[en] Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, presenting high rates of morbidity and mortality in low- and middle-income countries. The H58 haplotype shows high levels of antimicrobial resistance (AMR) and is the dominant S. Typhi haplotype in endemic areas of Asia and East sub-Saharan Africa. The situation in Rwanda is currently unknown and therefore to reveal the genetic diversity and AMR of S. Typhi in Rwanda, 25 historical (1984-1985) and 26 recent (2010-2018) isolates from Rwanda were analysed using whole genome sequencing (WGS). WGS was locally implemented using Illumina MiniSeq and web-based analysis tools, thereafter complemented with bioinformatic approaches for more in-depth analyses. Whereas historical S. Typhi isolates were found to be fully susceptible to antimicrobials and show a diversity of genotypes, i.e 2.2.2, 2.5, 3.3.1 and 4.1; the recent isolates showed high AMR rates and were predominantly associated with genotype 4.3.1.2 (H58, 22/26; 84,6%), possibly resulting from a single introduction in Rwanda from South Asia before 2010. We identified practical challenges for the use of WGS in endemic regions, including a high cost for shipment of molecular reagents and lack of high-end computational infrastructure for the analyses, but also identified WGS to be feasible in the studied setting and giving opportunity for synergy with other programs.
Disciplines :
Immunology & infectious disease
Author, co-author :
Rutanga, Jean Pierre ; College of Science and Technology, University of Rwanda, Kigali, Rwanda ; Institute of Tropical Medicine, Antwerp, Belgium ; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
de Block, Tessa; Institute of Tropical Medicine, Antwerp, Belgium
Cuypers, Wim L; Institute of Tropical Medicine, Antwerp, Belgium ; Department of Computer Science, University of Antwerp, Antwerp, Belgium
Cafmeyer, Josephine; Institute of Tropical Medicine, Antwerp, Belgium
Peeters, Marjan; Institute of Tropical Medicine, Antwerp, Belgium
Umumararungu, Esperance; Rwanda Biomedical Centre, Kigali, Rwanda
Ngabonziza, Jean Claude S; Rwanda Biomedical Centre, Kigali, Rwanda ; Department of Clinical Biology, University of Rwanda, Kigali, Rwanda
Rucogoza, Aniceth; Rwanda Biomedical Centre, Kigali, Rwanda
Vandenberg, Olivier; Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
Martiny, Delphine ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service du Doyen de la Faculté de Médecine et Pharmacie ; Department of Microbiology, Laboratoire des Hôpitaux Universitaires de Bruxelles - Universitaire Laboratorium Brussel (LHUB-ULB), Brussels, Belgium ; National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium
Dusabe, Angélique; Centre Hospitalier Universtaire de Kigali (CHUK), Kigali, Rwanda
Nkubana, Théoneste; Centre Hospitalier Universtaire de Kigali (CHUK), Kigali, Rwanda
Dougan, Gordon; Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
Muvunyi, Claude Mambo; College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
Mwikarago, Ivan Emil; Rwanda Biomedical Centre, Kigali, Rwanda
Jacobs, Jan; Institute of Tropical Medicine, Antwerp, Belgium ; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
Deborggraeve, Stijn; Institute of Tropical Medicine, Antwerp, Belgium
Van Puyvelde, Sandra; Institute of Tropical Medicine, Antwerp, Belgium ; Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom ; Wellcome Trust Sanger Institute, Hinxton, United Kingdom ; Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
Belgian Directorate General for Development Cooperation Gates Gates Research Foundation Flanders Baillet-Latour Baillet-Latour
Funding text :
JPR was financially supported by the Belgian Directorate General for Development cooperation (DGD). SVP and GD were supported by Gates (TyVAC Consortium), WLC was supported by a personal fellowship from the Research Foundation Flanders (FWO). SD and SVP were supported by the ‘Bacterial Infections in the Tropics’ program from Baillet-Latour. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collaborators GDaIIaP. Global, regional, and national incidence, prevalence, and years lived with dis-ability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018; 392(10159):1789–858. Epub 2018/11/30. https://doi.org/10.1016/S0140-6736(18)32279-7 PMID: 30496104; PubMed Central PMCID: PMC6227754.
Collaborators GM. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018; 392(10159):1684–735. Epub 2018/11/30. https://doi.org/10.1016/S0140-6736(18)31891-9 PMID: 30496102; PubMed Central PMCID: PMC6227504.
Dougan G, Baker S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annual review of microbiology. 2014; 68:317–36. Epub 2014/09/11. https://doi.org/10.1146/annurev-micro-091313-103739 PMID: 25208300.
