Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies.
Freis, Barbara; Ramirez, Maria De Los Angeles; Kiefer, Célineet al.
MRI contrast agent; iron oxide nanocubes and nanoplates; magnetic hyperthermia; photothermia; targeting ligand; Pharmaceutical Science
Abstract :
[en] Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s-1·mM-1, SARMH = 580 W·g-1, SARPTT = 800 W·g-1; and r2 = 407 s-1·mM-1, SARMH = 899 W·g-1, SARPTT = 300 W·g-1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Disciplines :
Chemistry
Author, co-author :
Freis, Barbara ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service de Chimie générale, organique et biomédicale ; UMR CNRS-UdS 7504, Institut de Physique et Chimie des Matériaux, CNRS, Université de Strasbourg, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
Ramirez, Maria De Los Angeles; UMR CNRS-UdS 7504, Institut de Physique et Chimie des Matériaux, CNRS, Université de Strasbourg, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
Kiefer, Céline; UMR CNRS-UdS 7504, Institut de Physique et Chimie des Matériaux, CNRS, Université de Strasbourg, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
Harlepp, Sébastien ; Tumor Biomechanics, INSERM UMR S1109, Institut d'Hématologie et d'Immunologie, 67091 Strasbourg, France
Iacovita, Cristian ; Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
HENOUMONT, Céline ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie générale, organique et biomédicale
Affolter-Zbaraszczuk, Christine; Inserm U1121, Centre de Recherche en Biomédecine de Strasbourg, 1 Rue Eugène Boeckel, CS 60026, CEDEX, 67084 Strasbourg, France
Meyer, Florent ; Inserm U1121, Centre de Recherche en Biomédecine de Strasbourg, 1 Rue Eugène Boeckel, CS 60026, CEDEX, 67084 Strasbourg, France
Mertz, Damien ; UMR CNRS-UdS 7504, Institut de Physique et Chimie des Matériaux, CNRS, Université de Strasbourg, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
Boos, Anne ; IPHC UMR 7178, CNRS, Université de Strasbourg, 67000 Strasbourg, France
Tasso, Mariana ; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Diagonal 113 y 64, La Plata 1900, Argentina
Furgiuele, Sonia ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service d'Anatomie humaine et Oncologie expérimentale
Journe, Fabrice ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service d'Anatomie humaine et Oncologie expérimentale
SAUSSEZ, Sven ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service d'Anatomie humaine et Oncologie expérimentale
Bégin-Colin, Sylvie; UMR CNRS-UdS 7504, Institut de Physique et Chimie des Matériaux, CNRS, Université de Strasbourg, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
LAURENT, Sophie ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie générale, organique et biomédicale
Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies.
Publication date :
30 March 2023
Journal title :
Pharmaceutics
ISSN :
1999-4923
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
M112 - Anatomie humaine et Oncologie expérimentale
Research institute :
R550 - Institut des Sciences et Technologies de la Santé
Funding text :
The Region Alsace, France, and the University of Mons are gratefully acknowledged for the doctoral fellowship to Barbara Freis. This project received funding from ANR (EURONANOMED2020-121—THERAGET) under the umbrella of the ERA-NET EuroNanoMed (GA N°723770) of the EU Horizon 2020 Research and Innovation and ProtherWal “Walloon Region via the ProtherWal Society (Agreement 7289)”. SuperBranche is thanked for providing dendron molecules. UMONS acknowledges the financial support of the Fond National de la Recherche Scientifique (FNRS), the ARC Programs of the French Community of Belgium, COST actions and the Walloon region (ProtherWal and Interreg projects). S.F. acknowledges UMONS, EpiCURA Hospital, ProtherWal and the Fund for Medical Research in Hainaut (FRMH).
