Acoustic events; Acoustic nonlinearity; Atmospheric attenuation; High-frequency harmonics; Higher-frequency harmonics; Linearisation; Muzzle blast; Nonlinear behaviours; Risks assessments; State of the art; Arts and Humanities (miscellaneous); Acoustics and Ultrasonics
Abstract :
[en] Acoustic events exceeding a certain threshold of intensity cannot benefit from a linearization of the governing wave equation, posing an additional burden on the numerical modelling. Weak shock theory associates nonlinearity with the generation of high frequency harmonics that compensate for atmospheric attenuation. Overlooking the persistence of this phenomenon at large distances can lead to mispredictions in gun detection procedures, noise abatement protocols, and auditory risk assessment. The state-of-the-art mostly addresses aircraft jet noise, a stationary and largely random type of signal. The extension of such conclusions to muzzle blasts requires caution in considering their peculiar impulsive and broadband nature. A methodology based on the time and frequency analysis of an experimental dataset of eight calibres intends to find quantitative metrics linked to acoustic nonlinearity in outdoor muzzle blast propagation. Propagating three waveforms (SCAR-L 7.62 mm, Browning 9 mm, and Howitzer 105 mm) up to 300 [m] with the in-house numerical solver based on the nonlinear progressive wave equation, demonstrates that the propagation does not downgrade to truly linear.
Disciplines :
Civil engineering
Author, co-author :
Billot, Guido; Department of Mechanical Engineering, Royal Military Academy, Brussels, Belgium
Marinus, Benoît G ; Department of Mechanical Engineering, Royal Military Academy, Brussels, Belgium
Harri, Kristof; Department of Mechanical Engineering, Royal Military Academy, Brussels, Belgium
Moiny, Francis ; Université de Mons - UMONS > Faculté Polytechnique > Service de Physique Générale
Language :
English
Title :
Evolution of acoustic nonlinearity in outdoor blast propagation from firearms: On the persistence of nonlinear behavior.
R500 - Institut des Sciences et du Management des Risques
Funders :
Royal Higher Institute for Defence
Funding text :
The present work was supported by the scientific research funding of the Royal Higher Institute for Defence under Grant No. MSP19/01 (MilSOund). The authors wish to thank and acknowledge the contribution of the Artillery Battalion of the Belgian Defence, which made the firing ranges accessible to us; the Material Evaluation Center of the Directorate General Material Resources; W. Deweerdt, M. Van Cauter, J. Grossen, J. Weckx and A. Vanhove of the Royal Military Academy for their support; the master interns who contributed to the measurement campaign and the post-processing: S. Deschutter from the Vrije Universiteit Brussel (Belgium); and P. Aubret and S. Bénet from the École spéciale militaire de Saint-Cyr (France).The present work was supported by the scientific research funding of the Royal Higher Institute for Defence under Grant No. MSP19/01 (MilSOund). The authors wish to thank and acknowledge the contribution of the Artillery Battalion of the Belgian Defence, which made the firing ranges accessible to us; the Material Evaluation Center of the Directorate General Material Resources; W. Deweerdt, M. Van Cauter, J. Grossen, J. Weckx and A. Vanhove of the Royal Military Academy for their support; the master interns who contributed to the measurement campaign and the post-processing: S. Deschutter from the Vrije Universiteit Brussel (Belgium); and P. Aubret and S. Bénet from the École spéciale militaire de Saint-Cyr (France).
S. Cheinet, M. Cosnefroy, F. Königstein, W. Rickert, M. Christoph, S. L. Collier, A. Dagallier, L. Ehrhardt, V. E. Ostashev, A. Stefanovic, T. Wessling, and D. K. Wilson, “ An experimental study of the atmospheric-driven variability of impulse sounds,” J. Acoust. Soc. Am. 144( 2), 822- 840 ( 2018). 10.1121/1.5047750.