Marks F, von Kalckreuth V, Aaby P, Adu-Sarkodie Y, El Tayeb MA, Ali M, et al. Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. The Lancet Global health. 2017; 5(3):e310–e23. Epub 2017/02/15. https://doi.org/10.1016/S2214-109X(17) 30022-0 PMID: 28193398; PubMed Central PMCID: PMC5316558.
Crump JA, Sjolund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clinical microbiology reviews. 2015; 28(4):901–37. Epub 2015/07/17. https://doi.org/10.1128/CMR. 00002-15 PMID: 26180063; PubMed Central PMCID: PMC4503790.
Mirza SH, Beeching NJ, Hart CA. Multi-drug resistant typhoid: a global problem. Journal of medical microbiology. 1996; 44(5):317–9. Epub 1996/05/01. https://doi.org/10.1099/00222615-44-5-317 PMID: 8636944.
Olarte J, Galindo E. Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrobial agents and chemotherapy. 1973; 4(6):597–601. Epub 1973/12/01. https://doi.org/10.1128/AAC.4.6.597 PMID: 4602828; PubMed Central PMCID: PMC444603.
Rowe B, Ward LR, Threlfall EJ. Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 1997; 24 Suppl 1:S106–9. Epub 1997/01/01. https://doi.org/10.1093/clinids/24.supplement_1.s106 PMID: 8994789.
Mutai WC, Muigai AWT, Waiyaki P, Kariuki S. Multi-drug resistant Salmonella enterica serovar Typhi isolates with reduced susceptibility to ciprofloxacin in Kenya. BMC microbiology. 2018; 18(1):187. Epub 2018/11/16. https://doi.org/10.1186/s12866-018-1332-3 PMID: 30428828; PubMed Central PMCID: PMC6236932.
Pham Thanh D, Karkey A, Dongol S, Ho Thi N, Thompson CN, Rabaa MA, et al. A novel ciprofloxacin-resistant subclade of H58 Salmonella Typhi is associated with fluoroquinolone treatment failure. eLife. 2016; 5:e14003. Epub 2016/03/15. https://doi.org/10.7554/eLife.14003 PMID: 26974227; PubMed Central PMCID: PMC4805543.
Parry CM. Antimicrobial drug resistance in Salmonella enterica. Current opinion in infectious diseases. 2003; 16(5):467–72. Epub 2003/09/23. https://doi.org/10.1097/00001432-200310000-00014 PMID: 14502000.
Humphries RM, Fang FC, Aarestrup FM, Hindler JA. In vitro susceptibility testing of fluoroquinolone activity against Salmonella: recent changes to CLSI standards. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2012; 55(8):1107–13. Epub 2012/07/04. https://doi.org/10.1093/cid/cis600 PMID: 22752519.
World Health Organization (WHO). Model list of essential medicines, 21st list 2019. 2019.
Saeed M, Rasool MH, Rasheed F, Saqalein M, Nisar MA, Imran AA, et al. Extended-spectrum beta-lac-tamases producing extensively drug-resistant Salmonella Typhi in Punjab, Pakistan. Journal of infection in developing countries. 2020; 14(2):169–76. Epub 2020/03/09. https://doi.org/10.3855/jidc.12049 PMID: 32146451.
Munir T, Lodhi M, Ansari JK, Andleeb S, Ahmed M. Extended Spectrum Beta Lactamase producing Cephalosporin resistant Salmonella Typhi, reported from Rawalpindi, Pakistan. JPMA The Journal of the Pakistan Medical Association. 2016; 66(8):1035–6. Epub 2016/08/16. PMID: 27524545.
Phoba MF, Barbe B, Lunguya O, Masendu L, Lulengwa D, Dougan G, et al. Salmonella enterica serovar Typhi Producing CTX-M-15 Extended Spectrum beta-Lactamase in the Democratic Republic of the Congo. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2017; 65(7):1229–31. Epub 2017/11/15. https://doi.org/10.1093/cid/cix342 PMID: 29136410; PubMed Central PMCID: PMC5849100.
Akinyemi KO, Iwalokun BA, Alafe OO, Mudashiru SA, Fakorede C. bla CTX-M-I group extended spectrum beta lactamase-producing Salmonella typhi from hospitalized patients in Lagos, Nigeria. Infection and drug resistance. 2015; 8:99–106. Epub 2015/05/23. https://doi.org/10.2147/IDR.S78876 PMID: 25999745; PubMed Central PMCID: PMC4437039.
Saha S, Sajib MSI, Garrett D, Qamar FN. Antimicrobial Resistance in Typhoidal Salmonella: Around the World in 3 Days. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020; 71(Supplement_2):S91–s5. Epub 2020/07/30. https://doi.org/10.1093/cid/ciaa366 PMID: 32725234; PubMed Central PMCID: PMC7388716.
