drivers of biodiversity change; GBIF; Hymenoptera; latitudinal gradient; Ecology, Evolution, Behavior and Systematics; Ecology
Abstract :
[en] Aim: Wild bees still face striking shortfalls in knowledge of biodiversity in key regions of the world. This includes Europe, where despite a long tradition of data gathering, the continental scale distribution patterns of wild bees have not been systematically analysed to date. This study aims to characterise large-scale biodiversity patterns to: (i) understand spatial–temporal heterogeneity in large-scale databases, (ii) locate genuine diversity hotspots and their relationship with biogeographical patterns or habitats of interests and (iii) identify understudied species and areas to further design conservation actions for most at risk species in key regions. Location: Europe. Taxon: Bees. Methods: We present a continental and standardised study of bee taxonomic and phylogenetic diversity patterns in Europe, using a large compilation of occurrence records of nearly three million validated occurrence records for 1515 wild bee species. Results: Southern and eastern Europe suffer from the largest gaps in data availability while northern and western regions benefit from better historical coverage. Our models show that higher wild bee diversity in Europe is hosted in xeric, warm areas, as highlighted by a clear latitudinal gradient. However, phylogenetic diversity is predicted to be more homogenous across Europe than taxonomic diversity, suggesting that policies and strategies targeted to protect species richness may differ from those targeting greater phylogenetic diversity. Main conclusions: This study represents a significant advance in the characterisation of wild bee distribution patterns across Europe and is an important stepping stone towards the design of more targeted survey efforts and conservation actions of this key group of pollinators. This, in turn, will provide the data necessary to improve the spatiotemporal coverage in a context of ongoing and future Europe-wide monitoring schemes, to ultimately develop cost-effective, coordinated and evidence-based conservation actions and tailored habitat management actions that can be implemented on a smaller scale.
Disciplines :
Entomology & pest control Zoology
Author, co-author :
Leclercq, Nicolas ; Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
Caruso, Geoffrey; Department of Geography and Spatial Planning, University of Luxembourg and Luxembourg Institute of Socio-Economic Research, Maison des Sciences Humaines, Esch-sur-Alzette, Luxembourg
Schiel, Kerry; Department of Geography and Spatial Planning, University of Luxembourg and Luxembourg Institute of Socio-Economic Research, Maison des Sciences Humaines, Esch-sur-Alzette, Luxembourg
Carvalheiro, Luísa G.; Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Brazil ; Center of Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisbon, Portugal
Fonds De La Recherche Scientifique - FNRS FWO - Flemish Research Foundation
Funding text :
The FNRS/FWO joint programme ‘EOS—Excellence of Science’ for the project ‘CliPS: Climate change and its effects on Pollination Services (project 30947854)’ and the ‘Fonds Van Buuren & Fondation Jaumotte Demoulin’ funded this study. We thank all people who collected and maintained the databases used in this study and that were obtained from: (i) the European Commission Framework Programme (FP) 7 via the Status and Trends of European Pollinators (STEP) collaborative project (grant no. 244090, www.STEP‐project.net ); (ii) the Bees, Wasps and Ants Recording Society (BWARS, www.bwars.com ); (iii) the Banque de Données Fauniques Gembloux‐Mons (BDFGM, www.atlashymenoptera.net ); (iv) the National Biodiversity Data Centre (NBDC, www.biodiversityireland.ie ); and (v) the Global Biodiversity Information Facility (GBIF, www.gbif.org ). No permits were needed for this study.The FNRS/FWO joint programme ‘EOS—Excellence of Science’ for the project ‘CliPS: Climate change and its effects on Pollination Services (project 30947854)’ and the ‘Fonds Van Buuren & Fondation Jaumotte Demoulin’ funded this study. We thank all people who collected and maintained the databases used in this study and that were obtained from: (i) the European Commission Framework Programme (FP) 7 via the Status and Trends of European Pollinators (STEP) collaborative project (grant no. 244090, www.STEP-project.net); (ii) the Bees, Wasps and Ants Recording Society (BWARS, www.bwars.com); (iii) the Banque de Données Fauniques Gembloux-Mons (BDFGM, www.atlashymenoptera.net); (iv) the National Biodiversity Data Centre (NBDC, www.biodiversityireland.ie); and (v) the Global Biodiversity Information Facility (GBIF, www.gbif.org). No permits were needed for this study.
