High-Yield WS2 Synthesis through Sulfurization in Custom-Modified Atmospheric Pressure Chemical Vapor Deposition Reactor, Paving the Way for Selective NH3 Vapor Detection.
Malik, Shuja Bashir; Annanouch, Fatima Ezahra; D Souza, Ransellet al.
2024 • In ACS Applied Materials and Interfaces, 16 (36), p. 48585 - 48597
[en] Nanostructured transition metal dichalcogenides have garnered significant research interest for physical and chemical sensing applications due to their unique crystal structure and large effective surface area. However, the high-yield synthesis of these materials on different substrates and in nanostructured films remains a challenge that hinders their real-world applications. In this work, we demonstrate the synthesis of two-dimensional (2D) tungsten disulfide (WS2) sheets on a hundred-milligram scale by sulfurization of tungsten trioxide (WO3) powder in an atmospheric pressure chemical vapor deposition reactor. The as-synthesized WS2 powders can be formulated into inks and deposited on a broad range of substrates using techniques like screen or inkjet printing, spin-coating, drop-casting, or airbrushing. Structural, morphological, and chemical composition analysis confirm the successful synthesis of edge-enriched WS2 sheets. The sensing performance of the WS2 films prepared with the synthesized 2D material was evaluated for ammonia (NH3) detection at different operating temperatures. The results reveal exceptional gas sensing responses, with the sensors showing a 100% response toward 5 ppm of NH3 at 150 °C. The sensor detection limit was experimentally verified to be below 1 ppm of NH3 at 150 °C. Selectivity tests demonstrated the high selectivity of the edge-enriched WS2 films toward NH3 in the presence of interfering gases like CO, benzene, H2, and NO2. Furthermore, the sensors displayed remarkable stability against high levels of humidity, with only a slight decrease in response from 100% in dry air to 93% in humid environments. Density functional theory and Bayesian optimization simulations were performed, and the theoretical results agree with the experimental findings, revealing that the interaction between gas molecules and WS2 is primarily based on physisorption.
Disciplines :
Chemistry
Author, co-author :
Malik, Shuja Bashir ; Universitat Rovira i Virgili, MINOS, Països Catalans 26, Tarragona Catalunya, 43007, Spain ; IU-RESCAT, Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira i Virgili, Joanot Martorell 15, 43480 Vila-seca, Spain ; TecnATox - Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
Annanouch, Fatima Ezahra ; Universitat Rovira i Virgili, MINOS, Països Catalans 26, Tarragona Catalunya, 43007, Spain ; IU-RESCAT, Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira i Virgili, Joanot Martorell 15, 43480 Vila-seca, Spain ; TecnATox - Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
D Souza, Ransell; Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
Bittencourt, Carla ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface
Todorović, Milica ; Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
Llobet, Eduard ; Universitat Rovira i Virgili, MINOS, Països Catalans 26, Tarragona Catalunya, 43007, Spain ; IU-RESCAT, Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira i Virgili, Joanot Martorell 15, 43480 Vila-seca, Spain ; TecnATox - Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
Language :
English
Title :
High-Yield WS2 Synthesis through Sulfurization in Custom-Modified Atmospheric Pressure Chemical Vapor Deposition Reactor, Paving the Way for Selective NH3 Vapor Detection.
Research Institute for Materials Science and Engineering
Funders :
European Regional Development Fund Ag?ncia de Gesti? d'Ajuts Universitaris i de Recerca Instituci? Catalana de Recerca i Estudis Avan?ats Universitat Rovira i Virgili Agencia Estatal de Investigaci?n,Ministerio de Ciencia, Innovaci?n y Universidades Agencia Estatal de Investigaci?n (AEI) grant
Funding text :
S.B.M. is supported by Marti\u0301-Franque\u0300s Research Grants Programme, Doctoral grants \u22122019, (2019PMF\u2013PIPF-14). F.E.A. is a RYC2022-038111-I postdoctoral fellow from the Ramon y Cajal program. E. L. is supported by the Catalan Institution for Research and Advanced Studies via the 2018 Edition of the ICREA Academia Award. C. B is a research associate of FNRS-Belgium. M.T. and R.D. acknowledge CSC-IT Center for Science in Finland for supporting this work with high-performance computing resources. This work is supported by the Agencia Estatal de Investigacio\u0301n (AEI) under grant no. PDC2022-133967-100 and by AGAUR under grant no. 2021 SGR 00147. The HRTEM was partially funded by the operative program FEDER Catalunya 2014-2020 (IU16-015844).
