Ballistocardiography signals; Best choice; Body positions; Heart-rate; Heart-rate monitoring; Measurements of; Optimal sensor; Performance; Respiratory rate; Simultaneous measurement; Biotechnology; Atomic and Molecular Physics, and Optics
Abstract :
[en] This work presents a stretchable elastomer optical fiber sensor incorporated into a belt for respiratory rate (RR) and heart rate (HR) monitoring. Different materials and shapes of prototypes designed were tested in terms of performance and the best choice was identified. The optimal sensor was tested by 10 volunteers to evaluate the performance. The proposed elastomer optical fiber sensor can achieve simultaneous measurement of RR and HR in different body positions, and also ballistocardiography (BCG) signal measurement in the lying position. The sensor has good accuracy and stability, with maximum errors of 1 bpm and 3 bpm for RR and HR, respectively, and average weighted mean absolute percentage error (MAPE) of 5.25% and root mean square error (RMSE) of 1.28 bpm. Moreover, the results of the Bland-Altman method showed good agreement of the sensor with manual counting of RR and with electrocardiogram (ECG) measurements of HR.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Zha, Bingjie; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
Wang, Zhuo; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
Li, Linqing; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
Hu, Xuehao ; Université de Mons - UMONS > Recherche > Service ERC Unit - Advanced Photonic
Ortega, Beatriz; ITEAM Research Institute, Universitat Politécnica de Valéncia, 46022 Valencia, Spain
Li, Xiaoli; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
Min, Rui; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
Language :
English
Title :
Wearable cardiorespiratory monitoring with stretchable elastomer optical fiber.
Publication date :
01 May 2023
Journal title :
Biomedical Optics Express
eISSN :
2156-7085
Publisher :
Optica Publishing Group (formerly OSA), United States
Research Institute for Materials Science and Engineering
Funders :
National Key Research and Development Program of China National Natural Science Foundation of China Basic and Applied Basic Research Foundation of Guangdong Province Special project in key field of Guangdong Provincial Department of Education The Innovation Team Project of Guangdong Provincial Department of Education
Funding text :
Funding. National Key Research and Development Program of China (2022YFE0140400); National Natural Science Foundation of China (62003046, 62111530238); Basic and Applied Basic Research Foundation of Guangdong Province (2021A1515011997); Special project in key field of Guangdong Provincial Department of Education (2021ZDZX1050); The Innovation Team Project of Guangdong Provincial Department of Education (2021KCXTD014).
WHO, “Noncommunicable diseases,” World Health Organization (2022) [retrieved 24 March 2023], https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.
L. Luo, H. Meng, Z. Wang, S. Zhu, S. Yuan, Y. Wang, and Q. Wang, “Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: A systematic review and meta-analysis,” Ann. Phys. Rehabil. Med. 63(1), 59–68 (2020).
H. V. Huikuri and P. K. Stein, “Heart rate variability in risk stratification of cardiac patients,” Prog. Cardiovasc. Dis. 56(2), 153–159 (2013).
J. Milagro, J. Gracia-Tabuenca, V.-P. Seppä, J. Karjalainen, M. Paassilta, M. Orini, R. Bailón, E. Gil, and J. Viik, “Noninvasive cardiorespiratory signals analysis for asthma evolution monitoring in preschool children,” IEEE Trans. Biomed. Eng. 67(7), 1863–1871 (2019).
WHO, “Cardiovascular diseases (cvds),” World Health Organization (2021) [retrieved 24 March 2023], https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
W. W. Labaki and M. K. Han, “Chronic respiratory diseases: a global view,” The Lancet Respir. Med. 8(6), 531–533 (2020).
J. J. van Vonderen, S. B. Hooper, J. K. Kroese, A. A. Roest, I. C. Narayen, E. W. van Zwet, and A. B. te Pas, “Pulse oximetry measures a lower heart rate at birth compared with electrocardiography,” The J. Pediatr. 166(1), 49–53 (2015).
S. Ansari, K. R. Ward, and K. Najarian, “Motion artifact suppression in impedance pneumography signal for portable monitoring of respiration: An adaptive approach,” IEEE Journal of Biomedical and Health Informatics 21(2), 387–398 (2017).
M. Weenk, H. van Goor, B. Frietman, L. J. Engelen, C. J. van Laarhoven, J. Smit, S. J. Bredie, and T. H. van de Belt, “Continuous monitoring of vital signs using wearable devices on the general ward: Pilot study,” JMIR Mhealth Uhealth 5(7), e91 (2017).