Ascher, J. S., Marshall, L., Meiners, J., Yanega, D., & Vereecken, N. J. (2020). Heterogeneity in large-scale databases and the role of climate change as a driver of bumble bee decline. Science, 367(6478), 685–688.
Ascher, J. S., & Pickering, J. (2022). Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species
Aubert, M. (2020). Proposition de clé d'identification des Eucerini (Hymenoptera: Anthophila) de France continentale—Version provisoire. Observatoire des Abeilles, 45. https://oabeilles.net/projets/eucerini
Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x
Baselga, A., Orme, C. D. L., Villeger, S., De Bortoli, J., & Leprieur, F. (2018). Betapart:Partitioning Beta diversity into turnover and Nestedness components. https://cran.r-project.org/web/packages/betapart/betapart.pdf
Bossert, S., Murray, E. A., Almeida, E. A. B., Brady, S. G., Blaimer, B. B., & Danforth, B. N. (2019). Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Molecular Phylogenetics and Evolution, 130(2), 121–131. https://doi.org/10.1016/j.ympev.2018.10.012
Bossert, S., Wood, T. J., Patiny, S., Michez, D., Almeida, E. A. B., Minckley, R. L., Packer, L., Neff, J. L., Copeland, R. S., Straka, J., Pauly, A., Griswold, T., Brady, S. G., Danforth, B. N., & Murray, E. A. (2022). Phylogeny, biogeography and diversification of the mining bee family Andrenidae. Systematic Entomology, 47(2), 283–302. https://doi.org/10.1111/syen.12530
Boyd, R. J., Aizen, M. A., Barahona-Segovia, R. M., Flores-Prado, L., Fontúrbel, F. E., Francoy, T. M., Lopez-Aliste, M., Martinez, L., Morales, C. L., Ollerton, J., Pescott, O. L., Powney, G. D., Saraiva, A. M., Schmucki, R., Zattara, E. E., & Carvell, C. (2022). Inferring trends in pollinator distributions across the neotropics from publicly available data remains challenging despite mobilization efforts. Diversity and Distributions, January, 1–12. https://doi.org/10.1111/ddi.13551
Bystriakova, N., Griswold, T., Ascher, J. S., & Kuhlmann, M. (2018). Key environmental determinants of global and regional richness and endemism patterns for a wild bee subfamily. Biodiversity and Conservation, 27(2), 287–309. https://doi.org/10.1007/s10531-017-1432-7
Carrié, R., Andrieu, E., Cunningham, S. A., Lentini, P. E., Loreau, M., & Ouin, A. (2017). Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography, 40(1), 85–97. https://doi.org/10.1111/ecog.02632
Carvalheiro, L. G., Bartomeus, I., Rollin, O., Timóteo, S., & Tinoco, C. F. (2021). The role of soils on pollination and seed dispersal. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834), 20200171. https://doi.org/10.1098/rstb.2020.0171
Chao, A., Chiu, C.-H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45(1), 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540
Chao, A., Henderson, P. A., Chiu, C.-H., Moyes, F., Hu, K.-H., Dornelas, M., & Magurran, A. E. (2021). Measuring temporal change in alpha diversity: A framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization. Methods in Ecology and Evolution, 12, 1–15. https://doi.org/10.1111/2041-210X.13682
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1
Danforth, B. N., Sipes, S., Fang, J., & Brady, S. G. (2006). The history of early bee diversification based on five genes plus morphology. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15118–15123. https://doi.org/10.1073/pnas.0604033103
De Palma, A., Kuhlmann, M., Bugter, R., Ferrier, S., Hoskins, A. J., Potts, S. G., Roberts, S. P. M., Schweiger, O., & Purvis, A. (2017). Dimensions of biodiversity loss: Spatial mismatch in land-use impacts on species, functional and phylogenetic diversity of European bees. Diversity and Distributions, 23(12), 1435–1446. https://doi.org/10.1111/ddi.12638