Dadfar S.M. Roemhild K. Drude N.I. von Stillfried S. Knüchel R. Kiessling F. Lammers T. Iron Oxide Nanoparticles: Diagnostic, Therapeutic and Theranostic Applications Adv. Drug Deliv. Rev. 2019 138 302 325 10.1016/j.addr.2019.01.005 30639256
Avasthi A. Caro C. Pozo-Torres E. Leal M.P. García-Martín M.L. Magnetic Nanoparticles as MRI Contrast Agents Top Curr. Chem. 2020 378 40 10.1007/s41061-020-00302-w 32382832
Low L.E. Lim H.P. Ong Y.S. Siva S.P. Sia C.S. Goh B.-H. Chan E.S. Tey B.T. Stimuli-Controllable Iron Oxide Nanoparticle Assemblies: Design, Manipulation and Bio-Applications J. Control. Release 2022 345 231 274 10.1016/j.jconrel.2022.03.024 35306119
Blanco-Andujar C. Walter A. Cotin G. Bordeianu C. Mertz D. Felder-Flesch D. Begin-Colin S. Design of Iron Oxide-Based Nanoparticles for MRI and Magnetic Hyperthermia Nanomedicine 2016 11 1889 1910 10.2217/nnm-2016-5001
Kim D. Kim J. Park Y.I. Lee N. Hyeon T. Recent Development of Inorganic Nanoparticles for Biomedical Imaging ACS Cent. Sci. 2018 4 324 336 29632878 10.1021/acscentsci.7b00574
Schwake M. Müther M. Bruns A.-K. Zinnhardt B. Warneke N. Holling M. Schipmann S. Brokinkel B. Wölfer J. Stummer W. et al. Combined Fluorescence-Guided Resection and Intracavitary Thermotherapy with Superparamagnetic Iron-Oxide Nanoparticles for Recurrent High-Grade Glioma: Case Series with Emphasis on Complication Management Cancers 2022 14 541 10.3390/cancers14030541
Liu X. Zhang Y. Wang Y. Zhu W. Li G. Ma X. Zhang Y. Chen S. Tiwari S. Shi K. et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy Theranostics 2020 10 3793 3815 10.7150/thno.40805
Chang D. Lim M. Goos J.A.C.M. Qiao R. Ng Y.Y. Mansfeld F.M. Jackson M. Davis T.P. Kavallaris M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations Front. Pharmacol. 2018 9 831 10.3389/fphar.2018.00831
Andrade R.G.D. Veloso S.R.S. Castanheira E.M.S. Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications Int. J. Mol. Sci. 2020 21 2455 10.3390/ijms21072455
Roca A.G. Gutiérrez L. Gavilán H. Fortes Brollo M.E. Veintemillas-Verdaguer S. Morales M.D.P. Design Strategies for Shape-Controlled Magnetic Iron Oxide Nanoparticles Adv. Drug Deliv. Rev. 2019 138 68 104 10.1016/j.addr.2018.12.008
Salunkhe A. Khot V. Patil S.I. Tofail S.A.M. Bauer J. Thorat N.D. MRI Guided Magneto-Chemotherapy with High-Magnetic-Moment Iron Oxide Nanoparticles for Cancer Theranostics ACS Appl. Bio Mater. 2020 3 2305 2313 10.1021/acsabm.0c00077 35025282
Patsula V. Moskvin M. Dutz S. Horák D. Size-Dependent Magnetic Properties of Iron Oxide Nanoparticles J. Phys. Chem. Solids 2016 88 24 30 10.1016/j.jpcs.2015.09.008
Cotin G. Blanco-Andujar C. Nguyen D.-V. Affolter C. Boutry S. Boos A. Ronot P. Uring-Lambert B. Choquet P. Zorn P.E. et al. Dendron Based Antifouling, MRI and Magnetic Hyperthermia Properties of Different Shaped Iron Oxide Nanoparticles Nanotechnology 2019 30 374002 31195384 10.1088/1361-6528/ab2998
Muro-Cruces J. Roca A.G. López-Ortega A. Fantechi E. del-Pozo-Bueno D. Estradé S. Peiró F. Sepúlveda B. Pineider F. Sangregorio C. et al. Precise Size Control of the Growth of Fe3O4 Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis ACS Nano 2019 13 7716 7728 10.1021/acsnano.9b01281 31173684