Wong VK, Baker S, Connor TR, Pickard D, Page AJ, Dave J, et al. An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid. Nature communications. 2016; 7:12827. Epub 2016/10/06. https://doi.org/10.1038/ncomms12827 PMID: 27703135; PubMed Central PMCID: PMC5059462.
Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter-and intracontinental transmission events. Nature genetics. 2015; 47(6):632–9. Epub 2015/05/12. https://doi.org/10.1038/ng. 3281 PMID: 25961941; PubMed Central PMCID: PMC4921243.
Park SE, Pham DT, Boinett C, Wong VK, Pak GD, Panzner U, et al. The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa. Nature communications. 2018; 9(1):5094. Epub 2018/12/07. https://doi.org/10.1038/s41467-018-07370-z PMID: 30504848; PubMed Central PMCID: PMC6269545.
Kariuki S, Wairimu C, Mbae C. Antimicrobial Resistance in Endemic Enteric Infections in Kenya and the Region, and Efforts Toward Addressing the Challenges. The Journal of infectious diseases. 2021; 224 (12 Suppl 2):S883–s9. Epub 2021/09/23. https://doi.org/10.1093/infdis/jiab457 PMID: 34550365; PubMed Central PMCID: PMC8687050.
Bogaerts J, Vandepitte J, Mubiligi V, Habiyaremye I, Ghysels G. Shigella and Salmonella in Butare (Rwanda) 1974-1980. Annales de la Societe belge de medecine tropicale. 1982; 62(4):353–9. Epub 1982/12/01. PMID: 7168588.
Bogaerts J, Bosmans E, Vandenbulcke L, Lemmens P, Lepage P, Vandepitte J, et al. Shigella and Salmonella species from Kigali (Rwanda) (1976-1982). Annales de la Societe belge de medecine tropicale. 1985; 65(3):281–92. Epub 1985/09/01. PMID: 3907525.
Habiyaremye I, Mutwewingabo A, Lemmens P, Ghysels G, Vandepitte J. Shigella and Salmonella in Butare (Rwanda) 1981-1984. Annales de la Societe belge de medecine tropicale. 1986; 66(1):47–56. Epub 1986/01/01. PMID: 3718022.
Ashok R PK, Joselyne N, Emma N. Antimicrobial susceptibility patterns of Salmonella Typhi from Kigali, Rwanda. Shiraz E-Medical Journal. 2010; 11(3):20394.
Besser JM, Carleton HA, Trees E, Stroika SG, Hise K, Wise M, et al. Interpretation of Whole-Genome Sequencing for Enteric Disease Surveillance and Outbreak Investigation. Foodborne pathogens and disease. 2019; 16(7):504–12. Epub 2019/06/28. https://doi.org/10.1089/fpd.2019.2650 PMID: 31246502; PubMed Central PMCID: PMC6653782.
World Health Organization (WHO). Global Antimicrobial Resistance Surveillance System (GLASS): Whole-genome sequencing for surveillance of antimicrobial resistance WHO report. 2020.
Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PloS one. 2014; 9(2):e87991. Epub 2014/02/ 08. https://doi.org/10.1371/journal.pone.0087991 PMID: 24505344; PubMed Central PMCID: PMC3913712.
Chattaway MA, Dallman TJ, Larkin L, Nair S, McCormick J, Mikhail A, et al. The Transformation of Reference Microbiology Methods and Surveillance for Salmonella With the Use of Whole Genome Sequencing in England and Wales. Frontiers in public health. 2019; 7:317. Epub 2019/12/12. https://doi.org/10.3389/fpubh.2019.00317 PMID: 31824904; PubMed Central PMCID: PMC6881236.
Weill PADGaFo-X. Antigenic formulae of the salmonella serovars. WHO Collaborating Center for Reference and Research on Salmonella-Institut Pasteur. 2007.
Institute CLS. Performance Standards for Antimicrobial Susceptibility Testing; 28th ed, CLSI supple-ment M100. Wayne, PA. Clinical and Laboratory Standards Institute. 2018.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor-matics (Oxford, England). 2014; 30(15):2114–20. Epub 2014/04/04. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404; PubMed Central PMCID: PMC4103590.
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology. 2014; 15(3):R46. Epub 2014/03/04. https://doi.org/10.1186/gb-2014-15-3-r46 PMID: 24580807; PubMed Central PMCID: PMC4053813.
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics (Oxford, England). 2018; 34(18):3094–100. Epub 2018/05/12. https://doi.org/10.1093/bioinformatics/bty191 PMID: 29750242; PubMed Central PMCID: PMC6137996.
