Article (Scientific journals)
Physics-informed machine learning for forecasting power exchanges at the interface between transmission and distribution systems
ROSSEEL, Arnaud; BAKHSHIDEH ZAD, Bashir; Vallée, François et al.
2024In Electric Power Systems Research, 238, p. 111097
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S0378779624009829-main (1).pdf
Author postprint (1.31 MB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Disciplines :
Electrical & electronics engineering
Author, co-author :
ROSSEEL, Arnaud  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Electrique
BAKHSHIDEH ZAD, Bashir  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Electrique
Vallée, François  ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Electrique
De Grève, Zacharie ;  Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Electrique
Language :
English
Title :
Physics-informed machine learning for forecasting power exchanges at the interface between transmission and distribution systems
Publication date :
October 2024
Journal title :
Electric Power Systems Research
ISSN :
0378-7796
eISSN :
1873-2046
Publisher :
Elsevier BV
Volume :
238
Pages :
111097
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F101 - Génie Electrique
Research institute :
Research Institute for Energy
Available on ORBi UMONS :
since 03 October 2024

Statistics


Number of views
82 (8 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi UMONS