De Palma, A., Kuhlmann, M., Roberts, S. P. M., Potts, S. G., Börger, L., Hudson, L. N., Lysenko, I., Newbold, T., & Purvis, A. (2015). Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. Journal of Applied Ecology, 52(6), 1567–1577. https://doi.org/10.1111/1365-2664.12524
Deguines, N., Jono, C., Baude, M., Henry, M., Julliard, R., & Fontaine, C. (2014). Large-scale trade-off between agricultural intensification and crop pollination services. Frontiers in Ecology and the Environment, 12(4), 212–217. https://doi.org/10.1890/130054
EU Pollinators Initiative. (2021). EU Pollinators Initiative. https://ec.europa.eu/environment/nature/conservation/species/pollinators/policy_en.htm
Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432. https://doi.org/10.2307/1934352
Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46(1), 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
Hurlbert, A. H., & Jetz, W. (2007). Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13384–13389. https://doi.org/10.1073/pnas.0704469104
IPBES. (2016). The assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production (S.G. Potts, V. L. Imperatriz-Fonseca, & H. T. Ngo (Eds.)). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://doi.org/10.5281/zenodo.3402856
ITIS. (2022). Integrated Taxonomic Information System. https://www.itis.gov/
Kammerer, M. A., Biddinger, D. J., Joshi, N. K., Rajotte, E. G., & Mortensen, D. A. (2016). Modeling local spatial patterns of wild bee diversity in Pennsylvania apple orchards. Landscape Ecology, 31(10), 2459–2469. https://doi.org/10.1007/s10980-016-0416-4
Kammerer, M. A., Goslee, S. C., Douglas, M. R., Tooker, J. F., & Grozinger, C. M. (2021). Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Global Change Biology, 27(6), 1250–1265. https://doi.org/10.1111/gcb.15485
Klein, A. M., Boreux, V., Fornoff, F., Mupepele, A. C., & Pufal, G. (2018). Relevance of wild and managed bees for human well-being. Current Opinion in Insect Science, 26, 82–88. https://doi.org/10.1016/j.cois.2018.02.011
Kuhn, M. (2022). Caret: Classification and regression training. https://cran.r-project.org/package=caret
Le Féon, V., Schermann-Legionnet, A., Delettre, Y., Aviron, S., Billeter, R., Bugter, R., Hendrickx, F., & Burel, F. (2010). Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agriculture, Ecosystems & Environment, 137(1–2), 143–150. https://doi.org/10.1016/j.agee.2010.01.015
Long, J. A. (2020). Jtools: Analysis and presentation of social scientific data. https://cran.r-project.org/package=jtools
Médail, F. (2008). Mediterranean. In Encyclopedia of ecology (Vol. 54, pp. 2296–2308). Elsevier. https://doi.org/10.1016/B978-008045405-4.00348-7
Michener, C. D. (1979). Biogeography of the bees. Annals of the Missouri Botanical Garden, 66(3), 277. https://doi.org/10.2307/2398833
Michener, C. D. (2007). The bees of the world (2nd ed.). The John Hopkins University Press.
Müller, A. (2019). Palaearctic Osmiine Bees. ETH Zürich. https://blogs.ethz.ch/osmiini/
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Nieto, A., Roberts, S. P. M., Kemp, J., Rasmont, P., Kuhlmann, M., García Criado, M., Biesmeijer, J. C., Bogusch, P., Dathe, H. H., De la Rúa, P., De Meulemeester, T., Dehon, M., Dewulf, A., Ortiz-Sánchez, F. J., Lhomme, P., Pauly, A., Potts, S. G., Praz, C. Q., Window, J., & Michez, D. (2014). European red list of bees. Publication Office of the European Union.