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England). 2013; 29(8):1072–5. Epub 2013/02/21. https://doi.org/10.1093/bioinformatics/btt086 PMID: 23422339; PubMed Central PMCID: PMC3624806.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology: a journal of computational molecular cell biology. 2012; 19(5):455–77. Epub 2012/04/18. https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599; PubMed Central PMCID: PMC3342519.
Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VP, Nash JH, et al. The Salmonella In Sil-ico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies. PloS one. 2016; 11(1):e0147101. Epub 2016/01/23. https://doi.org/10.1371/journal.pone.0147101 PMID: 26800248; PubMed Central PMCID: PMC4723315.
Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microbial genomics. 2017; 3(10):e000131. Epub 2017/11/28. https://doi.org/10.1099/mgen.0.000131 PMID: 29177089; PubMed Central PMCID: PMC5695208.
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrobial agents and chemotherapy. 2013; 57(7):3348–57. Epub 2013/05/08. https://doi.org/10.1128/AAC.00419-13 PMID: 23650175; PubMed Central PMCID: PMC3697360.
Argimon S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microbial genomics. 2016; 2(11): e000093. Epub 2017/03/30. https://doi.org/10.1099/mgen.0.000093 PMID: 28348833; PubMed Central PMCID: PMC5320705.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943; PubMed Central PMCID: PMC2723002.
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016; 44(W1):W16–21. Epub 2016/05/05. https://doi. org/10.1093/nar/gkw387 PMID: 27141966; PubMed Central PMCID: PMC4987931.
Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extrac-tion of SNPs from multi-FASTA alignments. Microb Genom. 2016; 2(4):e000056. https://doi.org/10. 1099/mgen.0.000056 PMID: 28348851; PubMed Central PMCID: PMC5320690.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9):1312–3. https://doi.org/10.1093/bioinformatics/btu033 PMID: 24451623; PubMed Central PMCID: PMC3998144.
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic acids research. 2016; 44(W1):W242–5. Epub 2016/04/21. https://doi. org/10.1093/nar/gkw290 PMID: 27095192; PubMed Central PMCID: PMC4987883.
Argimón S, Yeats CA, Goater RJ, Abudahab K, Taylor B, Underwood A, et al. A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch. Nature communications. 2021; 12(1):2879. Epub 2021/05/19. https://doi.org/10.1038/s41467-021-23091-2 PMID: 34001879; PubMed Central PMCID: PMC8128892.
Neuert S, Nair S, Day MR, Doumith M, Ashton PM, Mellor KC, et al. Prediction of Phenotypic Antimicro-bial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica. Frontiers in microbiology. 2018; 9:592. Epub 2018/04/11. https://doi.org/10.3389/fmicb.2018.00592 PMID: 29636749; PubMed Central PMCID: PMC5880904.
Ingle DJ, Nair S, Hartman H, Ashton PM, Dyson ZA, Day M, et al. Informal genomic surveillance of regional distribution of Salmonella Typhi genotypes and antimicrobial resistance via returning travellers. PLoS neglected tropical diseases. 2019; 13(9):e0007620. Epub 2019/09/13. https://doi.org/10.1371/journal.pntd.0007620 PMID: 31513580; PubMed Central PMCID: PMC6741848.
Kariuki S, Revathi G, Kiiru J, Mengo DM, Mwituria J, Muyodi J, et al. Typhoid in Kenya is associated with a dominant multidrug-resistant Salmonella enterica serovar Typhi haplotype that is also wide-spread in Southeast Asia. Journal of clinical microbiology. 2010; 48(6):2171–6. Epub 2010/04/16. https://doi.org/10.1128/JCM.01983-09 PMID: 20392916; PubMed Central PMCID: PMC2884483.
Holt KE, Phan MD, Baker S, Duy PT, Nga TV, Nair S, et al. Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl Trop Dis. 2011; 5(7):e1245. Epub 2011/08/04. https://doi.org/10.1371/journal.pntd.0001245 PMID: 21811646; PubMed Central PMCID: PMC3139670.
Chiou CS, Lauderdale TL, Phung DC, Watanabe H, Kuo JC, Wang PJ, et al. Antimicrobial resistance in Salmonella enterica Serovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and Vietnam. Antimi-crobial agents and chemotherapy. 2014; 58(11):6501–7. Epub 2014/08/20. https://doi.org/10.1128/AAC.03608-14 PMID: 25136011; PubMed Central PMCID: PMC4249406.
