Data analysis; Intelligent systems; Learning techniques; Wind forecasting; Adaptive local learning; Black boxes; Electrical grids; Grey-box; Integrating machines; Knowledge modeling; Local learning; Massive deployment; Medium term; Meteorological sensors; Network operations; Nonhydrostatic model; Original model; Side effect; Small-scale modeling; Wind generators; Wind speed forecasting; Energy Engineering and Power Technology; Electrical and Electronic Engineering
D. Villacci, G. Bontempi, and A. Vaccaro An adaptive local learning based methodology for voltage regulation in distribution networks with dispersed generation IEEE Trans. Power. Syst. 21/3 2006 1131 1140 (Pubitemid 44263504)
N. Hadjsaid, J.-F. Canard, and F. Dumas Dispersed generation impacton distributionnetworks IEEE Comput. Appl. Power 12/2 1999 22 28
J. Lerner, M. Grundmeyer, and M. Garvert The role of wind forecasting in the successful integration and management of an intermittent energy source Energy Central Topic Centers Wind Power 3/8 2009 1 6
A.J. Simmons, and D.M. Burridge An energy and angular-momentum conserving finite-difference scheme and hybrid vertical coordinates Mon. Wea. Rev. 109 1981 758 766
K.A. Larson, and K. Westrick Short-term wind forecasting using off-site observations Wind Energy 9/1 2006 55 62 (Pubitemid 43281984)
C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann Wind Power Forecasting: State-of-the-Art 2009 U.S. Department of Energy Available online at http://www.osti.gov/bridge
J.C. Palomares-Salas, J.J.G. de la Rosa, J.G. Ramiro, J. Melgar, A. Agüera, and A. Moreno Comparison of models for wind speed forecasting Proc. of International Conference on Computational Science - ICCS 2009, May 25-27, 2009 Baton Rouge, Louisiana (USA) 2009
P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen ARIMA-based time series model of stochastic wind power generation IEEE Trans. Power. Syst. 25/2 2010 667 676
A. More, and M.C. Deo Forecasting wind with neural networks Marine Struct. 16/1 2003 35 49 (Pubitemid 36073109)
Y.A. Katsigiannis, A.G. Tsikalakis, P.S. Georgilakis, and N.D. Hatziargyriou Improved Wind Power Forecasting Using a Combined Neuro-fuzzy and Artificial Neural Network Model, in Lecture Notes in Computer Science, Adv. in Art. Intell. 2006 Springer Berlin /Heidelberg Publisher Heraklion pp. 105-115
A.A. Khan, and M. Shahidehpour One day ahead wind speed forecasting using wavelets Proc. of IEEE/PES Power Systems Conference and Exposition PSCE 2009, 15-18 March 2009 Seattle, WA (USA) 2009
T.G. Barbounis, and J.B. Theocharis Locally recurrent neural networks for wind speed prediction using spatial correlation Inf. Sci. 177/24 2007 5775 5797 (Pubitemid 47464279)
G. Bontempi, H. Bersini, and M. Birattari The local paradigm for modeling and control: from neuro-fuzzy to lazy learning Fuzzy Sets Syst. 121/1 2001 59 72 (Pubitemid 32446651)
G. Bontempi, M. Birattari, and H. Bersini Local learning for iterated time-series prediction I. Bratko, S. Dzeroski, Machine Learning: Proceedings of the Sixteenth International Conference 1999 Morgan Kaufmann Publishers San Francisco, CA 32 38
D. Villacci, G. Bontempi, A. Vaccaro, and M. Birattari The role of learning methods in the dynamic assessment of power components loading capability IEEE Trans. Ind. Electron. 52/1 2005 280 290 (Pubitemid 40264776)
J. Zack, Overview of Wind Energy Generation Forecasting, Research Report available on line at www.uwig.com, December 2003.
H. Agabus, and H. Tammoja Estimation of wind power production through short term forecast Oil Shale 26/3 2009 208 219
European Centre for Medium-Range Weather Forecasts, IFS documentation CY33r1. Available on line at http://www.ecmwf.int/research/ifsdocs/CY33r1/index. html.
T. Hastie, R. Tibshirani, and J. Friedman The Elements of Statistical Learning. Data Mining, Inference and Prediction 2001 Springer-Verlag New York
S. Ben Taieb, A. Sorjamaa, and G. Bontempi Multiple-output modelling for multi-step-ahead time series forecasting Neurocomputing 73 10-12 2010 1950 1957
T.M. Mitchell Machine Learning 1997 Mc-Graw-Hill
M. Birattari, G. Bontempi, and H. Bersini Lazy learning meets the recursive least squares algorithm, in M S. Kearns, S.A. Solla, D.A. Cohn, Advances in Neural Information Processing Systems 11 1999 MIT Press Cambridge, MA 375 381
G. Bontempi, "Local Learning Techniques for Modeling, Prediction and Control" PhD dissertation. IRIDIA - Université Libre de Bruxelles, Belgium,1999.
G. Bontempi Long term time series prediction with multi-input multi-output local learning Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP08 2008
S. Ben Taieb, G. Bontempi, A. Sorjamaa, and A. Lendasse Long-term prediction of time series by combining direct and MIMO strategies Proceedings of the 2009 IEEE International Joint Conference on Neural Networks 2009 3054 3061
J. Tashman Leonard Out-of-sample tests of forecasting accuracy: an analysis and review Int. J. Forecast. 16 4 2000 437 450
H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max- relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238 (Pubitemid 41245053)
A. Vaccaro, P. Mercogliano, P. Schiano, and D. Villacci An adaptive Framework based on Multi-Model Data Fusion for one day ahead Wind Power Forecasting Electr. Pow. Syst. Res. 81 3 2011 775 782