Mai B.T. Balakrishnan P.B. Barthel M.J. Piccardi F. Niculaes D. Marinaro F. Fernandes S. Curcio A. Kakwere H. Autret G. et al. Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy ACS Appl. Mater. Interfaces 2019 11 5727 5739 10.1021/acsami.8b16226
Xie W. Guo Z. Gao F. Gao Q. Wang D. Liaw B.-S. Cai Q. Sun X. Wang X. Zhao L. Shape-, Size- and Structure-Controlled Synthesis and Biocompatibility of Iron Oxide Nanoparticles for Magnetic Theranostics Theranostics 2018 8 3284 3307 29930730 10.7150/thno.25220
Cotin G. Blanco-Andujar C. Perton F. Asín L. de la Fuente J.M. Reichardt W. Schaffner D. Ngyen D.-V. Mertz D. Kiefer C. et al. Unveiling the Role of Surface, Size, Shape and Defects of Iron Oxide Nanoparticles for Theranostic Applications Nanoscale 2021 13 14552 14571 34473175 10.1039/D1NR03335B
Geppert M. Himly M. Iron Oxide Nanoparticles in Bioimaging—An Immune Perspective Front. Immunol. 2021 12 688927 10.3389/fimmu.2021.688927
Situ-Loewenstein S.F. Wickramasinghe S. Abenojar E.C. Erokwu B.O. Flask C.A. Lee Z. Samia A.C.S. A Novel Synthetic Route for High-Index Faceted Iron Oxide Concave Nanocubes with High T2 Relaxivity for in Vivo MRI Applications J. Mater. Sci. Mater. Med. 2018 29 58 10.1007/s10856-018-6052-6
Naumenko V. Garanina A. Nikitin A. Vodopyanov S. Vorobyeva N. Tsareva Y. Kunin M. Ilyasov A. Semkina A. Chekhonin V. et al. Biodistribution and Tumors MRI Contrast Enhancement of Magnetic Nanocubes, Nanoclusters, and Nanorods in Multiple Mice Models Contrast Media Mol. Imaging 2018 2018 8264208 10.1155/2018/8264208
Ta H.T. Li Z. Hagemeyer C.E. Cowin G. Zhang S. Palasubramaniam J. Alt K. Wang X. Peter K. Whittaker A.K. Molecular Imaging of Activated Platelets via Antibody-Targeted Ultra-Small Iron Oxide Nanoparticles Displaying Unique Dual MRI Contrast Biomaterials 2017 134 31 42 10.1016/j.biomaterials.2017.04.037 28453956
Bertuit E. Benassai E. Mériguet G. Greneche J.-M. Baptiste B. Neveu S. Wilhelm C. Abou-Hassan A. Structure–Property–Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia ACS Nano 2022 16 271 284 10.1021/acsnano.1c06212 34963049
Anilkumar T.S. Lu Y.-J. Chen J.-P. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy Int. J. Mol. Sci. 2020 21 5187 10.3390/ijms21155187
Espinosa A. Di Corato R. Kolosnjaj-Tabi J. Flaud P. Pellegrino T. Wilhelm C. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment ACS Nano 2016 10 2436 2446 26766814 10.1021/acsnano.5b07249
Espinosa A. Kolosnjaj-Tabi J. Abou-Hassan A. Plan Sangnier A. Curcio A. Silva A.K.A. Di Corato R. Neveu S. Pellegrino T. Liz-Marzán L.M. et al. Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo Adv. Funct. Mater. 2018 28 1803660 10.1002/adfm.201803660
Canese R. Vurro F. Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy Nanomaterials 2021 11 1950 10.3390/nano11081950
