
S. Giombi, Higher Spin — CFT Duality, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 137–214, 2017, DOI [1607.02967].
A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [1107.0290].
A. Campoleoni and M. Henneaux, Asymptotic symmetries of three-dimensional higher-spin gravity: the metric approach, JHEP 03 (2015) 143 [1412.6774].
W. Li and S. Theisen, Some aspects of holographic W-gravity, JHEP 08 (2015) 035 [1504.07799].
D. Grumiller, A. Perez, S. Prohazka, D. Tempo and R. Troncoso, Higher Spin Black Holes with Soft Hair, JHEP 10 (2016) 119 [1607.05360].
D. Grumiller, A. Pérez, M.M. Sheikh-Jabbari, R. Troncoso and C. Zwikel, Spacetime structure near generic horizons and soft hair, Phys. Rev. Lett. 124 (2020) 041601 [1908.09833].
Y. Lei and C. Peng, Higher spin holography with Galilean symmetry in general dimensions, Class. Quant. Grav. 33 (2016) 135008 [1507.08293].
S. Prohazka and M. Riegler, Higher Spins Without (Anti-)de Sitter, Universe 4 (2018) 20 [1710.11105].
R. Caroca, P. Concha, O. Fierro, E. Rodríguez and P. Salgado-Rebolledo, Generalized Chern–Simons higher-spin gravity theories in three dimensions, Nucl. Phys. B 934 (2018) 240 [1712.09975].
M. Henneaux and P. Salgado-Rebolledo, Carroll contractions of Lorentz-invariant theories, 2109.06708.
R. Caroca, D.M. Peñafiel and P. Salgado-Rebolledo, Non-relativistic spin-3 symmetries in 2 + 1 dimensions from expanded/extended Nappi-Witten algebras, 2208.00602.
P. Concha, C. Henríquez-Báez and E. Rodríguez, Non-relativistic and ultra-relativistic expansions of three-dimensional spin-3 gravity theories, JHEP 10 (2022) 155 [2208.01013].
A. Campoleoni, D. Francia and C. Heissenberg, On higher-spin supertranslations and superrotations, JHEP 05 (2017) 120 [1703.01351].
A. Campoleoni, D. Francia and C. Heissenberg, On asymptotic symmetries in higher dimensions for any spin, JHEP 12 (2020) 129 [2011.04420].
X. Bekaert and B. Oblak, Massless scalars and higher-spin BMS in any dimension, JHEP 11 (2022) 022 [2209.02253].
X. Bekaert, A. Campoleoni and S. Pekar, Carrollian conformal scalar as flat-space singleton, Phys. Lett. B 838 (2023) 137734 [2211.16498].
S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049.
S.R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251.
M. Porrati, Universal Limits on Massless High-Spin Particles, Phys. Rev. D 78 (2008) 065016 [0804.4672].
M. Porrati, Old and New No Go Theorems on Interacting Massless Particles in Flat Space, in 17th International Seminar on High Energy Physics, 9, 2012 [1209.4876].
G. Velo and D. Zwanziger, Noncausality and other defects of interaction lagrangians for particles with spin one and higher, Phys. Rev. 188 (1969) 2218.
R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys. B 88 (1975) 257.
T. Tran, Constraining higher-spin S-matrices, JHEP 02 (2023) 001 [2212.02540].
R. Manvelyan, K. Mkrtchyan, R. Mkrtchyan and S. Theisen, On Higher Spin Symmetries in AdS5, JHEP 10 (2013) 185 [1304.7988].
N. Boulanger, A. Campoleoni and S. Pekar,, to appear (2023) .
A.O. Barut and R. Raczka, Theory of Group Representations and Applications, World Scientific Publishing Company (1986).