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 ( 5696), 666- 669, 10.1126/science.1102896
Okada, M.; Pu, J.; Lin, Y.-C.; Endo, T.; Okada, N.; Chang, W.-H.; Lu, A. K. A.; Nakanishi, T.; Shimizu, T.; Kubo, T.; Miyata, Y.; Suenaga, K.; Takenobu, T.; Yamada, T.; Irisawa, T. Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition. ACS Nano 2022, 16 ( 8), 13069- 13081, 10.1021/acsnano.2c05699
Susarla, S.; Kutana, A.; Hachtel, J. A.; Kochat, V.; Apte, A.; Vajtai, R.; Idrobo, J. C.; Yakobson, B. I.; Tiwary, C. S.; Ajayan, P. M. Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. Adv. Mater. 2017, 29 ( 35), 1702457 10.1002/adma.201702457
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5 ( 4), 263- 275, 10.1038/nchem.1589
Aggarwal, P.; Kaushik, S.; Bisht, P.; Sharma, M.; Singh, A.; Mehta, B. R.; Singh, R. Centimeter-Scale Synthesis of Monolayer WS2 Using Single-Zone Atmospheric-Pressure Chemical Vapor Deposition: A Detailed Study of Parametric Dependence, Growth Mechanism, and Photodetector Properties. Cryst. Growth Des. 2022, 22 ( 5), 3206- 3217, 10.1021/acs.cgd.2c00049
Aftab, S.; Zahir Iqbal, M.; Hussain, S.; Hegazy, H. H.; Kabir, F.; Hassan Abbas Jaffery, S.; Koyyada, G. New Developments in Gas Sensing Using Various Two-Dimensional Architectural Designs. Chem. Eng. J. 2023, 469, 144039 10.1016/j.cej.2023.144039
Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and Strain Effects on Electronic Structures of Transition Metal Dichalcogenides: 2H-MX 2 Semiconductors (M = Mo, W; X = S, Se, Te).. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85 ( 3), 033305 10.1103/PhysRevB.85.033305
Hwang, W. S.; Remskar, M.; Yan, R.; Protasenko, V.; Tahy, K.; Chae, S. D.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A.; Jena, D. Transistors with Chemically Synthesized Layered Semiconductor WS2 Exhibiting 105 Room Temperature Modulation and Ambipolar Behavior. Appl. Phys. Lett. 2012, 101 ( 1), 013107 10.1063/1.4732522
Gu, X.; Yang, R. Phonon Transport in Single-Layer Transition Metal Dichalcogenides: A First-Principles Study. Appl. Phys. Lett. 2014, 105 ( 13), 131903 10.1063/1.4896685
Andrzejewski, D.; Oliver, R.; Beckmann, Y.; Grundmann, A.; Heuken, M.; Kalisch, H.; Vescan, A.; Kümmell, T.; Bacher, G. Flexible Large-Area Light-Emitting Devices Based on WS2 Monolayers. Adv. Opt. Mater. 2020, 8 ( 20), 2000694 10.1002/adom.202000694
Zhang, W.; Huang, Z.; Zhang, W.; Li, Y. Two-Dimensional Semiconductors with Possible High Room Temperature Mobility. Nano Res. 2014, 7 ( 12), 1731- 1737, 10.1007/s12274-014-0532-x
Lee, N.; Kwak, J.; Kwak, J. H.; Jung, S. M.; Kim, J.; Giri, A.; Thiyagarajan, K.; Kim, Y. T.; Jung, S.; Kim, J. K.; Jeong, U. Microwave-assisted evolution of WO 3 and WS 2/WO 3 hierarchical nanotrees. J. Mater. Chem. A 2020, 8 ( 19), 9654- 9660, 10.1039/d0ta02027c