K.-W. Hirsch, “ Does ISO 9613-2 apply to shooting sound?,” www. kwhirsch.de/Publikation/HiBaltimore01. pdf (Last viewed January 12, 2024).
S. D. Beck, H. Nakasone, and K. W. Marr, “ Variations in recorded acoustic gunshot waveforms generated by small firearms,” J. Acoust. Soc. Am. 129( 4), 1748- 1759 ( 2011). 10.1121/1.3557045
D. T. Blackstock, “ Once nonlinear, always nonlinear,” AIP Conf. Proc. 838, 601 ( 2006). 10.1063/1.2210425
K. L. Gee, V. W. Sparrow, M. M. James, J. M. Downing, C. M. Hobbs, T. B. Gabrielson, and A. A. Atchley, “ The role of nonlinear effects in the propagation of noise from high-power jet aircraft,” J. Acoust. Soc. Am. 123( 6), 4082- 4093 ( 2008). 10.1121/1.2903871
J. N. Punekar, E. Avital, and X. Li, “ Experimental investigation of nonlinear properties of crackle and screech in supersonic jets,” J. Acoust. Soc. Am. 141( 6), EL567- EL573 ( 2017). 10.1121/1.4985585
B. O. Reichman, M. B. Muhlestein, K. L. G. Gee, T. B. Neilsen, and D. C. Thomas, “ Evolution of the derivative skewness for nonlinearly propagating waves,” J. Acoust. Soc. Am. 139( 3), 1390- 1403 ( 2016). 10.1121/1.4944036
K. L. Gee, T. B. Neilsen, A. T. Wall, J. M. Downing, M. M. James, and R. L. McKinley, “ Propagation of crackle-containing jet noise from high-performance engines,” Noise Cont. Eng. J. 64( 1), 1- 12 ( 2016). 10.3397/1/376354
K. L. Gee, B. O. Reichman, and A. T. Wall, “ Effects of meteorology on long-range nonlinear propagation of jet noise from a static, high-performing military aircraft,” Proc. Mtgs. Acoust. 35, 040006 ( 2018).
ANSI/ASA S12.17-1996: Impulse Sound Propagation for Environmental Noise Assessment, ( American National Standards Institute, New York, 2016).
ANSI/ASA S2.20-1983 (R2020): Estimating Air Blast Characteristics for Single Point Explosions in air, With a Guide to Evaluation of Atmospheric Propagation and Effects ( American National Standards Institute, New York, 2020).
ISO 17201-1: “Acoustics—Noise from shooting ranges—Part 1: Determination of muzzle blast by measurement” ( Standard, International Organization for Standardization, Geneva, Switzerland, 2019).
NT Acou 099, Shooting Ranges: Prediction of Noise ( NordTest, Espoo, Finland, 2002).
D. T. Blackstock, M. F. Hamilton, and A. D. Pierce, “ Progressive waves in lossless and lossy fluids,” in Nonlinear Acoustics ( Academic Press, New York, 1997), pp. 71- 72.
M. B. Muhlestein and K. L. Gee, “ A characteristic nonlinear distortion length for broadband gaussian noise,” J. Acoust. Soc. Am. 153( 4), 2262- 2270 ( 2023). 10.1121/10.0017858
D. T. Blackstock, “ Thermoviscous attenuation of plane, periodic, finite-amplitude sound waves,” J. Acoust. Soc. Am. 36( 3), 534- 542 ( 1964). 10.1121/1.1918996
A. D. Pierce, Acoustics - An Introduction to Its Physical Principles and Applications ( Springer International Publishing, New York, 2019).