Lozano-Pedraza C. Plaza-Mayoral E. Espinosa A. Sot B. Serrano A. Salas G. Blanco-Andujar C. Cotin G. Felder-Flesch D. Begin-Colin S. et al. Assessing the Parameters Modulating Optical Losses of Iron Oxide Nanoparticles under near Infrared Irradiation Nanoscale Adv. 2021 3 6490 6502 10.1039/D1NA00601K
Thanh N.T.K. Clinical Applications of Magnetic Nanoparticles: Design to Diagnosis Manufacturing to Medicine CRC Press, Taylor & Francis Group Boca Raton, FL, USA 2018 978-1-138-05155-3
Geinguenaud F. Sainte-Catherine O. Poirier F. Besnard V. Haddad O. Chaubet F. Lalatonne Y. Lutomski D. Sutton A. Motte L. Iron Oxide Nanoparticles Functionalized with Fucoidan: A Potential Theranostic Nanotool for Hepatocellular Carcinoma Chembiochem 2022 23 e202200265 10.1002/cbic.202200265
Sadeghi Z. Maleki P. Shahabi F. Bondarkhilli S.A.M. Masoumi M. Taheri M. Mohammadi M. Raheb J. Surface Modification of Superparamagnetic Iron Oxide (SPION) and Comparison of Cytotoxicity Effect of MPEG2000-PEI-SPION and MPEG750-PEI-SPION on the Human Embryonic Carcinoma Stem Cell, NTERA2 Cell Line Hum. Antibodies 2020 28 159 167 10.3233/HAB-200403
Alphandéry E. Biodistribution and Targeting Properties of Iron Oxide Nanoparticles for Treatments of Cancer and Iron Anemia Disease Nanotoxicology 2019 13 573 596 10.1080/17435390.2019.1572809
Freis B. De Los Ángeles Ramírez M. Furgiuele S. Journe F. Cheignon C. Charbonnière L.J. Henoumont C. Kiefer C. Mertz D. Affolter-Zbaraszczuk C. et al. Bioconjugation Studies of an EGF-R Targeting Ligand on Dendronized Iron Oxide Nanoparticles to Target Head and Neck Cancer Cells Int. J. Pharm. 2023 635 122654 10.1016/j.ijpharm.2023.122654 36720449
Walter A. Garofalo A. Bonazza P. Meyer F. Martinez H. Fleutot S. Billotey C. Taleb J. Felder-Flesch D. Begin-Colin S. Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono- or Bisphosphonate-Anchored Dendronized Iron Oxide Nanoparticles ChemPlusChem 2017 82 647 659 10.1002/cplu.201700049 31961585
Walter A. Garofalo A. Parat A. Jouhannaud J. Pourroy G. Voirin E. Laurent S. Bonazza P. Taleb J. Billotey C. et al. Validation of a Dendron Concept to Tune Colloidal Stability, MRI Relaxivity and Bioelimination of Functional Nanoparticles J. Mater. Chem. B 2015 3 1484 1494 10.1039/C4TB01954G 32262421
Bordeianu C. Parat A. Affolter-Zbaraszczuk C. Muller R.N. Boutry S. Begin-Colin S. Meyer F. Laurent S. Felder-Flesch D. How a Grafting Anchor Tailors the Cellular Uptake and in Vivo Fate of Dendronized Iron Oxide Nanoparticles J. Mater. Chem. B 2017 5 5152 5164 10.1039/C7TB00781G
Filippi M. Nguyen D.-V. Garello F. Perton F. Bégin-Colin S. Felder-Flesch D. Power L. Scherberich A. Metronidazole-Functionalized Iron Oxide Nanoparticles for Molecular Detection of Hypoxic Tissues Nanoscale 2019 11 22559 22574 10.1039/C9NR08436C 31746914
Vanhecke D. Crippa F. Lattuada M. Balog S. Rothen-Rutishauser B. Petri-Fink A. Characterization of the Shape Anisotropy of Superparamagnetic Iron Oxide Nanoparticles during Thermal Decomposition Materials 2020 13 2018 10.3390/ma13092018 32344889
Nozawa R. Naka T. Kurihara M. Togashi T. Size-Tunable Synthesis of Iron Oxide Nanocrystals by Continuous Seed-Mediated Growth: Role of Alkylamine Species in the Stepwise Thermal Decomposition of Iron(II) Oxalate Dalton Trans. 2021 50 16021 16029 10.1039/D1DT02953C