Santhosh, M. V.; Geethu, R.; Devaky, K. S. Solvothermal Synthesis of WS2 Rectangular Nanoplates and Their Application in Photothermal Therapy. J. Mater. Sci. Mater. Electron. 2023, 34 ( 5), 385, 10.1007/s10854-022-09788-0
Villamayor, M. M. S.; Lindblad, A.; Johansson, F. O. L.; Tran, T.; Pham, N. H.; Primetzhofer, D.; Sorgenfrei, N. L. A. N.; Giangrisotomi, E.; Föhlisch, A.; Lourenço, P.; Bernard, R.; Witkowski, N.; Prévot, G.; Nyberg, T. Growth of Two-Dimensional WS2 Thin Films by Reactive Sputtering. Vacuum 2021, 188, 110205 10.1016/j.vacuum.2021.110205
Singh, D. K.; Gupta, G. Van Der Waals Epitaxy of Transition Metal Dichalcogenides via Molecular Beam Epitaxy: Looking Back and Moving Forward. Mater. Adv. 2022, 3 ( 15), 6142- 6156, 10.1039/d2ma00352j
Li, H.; Lu, G.; Wang, Y.; Yin, Z.; Cong, C.; He, Q.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical Exfoliation and Characterization of Single- and Few-Layer Nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9 ( 11), 1974- 1981, 10.1002/smll.201202919
Shi, B.; Zhou, D.; Qiu, R.; Bahri, M.; Kong, X.; Zhao, H.; Tlili, C.; Wang, D. High-Efficiency Synthesis of Large-Area Monolayer WS2 Crystals on SiO2/Si Substrate via NaCl-Assisted Atmospheric Pressure Chemical Vapor Deposition. Appl. Surf. Sci. 2020, 533, 147479 10.1016/j.apsusc.2020.147479
Lan, C.; Zhou, Z.; Zhou, Z.; Li, C.; Shu, L.; Shen, L.; Li, D.; Dong, R.; Yip, S. P.; Ho, J. C. Wafer-Scale Synthesis of Monolayer WS2 for High-Performance Flexible Photodetectors by Enhanced Chemical Vapor Deposition. Nano Res. 2018, 11 ( 6), 3371- 3384, 10.1007/s12274-017-1941-4
Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C.-J.; Muller, D.; Park, J. High-Mobility Three-Atom-Thick Semiconducting Films with Wafer-Scale Homogeneity. Nature 2015, 520 ( 7549), 656- 660, 10.1038/nature14417
Schaefer, C. M.; Caicedo Roque, J. M.; Sauthier, G.; Bousquet, J.; Hébert, C.; Sperling, J. R.; Pérez-Tomás, A.; Santiso, J.; Del Corro, E.; Garrido, J. A. Carbon Incorporation in MOCVD of MoS2Thin Films Grown from an Organosulfide Precursor. Chem. Mater. 2021, 33 ( 12), 4474- 4487, 10.1021/acs.chemmater.1c00646
Wang, W.; Shu, H.; Wang, J.; Cheng, Y.; Liang, P.; Chen, X. Defect Passivation and Photoluminescence Enhancement of Monolayer MoS2 Crystals through Sodium Halide-Assisted Chemical Vapor Deposition Growth. ACS Appl. Mater. Interfaces 2020, 12 ( 8), 9563- 9571, 10.1021/acsami.9b19224
Li, S.; Wang, S.; Tang, D.-M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1 ( 1), 60- 66, 10.1016/j.apmt.2015.09.001
Chang, Y.-P.; Li, W.-B.; Yang, Y.-C.; Lu, H.-L.; Lin, M.-F.; Chiu, P.-W.; Lin, K.-I. Oxidation and Degradation of WS2Monolayers Grown by NaCl-Assisted Chemical Vapor Deposition: Mechanism and Prevention. Nanoscale 2021, 13 ( 39), 16629- 16640, 10.1039/d1nr04809k
Xie, C.; Yang, P.; Huan, Y.; Cui, F.; Zhang, Y. Roles of Salts in the Chemical Vapor Deposition Synthesis of Two-Dimensional Transition Metal Chalcogenides. Dalton Trans. 2020, 49 ( 30), 10319- 10327, 10.1039/d0dt01561j