P. H. Rogers, “ Weak-shock solution for underwater explosive shock waves,” J. Acoust. Soc. Am. 62( 6), 1412- 1419 ( 1977). 10.1121/1.381674
F. M. Pestorius and S. B. Williams, “ Upper limit on the use of weak-shock theory,” J. Acoust. Soc. Am. 55( 6), 1334- 1335 ( 1974). 10.1121/1.1914705
K. J. Plotkin and A. R. George, “ Propagation of weak shock waves through turbulence,” J. Fluid Mech. 54( 3), 449- 467 ( 1972). 10.1017/S0022112072000795
M. B. Muhlestein, L. K. Gee, and J. H. Macedone, “ Educational demonstration of a spherically propagating acoustic shock,” J. Acoust. Soc. Am. 131( 3), 2422- 2430 ( 2012). 10.1121/1.3676730
S. M. Young, “ Outdoor measurements of spherical acoustic shock decay,” J. Acoust. Soc. Am. 138( 3), EL305- EL310 ( 2015). 10.1121/1.4929928
L. L. Pater, “ Far field overpressure from TNT explosions: A survey of available models,” ADA107952 (NSWC, Dahlgren, VA, 1981).
W. J. Baars, C. E. Tinney, M. S. Wochner, and M. F. Hamilton, “ On cumulative nonlinear acoustic waveform distortions from high-speed jets,” J. Fluid Mech. 749, 331- 366 ( 2014). 10.1017/jfm.2014.228
M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics ( Academic Press, New York, 1998).
A. Dagallier, S. Cheinet, M. Cosnefroy, W. Rickert, T. Weßling, P. Wey, and D. Juvé, “ Long-range acoustic localization of artillery shots using distributed synchronous acoustic sensors,” J. Acoust. Soc. Am. 146( 6), 4860- 4872 ( 2019). 10.1121/1.5138927
A. T. Wall, C. M. Wagner, R. D. Rasband, K. L. Gee, and W. J. Murphy, “ Cumulative noise exposure model for outdoor shooting ranges,” J. Acoust. Soc. Am. 146( 5), 3863- 3867 ( 2019). 10.1121/1.5132289
B. E. McDonald, P. Caine, and M. West, “ A tutorial on the nonlinear progressive wave equation (NPE)—Part 1,” Appl. Acoust. 43( 2), 159- 167 ( 1994). 10.1016/0003-682X(94)90059-0
J. C. Peter Teague and V. Alexandrou, “ Overview of developments in the description and assessment ofhigh intensity impulse noise exposure,” in Proceedings of ACOUSTICS 2016, Buenos Aires, Argentina (September 5-9, 2016).
F. van der Eerden and E. Védy, “ Propagation of shock waves from source to receiver,” Noise Control Eng. J. 53( 3), 87- 93 ( 2005). 10.3397/1.2839248
B. E. McDonald and W. A. Kuperman, “ Time-domain solution of the parabolic equation including nonlinearity,” Comput. Math. Appl. 11( 7-8), 843- 851 ( 1985). 10.1016/0898-1221(85)90179-8
B. E. McDonald, “ High-angle formulation for the nonlinear progressive-wave equation model,” Wave Motion 31( 2), 165- 171 ( 2000). 10.1016/S0165-2125(99)00044-X
G.-P. J. Too and J. H. Ginsberg, “ Cylindrical and spherical coordinate versions of NPE for transient and steady-state sound beams,” J. Vib. Acoust. 114( 3), 420- 424 ( 1992). 10.1115/1.2930279
A. A. Piacsek, “ Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts,” J. Acoust. Soc. Am. 111( 1), 520- 529 ( 2002). 10.1121/1.1377631
S. Rigby, A. Tyas, T. Bennett, and S. Clarke, “ The negative phase of the blast load,” Int. J. Protective Struct. 5( 1), 1- 19 ( 2014). 10.1260/2041-4196.5.1.1
J. Tavakkoli, D. Cathignol, and R. Souchon, “ Modeling of pulsed finite-amplitude focused sound beams in time domain,” J. Acoust. Soc. Am. 104( 4), 2061- 2072 ( 1998). 10.1121/1.423720
J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “ LCPFCT—A flux-corrected transport algorithm for solving generalized continuity equations” ( Naval Research Lab, Washington, DC, 1993).