Feasey NA, Gaskell K, Wong V, Msefula C, Selemani G, Kumwenda S, et al. Rapid emergence of multi-drug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi. PLoS neglected tropical diseases. 2015; 9(4):e0003748. Epub 2015/04/25. https://doi.org/10.1371/journal.pntd.0003748 PMID: 25909750; PubMed Central PMCID: PMC4409211.
Kariuki S, Revathi G, Muyodi J, Mwituria J, Munyalo A, Mirza S, et al. Characterization of multidrug-resistant typhoid outbreaks in Kenya. Journal of clinical microbiology. 2004; 42(4):1477–82. Epub 2004/ 04/09. https://doi.org/10.1128/JCM.42.4.1477-1482.2004 PMID: 15070992; PubMed Central PMCID: PMC387605.
Mengo DM, Kariuki S, Muigai A, Revathi G. Trends in Salmonella enteric serovar Typhi in Nairobi, Kenya from 2004 to 2006. Journal of infection in developing countries. 2010; 4(6):393–6. Epub 2010/ 07/06. PMID: 20601792.
Lunguya O, Lejon V, Phoba MF, Bertrand S, Vanhoof R, Verhaegen J, et al. Salmonella typhi in the democratic republic of the congo: fluoroquinolone decreased susceptibility on the rise. PLoS neglected tropical diseases. 2012; 6(11):e1921. Epub 2012/11/21. https://doi.org/10.1371/journal.pntd.0001921 PMID: 23166855; PubMed Central PMCID: PMC3499407.
Dagnra AY, Akolly K, Gbadoe A, Aho K, David M. [Emergence of multidrug resistant Salmonella strains in Lome (Togo)]. Medecine et maladies infectieuses. 2007; 37(5):266–9. Epub 2007/04/27. https://doi. org/10.1016/j.medmal.2007.02.002 PMID: 17459634.
Gross U, Amuzu SK, de Ciman R, Kassimova I, Gross L, Rabsch W, et al. Bacteremia and antimicrobial drug resistance over time, Ghana. Emerging infectious diseases. 2011; 17(10):1879–82. Epub 2011/ 10/18. https://doi.org/10.3201/eid1710.110327 PMID: 22000360; PubMed Central PMCID: PMC3310671.
Akinyemi KO, Coker AO. Trends of antibiotic resistance in Salmonella enterica serovar typhi isolated from hospitalized patients from 1997 to 2004 in Lagos, Nigeria. Indian journal of medical microbiology. 2007; 25(4):436–7. Epub 2007/12/19. https://doi.org/10.4103/0255-0857.37369 PMID: 18087113.
Ombelet S, Barbe B, Affolabi D, Ronat JB, Lompo P, Lunguya O, et al. Best Practices of Blood Cultures in Low-and Middle-Income Countries. Frontiers in medicine. 2019; 6:131. Epub 2019/07/06. https://doi. org/10.3389/fmed.2019.00131 PMID: 31275940; PubMed Central PMCID: PMC6591475.
Kumar Rai G, Saluja T, Chaudhary S, Tamrakar D, Kanodia P, Giri BR, et al. Safety and immunogenic-ity of the Vi-DT typhoid conjugate vaccine in healthy volunteers in Nepal: an observer-blind, active-controlled, randomised, non-inferiority, phase 3 trial. The Lancet Infectious diseases. 2022; 22(4):529– 40. Epub 2021/12/24. https://doi.org/10.1016/S1473-3099(21)00455-2 PMID: 34942090; PubMed Central PMCID: PMC8942857 Bioscience. JHK is a scientific consultant to SK Bioscience for COVID 19 vaccine research. All remaining authors declare no competing interests.
Patel PD, Patel P, Liang Y, Meiring JE, Misiri T, Mwakiseghile F, et al. Safety and Efficacy of a Typhoid Conjugate Vaccine in Malawian Children. The New England journal of medicine. 2021; 385(12):1104– 15. Epub 2021/09/16. https://doi.org/10.1056/NEJMoa2035916 PMID: 34525285; PubMed Central PMCID: PMC8202713.
Qadri F, Khanam F, Liu X, Theiss-Nyland K, Biswas PK, Bhuiyan AI, et al. Protection by vaccination of children against typhoid fever with a Vi-tetanus toxoid conjugate vaccine in urban Bangladesh: a clus-ter-randomised trial. Lancet (London, England). 2021; 398(10301):675–84. Epub 2021/08/14. https://doi.org/10.1016/S0140-6736(21)01124-7 PMID: 34384540; PubMed Central PMCID: PMC8387974 travel expenses to scientific input engagements unrelated to the topic of this manuscript and is a mem-ber of the WHO Immunization and Vaccine-related Implementation Research Advisory Committee. All other authors declare no competing interests.