Normandin, É., Vereecken, N. J., Buddle, C. M., & Fournier, V. (2017). Taxonomic and functional trait diversity of wild bees in different urban settings. PeerJ, 5(3), e3051. https://doi.org/10.7717/peerj.3051
ORBIT. (2022). ORBIT Project—Taxonomic Resources for European Bees. https://orbit-project.eu
Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C.-D., & Ascher, J. S. (2021). Global patterns and drivers of bee distribution. Current Biology, 31(3), 451–458. https://doi.org/10.1016/j.cub.2020.10.053
Paradis, E., & Schliep, K. (2018). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526–528. https://doi.org/10.1093/bioinformatics/bty633
Petanidou, T., Ellis, W. N., & Ellis-Adam, A. C. (1995). Ecogeographical patterns in the incidence of brood parasitism in bees. Biological Journal of the Linnean Society, 55(3), 261–272. https://doi.org/10.1006/BIJL.1995.0041
Phillips, B. B., Shaw, R. F., Holland, M. J., Fry, E. L., Bardgett, R. D., Bullock, J. M., & Osborne, J. L. (2018). Drought reduces floral resources for pollinators. Global Change Biology, 24(7), 3226–3235. https://doi.org/10.1111/gcb.14130
Potts, S. G., Biesmeijer, J. C., Bommarco, R., Felicioli, A., Fischer, M., Jokinen, P., Kleijn, D., Klein, A.-M., Kunin, W. E., Neumann, P., Penev, L. D., Petanidou, T., Rasmont, P., Roberts, S. P. M., Smith, H. G., Sørensen, P. B., Steffan-Dewenter, I., Vaissière, B. E., Vilà, M., … Schweiger, O. (2011). Developing European conservation and mitigation tools for pollination services: Approaches of the STEP (status and trends of European pollinators) project. Journal of Apicultural Research, 50(2), 152–164. https://doi.org/10.3896/IBRA.1.50.2.07
Potts, S. G., Dauber, J., Hochkirch, A., Oteman, B., Roy, D. B., Ahnre, K., Biesmeijer, K., Breeze, T., Carvell, C., Ferreira, C., Fitzpatrick, Ú., Isaac, N. J. B., Kuussaari, M., Ljubomirov, T., Maes, J., Ngo, H., Pardo, A., Polce, C., Quaranta, M., … Vujic, A. (2020). Proposal for an EU pollinator monitoring scheme. Publications Office of the European Union. https://doi.org/10.2760/881843
Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., Dicks, L. V., Garibaldi, L. A., Hill, R., Settele, J., & Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 220–229. https://doi.org/10.1038/nature20588
Proença, V., Martin, L. J., Pereira, H. M., Fernandez, M., McRae, L., Belnap, J., Böhm, M., Brummitt, N., García-Moreno, J., Gregory, R. D., Honrado, J. P., Jürgens, N., Opige, M., Schmeller, D. S., Tiago, P., & van Swaay, C. A. M. (2017). Global biodiversity monitoring: From data sources to essential biodiversity variables. Biological Conservation, 213, 256–263. https://doi.org/10.1016/j.biocon.2016.07.014
R Core Team. (2022). R: A language and environment for statistical computing. https://www.r-project.org/
Rahbek, C. (2004). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8(2), 224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x
Rasmont, P., Devalez, J., Pauly, A., Michez, D., & Radchenko, V. G. (2017). Addition to the checklist of IUCN European wild bees (Hymenoptera: Apoidea). Annales de La Société Entomologique de France (N.S.), 53(1), 17–32. https://doi.org/10.1080/00379271.2017.1307696
Rasmont, P., Franzen, M., Lecocq, T., Harpke, A., Roberts, S., Biesmeijer, K., Castro, L., Cederberg, B., Dvorak, L., Fitzpatrick, U., Gonseth, Y., Haubruge, E., Mahe, G., Manino, A., Michez, D., Neumayer, J., Odegaard, F., Paukkunen, J., Pawlikowski, T., … Schweiger, O. (2015). Climatic risk and distribution atlas of European bumblebees. BioRisk, 10, 1–236. https://doi.org/10.3897/biorisk.10.4749
Rollin, O., Aguirre-Gutiérrez, J., Yasrebi-de Kom, I. A. R., Garratt, M. P. D., de Groot, G. A., Kleijn, D., Potts, S. G., Scheper, J., & Carvalheiro, L. G. (2022). Effects of ozone air pollution on crop pollinators and pollination. Global Environmental Change, 75(May), 102529. https://doi.org/10.1016/j.gloenvcha.2022.102529
Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos, 130(3), 321–338. https://doi.org/10.1111/oik.07202
RStudio Team. (2022). RStudio: Integrated development for R. RStudio Inc. http://www.rstudio.com/
Rundel, P. W., & Cowling, R. M. (2013). Mediterranean-climate ecosystems. In Encyclopedia of biodiversity (Vol. 5, pp. 212–222). Elsevier. https://doi.org/10.1016/B978-0-12-384719-5.00245-8
Sánchez-Fernández, D., Yela, J. L., Acosta, R., Bonada, N., García-Barros, E., Guisande, C., Heine, J., Millán, A., Munguira, M. L., Romo, H., Zamora-Muñoz, C., & Lobo, J. M. (2022). Are patterns of sampling effort and completeness of inventories congruent? A test using databases for five insect taxa in the Iberian Peninsula. Insect Conservation and Diversity, 15, 406–415. https://doi.org/10.1111/icad.12566
Schwarz, M., & Smit, J. (2020). Fünf neue Nomada-Arten aus der West-Paläarktis. Linzer Biologische Beiträge, 39(1), 683–694.