Hwang, Y.; Shin, N. Hydrogen-Assisted Step-Edge Nucleation of MoSe2Monolayers on Sapphire Substrates. Nanoscale 2019, 11 ( 16), 7701- 7709, 10.1039/c8nr10315a
Zhou, Y.; Wang, S.; Xin, S.; Sayin, S.; Yi, Z.; Li, Z.; Zaghloul, M. Layer-Dependent Sensing Performance of WS2-Based Gas Sensors. Nanomaterials 2024, 14 ( 2), 235, 10.3390/nano14020235
Koo, W.-T.; Cha, J.-H.; Jung, J.-W.; Choi, S.-J.; Jang, J.-S.; Kim, D.-H.; Kim, I.-D. Few-Layered WS2 Nanoplates Confined in Co, N-Doped Hollow Carbon Nanocages: Abundant WS2 Edges for Highly Sensitive Gas Sensors. Adv. Funct. Mater. 2018, 28 ( 36), 1802575 10.1002/adfm.201802575
Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications. Mater. Today 2017, 20, 116- 130, 10.1016/j.mattod.2016.10.002
Annanouch, F. E.; Alagh, A.; Umek, P.; Casanova-Chafer, J.; Bittencourt, C.; Llobet, E. Controlled Growth of 3D Assemblies of Edge Enriched Multilayer MoS2 Nanosheets for Dually Selective NH3 and NO2 Gas Sensors. J. Mater. Chem. C 2022, 10 ( 30), 11027- 11039, 10.1039/d2tc00759b
Alagh, A.; Annanouch, F. E.; Sierra-Castillo, A.; Haye, E.; Colomer, J.-F.; Llobet, E. Three-Dimensional Assemblies of Edge-Enriched WSe2Nanoflowers for Selectively Detecting Ammonia or Nitrogen Dioxide. ACS Appl. Mater. Interfaces 2022, 14 ( 49), 54946- 54960, 10.1021/acsami.2c16299
Alagh, A.; Annanouch, F. E.; Umek, P.; Bittencourt, C.; Sierra-Castillo, A.; Haye, E.; Colomer, J.-F.; Llobet, E. CVD Growth of Self-Assembled 2D and 1D WS2 Nanomaterials for the Ultrasensitive Detection of NO2. Sens. Actuators, B 2021, 326, 128813 10.1016/j.snb.2020.128813
Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180 ( 11), 2175- 2196, 10.1016/j.cpc.2009.06.022
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 ( 18), 3865- 3868, 10.1103/PhysRevLett.77.3865
Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102 ( 7), 073005 10.1103/PhysRevLett.102.073005
van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99 ( 6), 4597- 4610, 10.1063/1.466059
Schutte, W. J.; De Boer, J. L.; Jellinek, F. Crystal Structures of Tungsten Disulfide and Diselenide. J. Solid State Chem. 1987, 70 ( 2), 207- 209, 10.1016/0022-4596(87)90057-0
Kahnouji, H.; Kratzer, P.; Hashemifar, S. J. Ab initio simulation of the structure and transport properties of zirconium and ferromagnetic cobalt contacts on the two-dimensional semiconductor WS2. Phys. Rev. B 2019, 99 ( 3), 035418 10.1103/PhysRevB.99.035418
Todorović, M.; Gutmann, M. U.; Corander, J.; Rinke, P. Bayesian Inference of Atomistic Structure in Functional Materials. npj Comput. Mater. 2019, 5 ( 1), 35, 10.1038/s41524-019-0175-2
Järvi, J.; Rinke, P.; Todorović, M. Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization. Beilstein J. Nanotechnol. 2020, 11, 1577- 1589, 10.3762/bjnano.11.140
Brochu, E.; Cora, V.; Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. CoRR 2010, abs/1012.2. DOI: 10.48550/arXiv.1012.2599.