Cotin G. Kiefer C. Perton F. Ihiawakrim D. Blanco-Andujar C. Moldovan S. Lefevre C. Ersen O. Pichon B. Mertz D. et al. Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles Nanomaterials 2018 8 881 10.3390/nano8110881
Le Bail A. Duroy H. Fourquet J.L. Ab-Initio Structure Determination of LiSbWO6 by X-Ray Powder Diffraction Mater. Res. Bull. 1988 23 447 452 10.1016/0025-5408(88)90019-0
Rodríguez-Carvajal J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction Phys. B Condens. Matter 1993 192 55 69 10.1016/0921-4526(93)90108-I
Boutry S. Forge D. Burtea C. Mahieu I. Murariu O. Laurent S. Vander Elst L. Muller R.N. How to Quantify Iron in an Aqueous or Biological Matrix: A Technical Note Contrast Media Mol. Imaging 2009 4 299 304 10.1002/cmmi.291
Pichon B.P. Gerber O. Lefevre C. Florea I. Fleutot S. Baaziz W. Pauly M. Ohlmann M. Ulhaq C. Ersen O. et al. Microstructural and Magnetic Investigations of Wüstite-Spinel Core-Shell Cubic-Shaped Nanoparticles Chem. Mater. 2011 23 2886 2900 10.1021/cm2003319
Baaziz W. Pichon B.P. Fleutot S. Liu Y. Lefevre C. Greneche J.-M. Toumi M. Mhiri T. Begin-Colin S. Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting J. Phys. Chem. C 2014 118 3795 3810 10.1021/jp411481p
Daou T.J. Grenèche J.M. Pourroy G. Buathong S. Derory A. Ulhaq-Bouillet C. Donnio B. Guillon D. Begin-Colin S. Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles Chem. Mater. 2008 20 5869 5875 10.1021/cm801405n
Wetterskog E. Tai C.-W. Grins J. Bergström L. Salazar-Alvarez G. Anomalous Magnetic Properties of Nanoparticles Arising from Defect Structures: Topotaxial Oxidation of Fe1−XO|Fe3−δO4 Core|Shell Nanocubes to Single-Phase Particles ACS Nano 2013 7 7132 7144 10.1021/nn402487q
Cotin G. Perton F. Petit C. Sall S. Kiefer C. Begin V. Pichon B. Lefevre C. Mertz D. Greneche J.-M. et al. Harnessing Composition of Iron Oxide Nanoparticle: Impact of Solvent-Mediated Ligand–Ligand Interaction and Competition between Oxidation and Growth Kinetics Chem. Mater. 2020 32 9245 9259 10.1021/acs.chemmater.0c03041
Lak A. Cassani M. Mai B.T. Winckelmans N. Cabrera D. Sadrollahi E. Marras S. Remmer H. Fiorito S. Cremades-Jimeno L. et al. Fe2+ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment Nano Lett. 2018 18 6856 6866 10.1021/acs.nanolett.8b02722
Cotin G. Heinrich B. Perton F. Kiefer C. Francius G. Mertz D. Freis B. Pichon B. Strub J.-M. Cianférani S. et al. A Confinement-Driven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media Small 2022 18 2200414 10.1002/smll.202200414
Perton F. Cotin G. Kiefer C. Strub J.-M. Cianferani S. Greneche J.-M. Parizel N. Heinrich B. Pichon B. Mertz D. et al. Iron Stearate Structures: An Original Tool for Nanoparticles Design Inorg. Chem. 2021 60 12445 12456 10.1021/acs.inorgchem.1c01689
Chen H. Burnett J. Zhang F. Zhang J. Paholak H. Sun D. Highly Crystallized Iron Oxide Nanoparticles as Effective and Biodegradable Mediators for Photothermal Cancer Therapy J. Mater. Chem. B 2014 2 757 765 10.1039/C3TB21338B