V. Trovato, E. Teblum, Y. Kostikov, A. Pedrana, V. Re, G. D. Nessim, and G. Rosace, “Sol-gel approach to incorporate millimeter-long carbon nanotubes into fabrics for the development of electrical-conductive textiles,” Mater. Chem. Phys. 240, 122218 (2020).
S. Xia, M. Wang, and G. Gao, “Preparation and application of graphene-based wearable sensors,” Nano Res. 15(11), 9850–9865 (2022).
K. Wang, L. W. Yap, S. Gong, R. Wang, S. J. Wang, and W. Cheng, “Nanowire-based soft wearable human–machine interfaces for future virtual and augmented reality applications,” Adv. Funct. Mater. 31(39), 2008347 (2021).
P. Roriz, L. Carvalho, O. Fraz ao, J. L. Santos, and J. A. Sim oes, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
C. Massaroni, M. Zaltieri, D. L. Presti, A. Nicolò, D. Tosi, and E. Schena, “Fiber bragg grating sensors for cardiorespiratory monitoring: A review,” IEEE Sens. J. 21(13), 14069–14080 (2020).
A. Leal-Junior, C. R. Díaz, C. Leit ao, M. J. Pontes, C. Marques, and A. Frizera, “Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements,” Opt. Laser Technol. 109, 429–436 (2019).
X. Cheng, D. S. Gunawardena, C.-F. J. Pun, J. Bonefacino, and H.-Y. Tam, “Single nanosecond-pulse production of polymeric fiber bragg gratings for biomedical applications,” Opt. Express 28(22), 33573–33583 (2020).
C. Tavares, C. Leit ao, D. L. Presti, M. Domingues, N. Alberto, H. Silva, and P. Antunes, “Respiratory and heart rate monitoring using an fbg 3d-printed wearable system,” Biomed. Opt. Express 13(4), 2299–2311 (2022).
L. Avellar, C. Stefano Filho, G. Delgado, A. Frizera, E. Rocon, and A. Leal-Junior, “Ai-enabled photonic smart garment for movement analysis,” Sci. Rep. 12(1), 4067 (2022).
A. Leal-Junior, L. Avellar, V. Biazi, M. S. Soares, A. Frizera, and C. Marques, “Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development,” Opto-Electron Adv 5(10), 210098 (2022).
A. Aitkulov and D. Tosi, “Design of an all-pof-fiber smartphone multichannel breathing sensor with camera-division multiplexing,” IEEE Sensors Letters 3(5), 1–4 (2019).
A. Aitkulov and D. Tosi, “Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate,” IEEE Sens. J. 19(9), 3282–3287 (2019).
A. Issatayeva, A. Beisenova, D. Tosi, and C. Molardi, “Fiber-optic based smart textiles for real-time monitoring of breathing rate,” Sensors 20(12), 3408 (2020).
T. Li, Y. Su, F. Chen, H. Zheng, W. Meng, Z. Liu, Q. Ai, Q. Liu, Y. Tan, and Z. Zhou, “Bioinspired stretchable fiber-based sensor toward intelligent human–machine interactions,” ACS Appl. Mater. Interfaces 14(19), 22666–22677 (2022).
X. Hu, Z. Chen, X. Cheng, R. Min, H. Qu, C. Caucheteur, and H.-Y. Tam, “Femtosecond laser point-by-point bragg grating inscription in bdk-doped step-index pmma optical fibers,” Opt. Lett. 47(2), 249–252 (2022).
G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
J. Guo, M. Niu, and C. Yang, “Highly flexible and stretchable optical strain sensing for human motion detection,” Optica 4(10), 1285–1288 (2017).
X. Luan, X. Xu, M. Li, R. Yu, Q. Zhang, S. Zhang, and L. Cheng, “Design, preparation, and properties of a boron nitride coating of silica optical fiber for high temperature sensing applications,” J. Alloys Compd. 850, 156782 (2021).
MatWeb, “Overview of materials for silicone rubber,” Material Property Data [retrieved 2 February 2023], https://www.matweb.com/search/DataSheet.aspx?MatGUID=cbe7a469897a47eda563816c86a73520.
M. P. Wolf, G. B. Salieb-Beugelaar, and P. Hunziker, “Pdms with designer functionalities–properties, modifications strategies, and applications,” Prog. Polym. Sci. 83, 97–134 (2018).
A. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic mechanical analysis on a polymethyl methacrylate (PMMA) polymer optical fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
A. Leal-Junior, L. Avellar, A. Frizera, and C. Marques, “Smart textiles for multimodal wearable sensing using highly stretchable multiplexed optical fiber system,” Sci. Rep. 10(1), 13867 (2020).