Madsen, G. K. H.; Carrete, J.; Verstraete, M. J. BoltzTraP2, a Program for Interpolating Band Structures and Calculating Semi-Classical Transport Coefficients. Comput. Phys. Commun. 2018, 231, 140- 145, 10.1016/j.cpc.2018.05.010
D’Souza, R.; Mukherjee, S. First-Principles Study of the Electrical and Lattice Thermal Transport in Monolayer and Bilayer Graphene. Phys. Rev. B 2017, 95, 085435 10.1103/PhysRevB.95.085435
Zeng, Z.; Sun, X.; Zhang, D.; Zheng, W.; Fan, X.; He, M.; Xu, T.; Sun, L.; Wang, X.; Pan, A. Controlled Vapor Growth and Nonlinear Optical Applications of Large-Area 3R Phase WS2 and WSe2 Atomic Layers. Adv. Funct. Mater. 2019, 29 ( 11), 1806874 10.1002/adfm.201806874
Yue, Y.; Chen, J. C.; Zhang, Y.; Ding, S. S.; Zhao, F.; Wang, Y.; Zhang, D.; Li, R. J.; Dong, H.; Hu, W.; Feng, Y.; Feng, W. Two-Dimensional High-Quality Monolayered Triangular WS2 Flakes for Field-Effect Transistors. ACS Appl. Mater. Interfaces 2018, 10 ( 26), 22435- 22444, 10.1021/acsami.8b05885
Zhang, X.-Q.; Lin, C.-H.; Tseng, Y.-W.; Huang, K.-H.; Lee, Y.-H. Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Lett. 2015, 15 ( 1), 410- 415, 10.1021/nl503744f
Yan, J.; Lian, S.; Cao, Z.; Du, Y.; Wu, P.; Sun, H.; An, Y. CVD Controlled Preparation and Growth Mechanism of 2H-WS2 Nanosheets. Vacuum 2023, 207, 111564 10.1016/j.vacuum.2022.111564
Cheng, J.; Jiang, T.; Ji, Q.; Zhang, Y.; Li, Z.; Shan, Y.; Zhang, Y.; Gong, X.; Liu, W.; Wu, S. Kinetic Nature of Grain Boundary Formation in As-Grown MoS2 Monolayers. Adv. Mater. 2015, 27 ( 27), 4069- 4074, 10.1002/adma.201501354
Fu, Q.; Wang, W.; Yang, L.; Huang, J.; Zhang, J.; Xiang, B. Controllable Synthesis of High Quality Monolayer WS2 on a SiO2/Si Substrate by Chemical Vapor Deposition. RSC Adv. 2015, 5 ( 21), 15795- 15799, 10.1039/c5ra00210a
Gutıerrez, H. R.; Perea-Lopez, N.; Elıas, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; Lopez-Urias, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 2013, 13 ( 8), 3447- 3454, 10.1021/nl3026357
Park, J.; Lee, W.; Choi, T.; Hwang, S. H.; Myoung, J. M.; Jung, J. H.; Kim, S. H.; Kim, H. Layer-Modulated Synthesis of Uniform Tungsten Disulfide Nanosheet Using Gas-Phase Precursors. Nanoscale 2015, 7 ( 4), 1308- 1313, 10.1039/c4nr04292a
McCreary, K. M.; Hanbicki, A. T.; Jernigan, G. G.; Culbertson, J. C.; Jonker, B. T. Synthesis of Large-Area WS 2 Monolayers with Exceptional Photoluminescence. Sci. Rep. 2016, 6, 19159, 10.1038/srep19159
Shi, Y.; Li, H.; Li, L. J. Recent Advances in Controlled Synthesis of Two-Dimensional Transition Metal Dichalcogenides via Vapour Deposition Techniques. Chem. Soc. Rev. 2015, 44 ( 9), 2744- 2756, 10.1039/c4cs00256c
Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; Song, X.; Hwang, H. Y.; Cui, Y.; Liu, Z. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7 ( 10), 8963- 8971, 10.1021/nn403454e
Li, X. L.; Li, Y. D. Formation of MoS2 Inorganic Fullerenes (IFs) by the Reaction of MoO3 Nanobelts and S. Chem. - Eur. J. 2003, 9 ( 12), 2726- 2731, 10.1002/chem.200204635
Ji, Q.; Zheng, Y.; Zhang, Y.; Liu, Z. Chemical Vapour Deposition of Group-VIB Metal Dichalcogenide Monolayers: Engineered Substrates from Amorphous to Single Crystalline. Chem. Soc. Rev. 2015, 44 ( 9), 2587- 2602, 10.1039/c4cs00258j