Santoyo Salazar J. Perez L. de Abril O. Truong Phuoc L. Ihiawakrim D. Vazquez M. Greneche J.-M. Begin-Colin S. Pourroy G. Magnetic Iron Oxide Nanoparticles in 10−40 Nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties Chem. Mater. 2011 23 1379 1386 10.1021/cm103188a
Guardia P. Di Corato R. Lartigue L. Wilhelm C. Espinosa A. Garcia-Hernandez M. Gazeau F. Manna L. Pellegrino T. Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment ACS Nano 2012 6 3080 3091 22494015 10.1021/nn2048137
Yoon T.-J. Lee H. Shao H. Weissleder R. Highly Magnetic Core–Shell Nanoparticles with a Unique Magnetization Mechanism Angew. Chem. Int. Ed. 2011 50 4663 4666 10.1002/anie.201100101 21495138
Smolensky E.D. Park H.-Y.E. Zhou Y. Rolla G.A. Marjańska M. Botta M. Pierre V.C. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents J. Mater. Chem. B Mater. Biol. Med. 2013 1 2818 2828 10.1039/c3tb00369h
Walter A. Billotey C. Garofalo A. Ulhaq-Bouillet C. Lefèvre C. Taleb J. Laurent S. Vander Elst L. Muller R.N. Lartigue L. et al. Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia Chem. Mater. 2014 26 5252 5264 10.1021/cm5019025
Serantes D. Simeonidis K. Angelakeris M. Chubykalo-Fesenko O. Marciello M. Morales M.D.P. Baldomir D. Martinez-Boubeta C. Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling J. Phys. Chem. C 2014 118 5927 5934 10.1021/jp410717m
Fu R. Yan Y. Roberts C. Liu Z. Chen Y. The Role of Dipole Interactions in Hyperthermia Heating Colloidal Clusters of Densely-Packed Superparamagnetic Nanoparticles Sci. Rep. 2018 8 4704 10.1038/s41598-018-23225-5 29549359
Bigall N.C. Wilhelm C. Beoutis M.-L. García-Hernandez M. Khan A.A. Giannini C. Sánchez-Ferrer A. Mezzenga R. Materia M.E. Garcia M.A. et al. Colloidal Ordered Assemblies in a Polymer Shell—A Novel Type of Magnetic Nanobeads for Theranostic Applications Chem. Mater. 2013 25 1055 1062 10.1021/cm3036746
Ovejero J.G. Cabrera D. Carrey J. Valdivielso T. Salas G. Teran F.J. Effects of Inter- and Intra-Aggregate Magnetic Dipolar Interactions on the Magnetic Heating Efficiency of Iron Oxide Nanoparticles Phys. Chem. Chem. Phys. 2016 18 10954 10963 10.1039/C6CP00468G
Martinez-Boubeta C. Simeonidis K. Makridis A. Angelakeris M. Iglesias O. Guardia P. Cabot A. Yedra L. Estradé S. Peiró F. et al. Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications Sci. Rep. 2013 3 1652 10.1038/srep01652
Zyuzin M.V. Cassani M. Barthel M.J. Gavilan H. Silvestri N. Escudero A. Scarpellini A. Lucchesi F. Teran F.J. Parak W.J. et al. Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment ACS Appl. Mater. Interfaces 2019 11 41957 41971 10.1021/acsami.9b15501 31584801
Kerroum M.A.A. Iacovita C. Baaziz W. Ihiawakrim D. Rogez G. Benaissa M. Lucaciu C.M. Ersen O. Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnxFe3−xO4 Nanoparticles Int. J. Mol. Sci. 2020 21 7775 10.3390/ijms21207775 33096631
Iacovita C. Stiufiuc G.F. Dudric R. Vedeanu N. Tetean R. Stiufiuc R.I. Lucaciu C.M. Saturation of Specific Absorption Rate for Soft and Hard Spinel Ferrite Nanoparticles Synthesized by Polyol Process Magnetochemistry 2020 6 23 10.3390/magnetochemistry6020023
