Cutsem, T., Vournas, C., Voltage Stability of Electric Power Systems. 1998, Springer.
Kundur, P., et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE TPWRS 19:3 (2004), 1387–1401.
Bakhshideh Zad, B., Hasanvand, H., Lobry, J., Vallée, F., Optimal reactive power control of DGs for voltage regulation of mv distribution systems using sensitivity analysis method and PSO algorithm. Int. J. Electr. Power Energy Syst. 68 (2015), 52–60, 10.1016/j.ijepes.2014.12.046.
ENTSO-E, B., Network code on demand connection. 2023 https://www.entsoe.eu/network_codes/dcc/. (Accessed on 16 February 2023).
Kaloudas, C.G., et al. Assessing the future trends of reactive power demand of distribution networks. IEEE TPWRS 32:6 (2017), 4278–4288.
Tasky, M., Regula, M., Otcenasova, A., Impact of changes in a distribution network nature on the capacitive reactive power flow in the transmission network in slovakia. Energies, 14, 2021, 5321.
A new era: Germany quits nuclear power, closing its final three plants. 2023 https://edition.cnn.com/2023/04/15/europe/germany-nuclear-phase-out-climate-intl/index.html. (Accessed 19 December 2023).
Nuclear phase-out increases CO2 emissions from electricity generation. 2023 https://shorturl.at/bdinW. (Accessed 19 December 2023).
Dapoz, P.D., et al. Mixed regression clustering techniques for the medium term prediction of reactive power within transmission grids. ISGT-Eur., 2019, 1–5.
Arruda, E.F., et al. Disaggregated active and reactive demand forecasting using first difference measured data and neural networks. Proc. ICED, 2015.
Rosseel, A., Bakhshideh Zad, B., De Grève, Z., Vallée, F., Reactive power forecasting at the transmission-distribution interfaces using physics-based machine learning. 27th International Conference on Electricity Distribution (CIRED 2023), vol. 2023, 2023, IET, 301–305.
Van Hentenryck, P., A linear-programming approximation of AC power flows. INFORMS J. Comput. 26 (2014), 718–734.
Synergrid, P., Synthetic load profiles. 2023 http://www.synergrid.be/index.cfm?PageID=16896. (Accessed on 15 July 2022).
Al-Qahtani, F.H., Crone, S.F., Multivariate k-nearest neighbour regression for time series data—A novel algorithm for forecasting UK electricity demand. The 2013 International Joint Conference on Neural Networks, IJCNN, 2013, IEEE, 1–8.
Chomboon, K., Chujai, P., Teerarassamee, P., Kerdprasop, K., Kerdprasop, N., An empirical study of distance metrics for k-nearest neighbor algorithm. Proceedings of the 3rd International Conference on Industrial Application Engineering, vol. 2, 2015.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1023/A:1010933404324.
Bakhshideh Zad, B., Toubeau, J.F., Bruninx, K., Vatandoust, B., De Grève, Z., Vallée, F., Supervised learning-assisted modeling of flow-based domains in European resource adequacy assessments. Appl. Energy, 325, 2022, 119875.
Friedman, J., Greedy function approximation: A gradient boosting machine. Ann. Stat., 2000, 10.1214/aos/1013203451.
Natekin, A., Knoll, A., Gradient boosting machines, A tutorial. Front. Neurorobotics, 2013.
Ramchoun, H., Ghanou, Y., Ettaouil, M., Janati Idrissi, M.A., Multilayer perceptron: Architecture optimization and training. Int. J. Interact. Multimed. Artif. Intell., 2016.
Schönheit, D., Kenis, M., Lorenz, L., Möst, D., Delarue, E., Bruninx, K., Toward a fundamental understanding of flow-based market coupling for cross-border electricity trading. Adv. Appl. Energy, 2, 2021, 10.1016/j.adapen.2021.100027.
Thurner, L., et al. Pandapower—An open-source python tool for convenient modeling, analysis, and optimization of electric power systems. IEEE TPWRS, 33(6), 2018 6510–6521(10).
Dognini, A., Ginocchi, M., De Din, E., Ponci, F., Monti, A., Service restoration of AC–DC distribution grids based on multiple-criteria decision analysis. IEEE Access 11 (2023), 15725–15749, 10.1109/ACCESS.2023.3244872.
Maharjan, S., Khambadkone, A.M., Peng, J.C.-H., Enhanced Z-bus method for analytical computation of voltage sensitivities in distribution networks. IET Gener. Transm. Distrib. 14:16 (2020), 3187–3197.
Strunz, K., Abbasi, E., Fletcher, R., Hatziargyriou, N., Iravani, R., Joos, G., TF C6.04.02 : TB 575 – Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources. 2014, Electra.
Joskow, P.L., Comparing the costs of intermittent and dispatchable electricity generating technologies. Amer. Econ. Rev. 101:3 (2011), 238–241.
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., Hutter, F., SMAC3: A versatile Bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 23:1 (2022), 2475–2483.