Liu, Z.; Murphy, A. W. A.; Kuppe, C.; Hooper, D. C.; Valev, V. K.; Ilie, A. WS2 Nanotubes, 2D Nanomeshes, and 2D In-Plane Films through One Single Chemical Vapor Deposition Route. ACS Nano 2019, 13 ( 4), 3896- 3909, 10.1021/acsnano.8b06515
Lee, Y.; Jung, J. W.; Lee, J. S. Highly electroconductive and uniform WS2 film growth by sulfurization of W film using diethyl sulfide. Mater. Chem. Front. 2021, 5 ( 9), 3692- 3698, 10.1039/d1qm00173f
Malik, S. B.; Mejia-Centeno, K. V.; Martínez-Alanis, P. R.; Cabot, A.; Güell, F.; Annanouch, F. E.; Llobet, E. Synergistic Effect of CeO2 Nanoparticles and WO3 Nanowires in Gas Sensing Applications. Sens. Actuators, B 2024, 400, 134879 10.1016/j.snb.2023.134879
Li, X.; Li, X.; Li, Z.; Wang, J.; Zhang, J. WS2 Nanoflakes Based Selective Ammonia Sensors at Room Temperature. Sens. Actuators, B 2017, 240, 273- 277, 10.1016/j.snb.2016.08.163
Guo, X.; Yang, H.; Mo, X.; Bai, R.; Wang, Y.; Han, Q.; Han, S.; Sun, Q.; Zhang, D. W.; Hu, S.; Ji, L. Modulated wafer-scale WS2 films based on atomic-layer-deposition for various device applications. RSC Adv. 2023, 13 ( 22), 14841- 14848, 10.1039/D3RA00933E
Ravikumar, T.; Thirumalaisamy, L.; Madanagurusamy, S.; Sivaperuman, K. Substrate Temperature Dependent Ammonia Gas Sensing Performance of Zinc Ferrite Thin Films Prepared by Spray Pyrolysis Technique. J. Alloys Compd. 2023, 959, 170568 10.1016/j.jallcom.2023.170568
Wang, Y.; Zhou, Y.; Li, J.; Zhang, R.; Zhao, H.; Wang, Y. Ag Decoration-Enabled Sensitization Enhancement of Black Phosphorus Nanosheets for Trace NO2 Detection at Room Temperature. J. Hazard. Mater. 2022, 435 ( 30), 129086 10.1016/j.jhazmat.2022.129086
Agrawal, A. V.; Kumar, R.; Yang, G.; Bao, J.; Kumar, M.; Kumar, M. Enhanced Adsorption Sites in Monolayer MoS2 Pyramid Structures for Highly Sensitive and Fast Hydrogen Sensor. Int. J. Hydrogen Energy 2020, 45 ( 15), 9268- 9277, 10.1016/j.ijhydene.2020.01.119
Occupational Safety and Health Administration, Permissible Exposure Limits - Annotated Tables. https://www.osha.gov/annotated-pels/table-z-1.
Annanouch, F. E.; Haddi, Z.; Vallejos, S.; Umek, P.; Guttmann, P.; Bittencourt, C.; Llobet, E. Aerosol-Assisted CVD-Grown WO3 Nanoneedles Decorated with Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H2S. ACS Appl. Mater. Interfaces 2015, 7 ( 12), 6842- 6851, 10.1021/acsami.5b00411
Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143- 167, 10.1023/A:1014405811371
Xu, K.; Li, N.; Zeng, D.; Tian, S.; Zhang, S.; Hu, D.; Xie, C. Interface Bonds Determined Gas-Sensing of SnO2-SnS2 Hybrids to Ammonia at Room Temperature. ACS Appl. Mater. Interfaces 2015, 7 ( 21), 11359- 11368, 10.1021/acsami.5b01856
Moumen, A.; Kumarage, G. C. W.; Comini, E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors 2022, 22 ( 4), 1359, 10.3390/s22041359
Qin, Z.; Zeng, D.; Zhang, J.; Wu, C.; Wen, Y.; Shan, B.; Xie, C. Effect of Layer Number on Recovery Rate of WS 2 Nanosheets for Ammonia Detection at Room Temperature. Appl. Surf. Sci. 2017, 414, 244- 250, 10.1016/j.apsusc.2017.04.063