Morales I. Costo R. Mille N. Carrey J. Hernando A. Presa P. de la Time-Dependent AC Magnetometry and Chain Formation in Magnetite: The Influence of Particle Size, Initial Temperature and the Shortening of the Relaxation Time by the Applied Field Nanoscale Adv. 2021 3 5801 5812 36132668 10.1039/D1NA00463H
Lucaciu C.M. Nitica S. Fizesan I. Filip L. Bilteanu L. Iacovita C. Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field Nanomaterials 2022 12 3578 10.3390/nano12203578
Myrovali E. Maniotis N. Makridis A. Terzopoulou A. Ntomprougkidis V. Simeonidis K. Sakellari D. Kalogirou O. Samaras T. Salikhov R. et al. Arrangement at the Nanoscale: Effect on Magnetic Particle Hyperthermia Sci. Rep. 2016 6 37934 10.1038/srep37934
Lartigue L. Hugounenq P. Alloyeau D. Clarke S.P. Lévy M. Bacri J.-C. Bazzi R. Brougham D.F. Wilhelm C. Gazeau F. Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents ACS Nano 2012 6 10935 10949 10.1021/nn304477s
Blanco-Andujar C. Ortega D. Southern P. Pankhurst Q.A. Thanh N.T.K. High Performance Multi-Core Iron Oxide Nanoparticles for Magnetic Hyperthermia: Microwave Synthesis, and the Role of Core-to-Core Interactions Nanoscale 2015 7 1768 1775 10.1039/C4NR06239F 25515238
Sanz B. Cabreira-Gomes R. Torres T.E. Valdés D.P. Lima E. Jr. De Biasi E. Zysler R.D. Ibarra M.R. Goya G.F. Low-Dimensional Assemblies of Magnetic MnFe2O4 Nanoparticles and Direct In Vitro Measurements of Enhanced Heating Driven by Dipolar Interactions: Implications for Magnetic Hyperthermia ACS Appl. Nano Mater. 2020 3 8719 8731 10.1021/acsanm.0c01545
Cabana S. Curcio A. Michel A. Wilhelm C. Abou-Hassan A. Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers Nanomaterials 2020 10 1548 10.3390/nano10081548
Nemec S. Kralj S. Wilhelm C. Abou-Hassan A. Rols M.-P. Kolosnjaj-Tabi J. Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles’ Heating Yield Appl. Sci. 2020 10 7322 10.3390/app10207322
Perton F. Architecture de Nanoparticules Hybrides Pour Une Imagerie et /Ou Thérapie Multimodales Ph.D. Thesis University of Strasbourg Strasbourg, France 2019
Hossein-Nejad-Ariani H. Althagafi E. Kaur K. Small Peptide Ligands for Targeting EGFR in Triple Negative Breast Cancer Cells Sci. Rep. 2019 9 2723 10.1038/s41598-019-38574-y 30804365
Ratushny V. Astsaturov I. Burtness B.A. Golemis E.A. Silverman J.S. Targeting EGFR Resistance Networks in Head and Neck Cancer Cell Signal. 2009 21 1255 1268 10.1016/j.cellsig.2009.02.021 19258037
Kiseleva A. Beck T.N. Serebriiskii I.G. Liu H. Burtness B. Golemis E.A. Targeting the ErbB Family in Head and Neck Cancer Molecular Determinants of Head and Neck Cancer Burtness B. Golemis E.A. Current Cancer Research Springer International Publishing Cham, Switzerland 2018 7 61 978-3-319-78762-6
Astsaturov I. Cohen R.B. Harari P.M. EGFR-Targeting Monoclonal Antibodies in Head and Neck Cancer Curr. Cancer Drug Targets 2006 6 691 710 10.2174/156800906779010191 17168674