S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
P. Mishra, K. Chatterjee, H. Kumar, and R. Jha, “Flexible and wearable photonic-crystal fiber interferometer for physiological monitoring and healthcare,” ACS Appl. Opt. Mater. 1(2), 569–577 (2023).
P. Mishra, H. Kumar, S. Sahu, and R. Jha, “Flexible and wearable optical system based on u-shaped cascaded microfiber interferometer,” Adv. Mater. Technol. 8(3), 2200661 (2023).
C. A. R. Diaz, A. G. Leal-Junior, L. M. Avellar, P. F. C. Antunes, M. J. Pontes, C. Marques, A. Frizera, and M. R. N. Ribeiro, “Perrogator: A portable energy-efficient interrogator for dynamic monitoring of wavelength-based sensors in wearable applications,” Sensors 19(13), 2962 (2019).
L. G. Gomes, R. de Mello, and A. Leal-Junior, “Respiration frequency rate monitoring using smartphone-integrated polymer optical fibers sensors with cloud connectivity,” Opt. Fiber Technol. 78, 103313 (2023).
M. A. Cretikos, R. Bellomo, K. Hillman, J. Chen, S. Finfer, and A. Flabouris, “Respiratory rate: the neglected vital sign,” Med. J. Aust. 188(11), 657–659 (2008).
S. R. Braun, Chapter 43 - Respiratory Rate and Pattern (Butterworths, 1990), pp. 226–230.
D. H. Spodick, “Redefinition of normal sinus heart rate,” Chest 104(3), 939–941 (1993).
T. W. Hansen, L. Thijs, and J. Boggia, et al., “Prognostic value of ambulatory heart rate revisited in 6928 subjects from 6 populations,” Hypertension 52(2), 229–235 (2008).
M. Marino, Q. Liu, V. Koudelka, C. Porcaro, J. Hlinka, N. Wenderoth, and D. Mantini, “Adaptive optimal basis set for bcg artifact removal in simultaneous eeg-fmri,” Sci. Rep. 8(1), 8902 (2018).
R. B. Blackman and J. W. Tukey, “The measurement of power spectra from the point of view of communications engineering–part i,” Bell Syst. Tech. J. 37(1), 185–282 (1958).
O. Shechtman, The Coefficient of Variation as an Index of Measurement Reliability (Springer Berlin Heidelberg, 2013), pp. 39–49.
S. McGee, Chapter 38 - Palpation of the Heart (Elsevier, 2018), pp. 317–326.e2.
R. Casanella, J. Gomez-Clapers, and R. Pallas-Areny, “On time interval measurements using bcg,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2012), pp. 5034–5037.
J. Lin, R. Fu, X. Zhong, P. Yu, G. Tan, W. Li, H. Zhang, Y. Li, L. Zhou, and C. Ning, “Wearable sensors and devices for real-time cardiovascular disease monitoring,” Cell Reports Phys. Sci. 2, 100541 (2021).
S. Chen, F. Tan, W. Lyu, and C. Yu, “Ballistocardiography monitoring system based on optical fiber interferometer aided with heartbeat segmentation algorithm,” Biomed. Opt. Express 11(10), 5458–5469 (2020).
K. Hnatkova, M. Šišáková, P. Smetana, O. Toman, K. M. Huster, T. Novotný, G. Schmidt, and M. Malik, “Sex differences in heart rate responses to postural provocations,” Int. J. Cardiol. 297, 126–134 (2019).
M. Harford, J. Catherall, S. Gerry, J. Young, and P. Watkinson, “Availability and performance of image-based, non-contact methods of monitoring heart rate, blood pressure, respiratory rate, and oxygen saturation: a systematic review,” Physiological Measurement 40(6), 06TR01 (2019).
S. Wang, M. Liu, B. Pang, P. Li, Z. Yao, X. Zhang, and H. Chen, “A new physiological signal acquisition patch designed with advanced respiration monitoring algorithm based on 3-axis accelerator and gyroscope,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2018), pp. 441–444.
P. S. Myles and J. Cui, “I. Using the Bland–Altman method to measure agreement with repeated measures,” BJA: Br. J. Anaesth. 99(3), 309–311 (2007).
G. Billman, “Heart rate variability – a historical perspective,” Front. Physiol. 2, 86 (2011).
R. Jaros, J. Nedoma, S. Kepak, and R. Martinek, “Fiber-optic interferometry-based heart rate monitoring,” IEEE Trans. Instrum. Meas. 71, 1–15 (2022).