Enzymes, Immobilized; Kinetics; Ion Mobility Spectrometry/methods; Mass Spectrometry/methods; Enzymes, Immobilized/chemistry; Enzymes, Immobilized/metabolism; Enzymatic reaction; Flow chemistry; Forward designs; In-vitro; Ion Mobility; Ion mobility-mass spectrometry; Online monitoring; Reaction network; Systematic exploration; Ion Mobility Spectrometry; Mass Spectrometry; Catalysis; Chemistry (all); Biochemistry
Abstract :
[en] The forward design of in vitro enzymatic reaction networks (ERNs) requires a detailed analysis of network kinetics and potentially hidden interactions between the substrates and enzymes. Although flow chemistry allows for a systematic exploration of how the networks adapt to continuously changing conditions, the analysis of the reaction products is often a bottleneck. Here, we report on the interface between a continuous stirred-tank reactor, in which an immobilized enzymatic network made of 12 enzymes is compartmentalized, and an ion mobility-mass spectrometer. Feeding uniformly 13C-labeled inputs to the enzymatic network generates all isotopically labeled reaction intermediates and products, which are individually detected by ion mobility-mass spectrometry (IMS-MS) based on their mass-to-charge ratios and inverse ion mobilities. The metabolic flux can be continuously and quantitatively monitored by diluting the ERN output with nonlabeled standards of known concentrations. The real-time quantitative data obtained by IMS-MS are then harnessed to train a model of network kinetics, which proves sufficiently predictive to control the ERN output after a single optimally designed experiment. The high resolution of the time-course data provided by this approach is an important stepping stone to design and control sizable and intricate ERNs.
Disciplines :
Chemistry
Author, co-author :
DUEZ, Quentin ✱; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
van de Wiel, Jeroen ✱; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
van Sluijs, Bob; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
Ghosh, Souvik ; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
Baltussen, Mathieu G. ; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
Derks, Max T. G. M.; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
Roithová, Jana ; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
Huck, Wilhelm T. S. ; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
✱ These authors have contributed equally to this work.
Language :
English
Title :
Quantitative Online Monitoring of an Immobilized Enzymatic Network by Ion Mobility-Mass Spectrometry.
European Research Council Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Funding text :
This project is funded by the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation programme (ERC Adv. grant Life-Inspired, grant agreement no. 833466 and ERC PoC grant OptiPlex, grant agreement no. 101069237) and by the Dutch Research Council (NWO\u2500OCENW.KLEIN.348).
Barabasi, A. L.; Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101- 113, 10.1038/nrg1272
Cloutier, M.; Wellstead, P. The control systems structures of energy metabolism. J. R. Soc., Interface 2010, 7, 651- 665, 10.1098/rsif.2009.0371
Elowitz, M. B.; Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403, 335- 338, 10.1038/35002125