Pöselt E. Kloust H. Tromsdorf U. Janschel M. Hahn C. Maßlo C. Weller H. Relaxivity Optimization of a PEGylated Iron-Oxide-Based Negative Magnetic Resonance Contrast Agent for T2-Weighted Spin–Echo Imaging ACS Nano 2012 6 1619 1624 10.1021/nn204591r
Güster J.D. Weissleder S.V. Busch C.-J. Kriegs M. Petersen C. Knecht R. Dikomey E. Rieckmann T. The Inhibition of PARP but Not EGFR Results in the Radiosensitization of HPV/P16-Positive HNSCC Cell Lines Radiother. Oncol. 2014 113 345 351 10.1016/j.radonc.2014.10.011
Pola R. Böhmová E. Filipová M. Pechar M. Pankrác J. Větvička D. Olejár T. Kabešová M. Poučková P. Šefc L. et al. Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors Pharmaceutics 2020 12 31 10.3390/pharmaceutics12010031
Kriegs M. Clauditz T.S. Hoffer K. Bartels J. Buhs S. Gerull H. Zech H.B. Bußmann L. Struve N. Rieckmann T. et al. Analyzing Expression and Phosphorylation of the EGF Receptor in HNSCC Sci. Rep. 2019 9 13564 10.1038/s41598-019-49885-5
Kalinowski F.C. Giles K.M. Candy P.A. Ali A. Ganda C. Epis M.R. Webster R.J. Leedman P.J. Regulation of Epidermal Growth Factor Receptor Signaling and Erlotinib Sensitivity in Head and Neck Cancer Cells by MiR-7 PLoS ONE 2012 7 e47067 10.1371/journal.pone.0047067
Arriortua O.K. Insausti M. Lezama L. Gil de Muro I. Garaio E. de la Fuente J.M. Fratila R.M. Morales M.P. Costa R. Eceiza M. et al. RGD-Functionalized Fe3O4 Nanoparticles for Magnetic Hyperthermia Colloids Surf. B Biointerfaces 2018 165 315 324 10.1016/j.colsurfb.2018.02.031
Carenza E. Barceló V. Morancho A. Montaner J. Rosell A. Roig A. Rapid Synthesis of Water-Dispersible Superparamagnetic Iron Oxide Nanoparticles by a Microwave-Assisted Route for Safe Labeling of Endothelial Progenitor Cells Acta Biomater. 2014 10 3775 3785 10.1016/j.actbio.2014.04.010 24755438
Guerra D.B. Oliveira E.M.N. Sonntag A.R. Sbaraine P. Fay A.P. Morrone F.B. Papaléo R.M. Intercomparison of Radiosensitization Induced by Gold and Iron Oxide Nanoparticles in Human Glioblastoma Cells Irradiated by 6 MV Photons Sci. Rep. 2022 12 9602 10.1038/s41598-022-13368-x 35688846
Li X. Wei Z. Lv H. Wu L. Cui Y. Yao H. Li J. Zhang H. Yang B. Jiang J. Iron Oxide Nanoparticles Promote the Migration of Mesenchymal Stem Cells to Injury Sites IJN 2019 14 573 589 10.2147/IJN.S184920 30666115
Espinosa A. Reguera J. Curcio A. Muñoz-Noval Á. Kuttner C. Van de Walle A. Liz-Marzán L.M. Wilhelm C. Janus Magnetic-Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy Small 2020 16 1904960 32077633 10.1002/smll.201904960
Plan Sangnier A. Preveral S. Curcio A. Silva A.K. Lefèvre C.T. Pignol D. Lalatonne Y. Wilhelm C. Targeted Thermal Therapy with Genetically Engineered Magnetite Magnetosomes@RGD: Photothermia Is Far More Efficient than Magnetic Hyperthermia J. Control. Release 2018 279 271 281 10.1016/j.jconrel.2018.04.036 29684497
Hai J. Piraux H. Mazarío E. Volatron J. Ha-Duong N.T. Decorse P. Lomas J.S. Verbeke P. Ammar S. Wilhelm C. et al. Maghemite Nanoparticles Coated with Human Serum Albumin: Combining Targeting by the Iron-Acquisition Pathway and Potential in Photothermal Therapies J. Mater. Chem. B 2017 5 3154 3162 10.1039/C7TB00503B 32263713