Schwarz, M., Smit, J., & Ockermüller, E. (2019). Weitere neue paläarktische Bienen aus der Gattung Nomada Scopoli, 1770 (Hymenoptera: Apidae). Entomofauna, 40(1), 3–29.
Settele, J., Bishop, J., & Potts, S. G. (2016). Climate change impacts on pollination. Nature Plants, 2(7), 16092. https://doi.org/10.1038/nplants.2016.92
Settele, J., Hammen, V., Hulme, P., Karlson, U., Klotz, S., Kotarac, M., Kunin, W., Marion, G., O'Connor, M., Petanidou, T., Peterson, K., Potts, S., Pritchard, H., Pysek, P., Rounsevell, M., Spangenberg, J., Steffan-Dewenter, I., Sykes, M., Vighi, M., … Kuhn, I. (2005). ALARM: Assessing LArge-scale environmental risks for bio- diversity with tested methods. Gaia Ecological Perspectives for Science and Society, 14, 69–72.
Vereecken, N. J., Weekers, T., Leclercq, N., De Greef, S., Hainaut, H., Molenberg, J.-M., Martin, Y., Janssens, X., Noël, G., Pauly, A., Roberts, S. P. M., & Marshall, L. (2021). Insect biomass is not a consistent proxy for biodiversity metrics in wild bees. Ecological Indicators, 121, 107132. https://doi.org/10.1016/j.ecolind.2020.107132
Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology, 65(1), 457–480. https://doi.org/10.1146/annurev-ento-011019-025151
Wcislo, W. T. (1987). The roles of seasonality, host synchrony, and behavious in the evolutions and distributions of nest parasitesin Hymenoptera (Insecta), with special reference to bees (Apoidea). Biological Reviews, 62(4), 515–542. https://doi.org/10.1111/j.1469-185X.1987.tb01640.x
Weekers, T., Marshall, L., Leclercq, N., Wood, T. J., Cejas, D., Drepper, B., Hutchinson, L., Michez, D., Molenberg, J.-M., Smagghe, G., Vandamme, P., & Vereecken, N. J. (2022). Dominance of honey bees is negatively associated with wild bee diversity in commercial apple orchards regardless of management practices. Agriculture, Ecosystems & Environment, 323, 107697. https://doi.org/10.1016/j.agee.2021.107697
Wetzel, F. T., Bingham, H. C., Groom, Q., Haase, P., Kõljalg, U., Kuhlmann, M., Martin, C. S., Penev, L., Robertson, T., Saarenmaa, H., Schmeller, D. S., Stoll, S., Tonkin, J. D., & Häuser, C. L. (2018). Unlocking biodiversity data: Prioritization and filling the gaps in biodiversity observation data in Europe. Biological Conservation, 221, 78–85. https://doi.org/10.1016/j.biocon.2017.12.024
Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34(1), 273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032
Wood, T. J. (2022). Two new overlooked bee species from Spain (Hymenoptera: Anthophila: Andrenidae, Apidae). Osmia, 10(February), 1–12. https://doi.org/10.47446/OSMIA10.1
Wood, T. J., Ghisbain, G., Michez, D., & Praz, C. J. (2021). Revisions to the faunas of Andrena of the Iberian Peninsula and Morocco with the descriptions of four new species (Hymenoptera: Andrenidae). European Journal of Taxonomy, 758(758), 147–193. https://doi.org/10.5852/ejt.2021.758.1431
Wood, T. J., Molina, F. P., & Bartomeus, I. (2022). A new Andrena species (Hymenoptera: Andrenidae) from the overlooked Doñana protected areas of southern Spain. Belgian Journal of Entomology, 126(January), 1–13.