Cheng, Q.; Xiang, L.; Izumikawa, M.; Meluzzi, D.; Moore, B. S. Enzymatic total synthesis of enterocin polyketides. Nat. Chem. Biol. 2007, 3, 557- 558, 10.1038/nchembio.2007.22
Semenov, S. N.; Wong, A. S.; Made, R. M. v. d.; Postma, S. G.; Groen, J.; Roekel, H. W. v.; Greef, T. F. d.; Huck, W. T. S. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 2015, 7, 160- 165, 10.1038/nchem.2142
Pols, T.; Sikkema, H. R.; Gaastra, B. F.; Frallicciardi, J.; Smigiel, W. M.; Singh, S.; Poolman, B. A synthetic metabolic network for physicochemical homeostasis. Nat. Commun. 2019, 10, 4239, 10.1038/s41467-019-12287-2
Hartley, C. J.; Williams, C. C.; Scoble, J. A.; Churches, Q. I.; North, A.; French, N. G.; Nebl, T.; Coia, G.; Warden, A. C.; Simpson, G.; Frazer, A. R.; Jensen, C. N.; Turner, N. J.; Scott, C. Engineered enzymes that retain and regenerate their cofactors enable continuous-flow biocatalysis. Nat. Catal. 2019, 2, 1006- 1015, 10.1038/s41929-019-0353-0
Valliere, M. A.; Korman, T. P.; Woodall, N. B.; Khitrov, G. A.; Taylor, R. E.; Baker, D.; Bowie, J. U. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat. Commun. 2019, 10, 565, 10.1038/s41467-019-08448-y
Burgener, S.; Luo, S.; McLean, R.; Miller, T. E.; Erb, T. J. A roadmap towards integrated catalytic systems of the future. Nat. Catal. 2020, 3, 186- 192, 10.1038/s41929-020-0429-x
Ivanov, N. M.; Baltussen, M. G.; Regueiro, C. L. F.; Derks, M. T. G. M.; Huck, W. T. S. Computing Arithmetic Functions Using Immobilised Enzymatic Reaction Networks. Angew. Chem., Int. Ed. 2023, 62, e202215759 10.1002/anie.202215759
McLean, R.; Schwander, T.; Diehl, C.; Cortina, N. S.; Paczia, N.; Zarzycki, J.; Erb, T. J. Exploring alternative pathways for the in vitro establishment of the HOPAC cycle for synthetic CO2 fixation. Sci. Adv. 2023, 9, eadh4299 10.1126/sciadv.adh4299
Bujara, M.; Schumperli, M.; Pellaux, R.; Heinemann, M.; Panke, S. Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat. Chem. Biol. 2011, 7, 271- 277, 10.1038/nchembio.541
Chen, X.; Zhang, C.; Zou, R.; Zhou, K.; Stephanopoulos, G.; Too, H. P. Statistical experimental design guided optimization of a one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene. PLoS One 2013, 8, e79650 10.1371/journal.pone.0079650
Billerbeck, S.; Harle, J.; Panke, S. The good of two worlds: increasing complexity in cell-free systems. Curr. Opin. Biotechnol. 2013, 24, 1037- 1043, 10.1016/j.copbio.2013.03.007
Rollin, J. A.; del Campo, J. M.; Myung, S.; Sun, F.; You, C.; Bakovic, A.; Castro, R.; Chandrayan, S. K.; Wu, C.-H.; Adams, M. W. W.; Senger, R. S.; Zhang, Y.-H. P. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 4964, 10.1073/pnas.1417719112
Hold, C.; Billerbeck, S.; Panke, S. Forward design of a complex enzyme cascade reaction. Nat. Commun. 2016, 7, 12971, 10.1038/ncomms12971
Shen, L.; Kohlhaas, M.; Enoki, J.; Meier, R.; Schonenberger, B.; Wohlgemuth, R.; Kourist, R.; Niemeyer, F.; Niekerk, D. v.; Brasen, C.; Niemeyer, J.; Snoep, J.; Siebers, B. A combined experimental and modelling approach for the Weimberg pathway optimisation. Nat. Commun. 2020, 11, 1098, 10.1038/s41467-020-14830-y
Baltussen, M. G.; Wiel, J. v. d.; Fernandez Regueiro, C. L.; Jakstaite, M.; Huck, W. T. S. A Bayesian Approach to Extracting Kinetic Information from Artificial Enzymatic Networks. Anal. Chem. 2022, 94, 7311- 7318, 10.1021/acs.analchem.2c00659