T. Leissing, “ Nonlinear acoustic wave propagation in complex media: Application to propagation over urban environments,” Ph.D. thesis, Université Paris-Est, Paris, France, 2009.
G. Billot, B. G. Marinus, and K. Harri, “ Weakly nonlinear pulse propagation in large caliber weapons: A time-domain approach based on the nonlinear progressive wave equation,” in Proceedings of Euronoise 2021, Madeira, Portugal (October 25-27, 2021), pp. 292- 302.
T. Leissing, P. Jean, J. Defrance, and C. Soize, “ Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers,” J. Acoust. Soc. Am. 126( 2), 572- 581 ( 2009). 10.1121/1.3158937
E. M. Salomons, R. Blumrich, and D. Heimann, “ Eulerian time-domain model for sound propagation over a finite-impedance ground surface. comparison with frequency-domain models,” Acta Acust. united Ac. 88( 4), 483- 492 ( 2002), available at https://www.ingentaconnect.com/content/dav/aaua/2002/00000088/00000004/art00003.
X. Di and K. E. Gilbert, “ An exact Laplace transform formulation for a point source above a ground surface,” J. Acoust. Soc. Am. 93( 2), 714- 720 ( 1993). 10.1121/1.405435
R. M. Alford, K. R. Kelly, and D. M. Boore, “ Accuracy of finite-difference modeling of the acoustic wave equation,” Geophysics 39( 6), 834- 842 ( 1974). 10.1190/1.1440470
B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “ Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131( 6), 4324- 4336 ( 2012). 10.1121/1.4712021
R. D. Rasband, A. T. Wall, K. L. Gee, S. H. Swift, C. M. Wagner, W. J. Murphy, and C. A. Kardous, “ Impulse noise measurements of M16 rifles at Marine Base Quantico,” Proc. Mtgs. Acoust. 33, 040003 ( 2018).
ANSI S12.9: Quantities and Procedures for Description and Measurement of Environmental Sound—Part 4: Noise Assessment and Prediction of Long-Term Community Response ( American National Standards Institute, New York, 2005).
A. P. Peterson and L. L. Beranek, Handbook of Noise Measurement ( GenRad, Westford, MA, 1980).
K. Attenborough, “ Review of ground effects on outdoor sound propagation from continuous broadband sources,” Appl. Acoust. 24( 4), 289- 319 ( 1988). 10.1016/0003-682X(88)90086-2
J. E. Piercy, T. F. W. Embleton, and L. C. Sutherland, “ Review of noise propagation in the atmosphere,” J. Acoust. Soc. Am. 61( 6), 1403- 1418 ( 1977). 10.1121/1.381455
C. Chessell, “ Meteorological and ground effects on the propagation of aircraft noise close to the Earth's surface,” J. Sound Vib. 60( 2), 251- 266 ( 1978). 10.1016/S0022-460X(78)80033-9
H. Akima, “ A new method of interpolation and smooth curve fitting based on local procedures,” J. ACM 17( 4), 589- 602 ( 1970). 10.1145/321607.321609
P. V. Yuldashev, S. Ollivier, M. M. Karzova, V. A. Khokhlova, and P. Blanc-Benon, “ Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence,” J. Acoust. Soc. Am. 142( 6), 3402- 3415 ( 2017). 10.1121/1.5015991
A. Piacsek and K. Plotkin, “ Scamp: Application of nonlinear progressive-wave equation to sonic boom transition focus,” in Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Dallas, TX (January 7-10, 2013).
G. P. J. Too and L. Shyi Tsong, “ Thermoviscous effects on transient and steady-state sound beams using nonlinear progressive wave equation models,” J. Acoust. Soc. Am. 97( 2), 867- 874 ( 1995). 10.1121/1.412131.
A. Piacsek, L. Locey, and V. Sparrow, “ Time-domain modeling of atmospheric turbulence effects on sonic boom propagation,” in Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), Vancouver, Canada (May 5-7, 2008).