Sluijs, B. v.; Zhou, T.; Helwig, B.; Baltussen, M. G.; Nelissen, F. H. T.; Heus, H. A.; Huck, W. T. S. Iterative design of training data to control intricate enzymatic reaction networks. Nat. Commun. 2024, 15, 1602, 10.1038/s41467-024-45886-9
Sinkoe, A.; Hahn, J. Optimal Experimental Design for Parameter Estimation of an IL-6 Signaling Model. Processes 2017, 5, 49, 10.3390/pr5030049
Aguiar, P. F. d.; Bourguignon, B.; Khots, M. S.; Massart, D. L.; Phan-Than-Luu, R. D-optimal designs. Chemometrics Intellig. Lab. Syst. 1995, 30, 199- 210, 10.1016/0169-7439(94)00076-x
Villaverde, A. F.; Raimundez, E.; Hasenauer, J.; Banga, J. R. Assessment of Prediction Uncertainty Quantification Methods in Systems Biology. IEEE/ACM Trans. Comput. Biol. Bioinf. 2023, 20, 1725- 1736, 10.1109/TCBB.2022.3213914
Simic, S.; Jakstaite, M.; Huck, W. T. S.; Winkler, C. K.; Kroutil, W. Strategies for Transferring Photobiocatalysis to Continuous Flow Exemplified by Photodecarboxylation of Fatty Acids. ACS Catal. 2022, 12, 14040- 14049, 10.1021/acscatal.2c04444
Legner, R.; Wirtz, A.; Jaeger, M. Using Compact 1H NMR, NIR, and Raman Spectroscopy Combined with Multivariate Data Analysis to Monitor a Biocatalyzed Reaction in a Microreaction System. J. Spectrosc. 2018, 2018, 1- 11, 10.1155/2018/5120789
Claassen, C.; Mack, K.; Rother, D. Benchtop NMR for Online Reaction Monitoring of the Biocatalytic Synthesis of Aromatic Amino Alcohols. ChemCatChem 2020, 12, 1190- 1199, 10.1002/cctc.201901910
Nordin, N.; Bordonali, L.; Davoodi, H.; Ratnawati, N. D.; Gygli, G.; Korvink, J. G.; Badilita, V.; MacKinnon, N. Real-Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies. Angew. Chem., Int. Ed. 2021, 60, 19176- 19182, 10.1002/anie.202103585
Sagmeister, P.; Williams, J. D.; Hone, C. A.; Kappe, C. O. Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep reactions. React. Chem. Eng. 2019, 4, 1571- 1578, 10.1039/C9RE00087A
Sagmeister, P.; Lebl, R.; Castillo, I.; Rehrl, J.; Kruisz, J.; Sipek, M.; Horn, M.; Sacher, S.; Cantillo, D.; Williams, J. D.; Kappe, C. O. Advanced Real-Time Process Analytics for Multistep Synthesis in Continuous Flow*. Angew. Chem., Int. Ed. 2021, 60, 8139- 8148, 10.1002/anie.202016007
Browne, D. L.; Wright, S.; Deadman, B. J.; Dunnage, S.; Baxendale, I. R.; Turner, R. M.; Ley, S. V. Continuous flow reaction monitoring using an on-line miniature mass spectrometer. Rapid Commun. Mass Spectrom. 2012, 26, 1999- 2010, 10.1002/rcm.6312
Smith, C. A.; Li, X.; Mize, T. H.; Sharpe, T. D.; Graziani, E. I.; Abell, C.; Huck, W. T. Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry. Anal. Chem. 2013, 85, 3812- 3816, 10.1021/ac400453t
Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J. Nanotechnol. 2013, 4, 285- 291, 10.3762/bjnano.4.31
Haven, J. J.; Vandenbergh, J.; Junkers, T. Watching polymers grow: real time monitoring of polymerizations via an on-line ESI-MS/microreactor coupling. Chem. Commun. 2015, 51, 4611- 4614, 10.1039/C4CC10426A
Holmes, N.; Akien, G. R.; Savage, R. J. D.; Stanetty, C.; Baxendale, I. R.; Blacker, A. J.; Taylor, B. A.; Woodward, R. L.; Meadows, R. E.; Bourne, R. A. Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors. React. Chem. Eng. 2016, 1, 96- 100, 10.1039/C5RE00083A
Tripodi, G. L.; Derks, M. T. G. M.; Rutjes, F. P. J. T.; Roithová, J. Tracking Reaction Pathways by a Modular Flow Reactor Coupled to Electrospray Ionization Mass Spectrometry. Chem.: Methods 2021, 1, 430- 437, 10.1002/cmtd.202100046
Wink, K.; Loh, M. v. d.; Hartner, N.; Polack, M.; Dusny, C.; Schmid, A.; Belder, D. Quantification of Biocatalytic Transformations by Single Microbial Cells Enabled by Tailored Integration of Droplet Microfluidics and Mass Spectrometry. Angew. Chem., Int. Ed. 2022, 61, e202204098 10.1002/anie.202204098
Gabelica, V.; Marklund, E. Fundamentals of Ion Mobility Spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51- 59, 10.1016/j.cbpa.2017.10.022
Rodriguez-Zubiri, M.; Felpin, F.-X. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Org. Process Res. Dev. 2022, 26, 1766- 1793, 10.1021/acs.oprd.2c00102
Jasíková, L.; Anania, M.; Hybelbauerová, S.; Roithová, J. Reaction Intermediates Kinetics in Solution Investigated by Electrospray Ionization Mass Spectrometry: Diaurated Complexes. J. Am. Chem. Soc. 2015, 137, 13647- 13657, 10.1021/jacs.5b08744
Duez, Q.; Tinnemans, P.; Elemans, J. A. A. W.; Roithová, J. Kinetics of Ligand Exchange in Solution: A Quantitative Mass Spectrometry Approach. Chem. Sci. 2023, 14, 9759- 9769, 10.1039/D3SC03342B
Zheng, X.; Aly, N. A.; Zhou, Y.; Dupuis, K. T.; Bilbao, A.; Paurus, V. L.; Orton, D. J.; Wilson, R.; Payne, S. H.; Smith, R. D.; Baker, E. S. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 2017, 8, 7724- 7736, 10.1039/C7SC03464D
Fernandez, R.; Herrero, P.; Moreno, F. Inhibition and inactivation of glucose-phosphorylating enzymes from Saccharomyces cerevisiae by D-xylose. J. Gen. Microbiol. 1985, 131, 2705- 2709, 10.1099/00221287-131-10-2705
Sluijs, B. v.; Maas, R. J. M.; Linden, A. J. v. d.; Greef, T. F. A. d.; Huck, W. T. S. A microfluidic optimal experimental design platform for forward design of cell-free genetic networks. Nat. Commun. 2022, 13, 3626, 10.1038/s41467-022-31306-3
Frohlich, F.; Weindl, D.; Schalte, Y.; Pathirana, D.; Paszkowski, L.; Lines, G. T.; Stapor, P.; Hasenauer, J. AMICI: high-performance sensitivity analysis for large ordinary differential equation models. Bioinformatics 2021, 37, 3676- 3677, 10.1093/bioinformatics/btab227
Lakrisenko, P.; Stapor, P.; Grein, S.; Paszkowski, L.; Pathirana, D.; Frohlich, F.; Lines, G. T.; Weindl, D.; Hasenauer, J. Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks. PLoS Comput. Biol. 2023, 19, e1010783 10.1371/journal.pcbi.1010783
Schälte, Y.; Fröhlich, F.; Jost, P. J.; Vanhoefer, J.; Pathirana, D.; Stapor, P.; Lakrisenko, P.; Wang, D.; Raimúndez, E.; Merkt, S.; Schmiester, L.; Städter, P.; Grein, S.; Dudkin, E.; Doresic, D.; Weindl, D.; Hasenauer, J. pyPESTO: a modular and scalable tool for parameter estimation for dynamic models. Bioinformatics 2023, 39, btad711, 10.1093/bioinformatics/btad711
Städter, P.; Schälte, Y.; Schmiester, L.; Hasenauer, J.; Stapor, P. L. Benchmarking of numerical integration methods for ODE models of biological systems. Sci. Rep. 2021, 11, 2696, 10.1038/s41598-021-82196-2
Schmiester, L.; Schalte, Y.; Bergmann, F. T.; Camba, T.; Dudkin, E.; Egert, J.; Frohlich, F.; Fuhrmann, L.; Hauber, A. L.; Kemmer, S.; Lakrisenko, P.; Loos, C.; Merkt, S.; Muller, W.; Pathirana, D.; Raimundez, E.; Refisch, L.; Rosenblatt, M.; Stapor, P. L.; Stadter, P.; Wang, D.; Wieland, F. G.; Banga, J. R.; Timmer, J.; Villaverde, A. F.; Sahle, S.; Kreutz, C.; Hasenauer, J.; Weindl, D. PEtab-Interoperable specification of parameter estimation problems in systems biology. PLoS Comput. Biol. 2021, 17, e1008646 10.1371/journal.pcbi.1008646