Feliu, N. et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45, 2440-2457 (2016).
Caracciolo, G., Farokhzad, O. C. & Mahmoudi, M. Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona. Trends Biotechnol. sept 20 (2016)
Levy, M. et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32, 3988-3999 (2011).
Kolosnjaj-Tabi, J. et al. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano 9, 7925-7939 (2015).
Lartigue, L. et al. Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring. ACS Nano 7, 3939-3952 (2013).
Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol. 152, 167-173 (1989).
Pouliquen, D., Le Jeune, J. J., Perdrisot, R., Ermias, A. & Jallet, P. Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn. Reson. Imaging 9, 275-283 (1991).
Freund, B. et al. A Simple and Widely Applicable Method to 59Fe-Radiolabel Monodisperse Superparamagnetic Iron Oxide Nanoparticles for In Vivo Quantification Studies. ACS Nano 6, 7318-7325 (2012).
Okon, E. et al. Biodegradation of magnetite dextran nanoparticles in the rat. A histologic and biophysical study. Lab. Invest. 71, 895-903 (1994).
Mazuel, F. et al. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS Nano 10, 7627-7638 (2016).
Mejías, R. et al. Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J. Control. Release 171, 225-233 (2013).
Pawelczyk, E., Arbab, A. S., Pandit, S., Hu, E. & Frank, J. A. Expression of transferrin receptor and ferritin following ferumoxidesprotamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed. 19, 581-592 (2006).
Schafer, R. et al. Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology 244, 514-523 (2007).
Maraloiu, V.-A. et al. Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo. Nanomedicine NBM 12, 191-200 (2016).
Lopez-Castro, J. D. et al. From synthetic to natural nanoparticles: monitoring the biodegradation of SPIO (P904) into ferritin by electron microscopy. Nanoscale 3, 4597-4599 (2011).
Mameli, V. et al. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124-10137 (2016).
Lee, J.-H. et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6, 418-422 (2011).
Fortin, J. P. et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628-2635 (2007).
Fantechi, E. et al. A Smart Platform for Hyperthermia Application in Cancer Treatment: Cobalt-Doped Ferrite Nanoparticles Mineralized in Human Ferritin Cages. ACS Nano 8, 4705-4719 (2014).
Laurent, S., Dutz, S., Hafeli, U. O. & Mahmoudi, M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8-23 (2011).
Ahmad, F., Liu, X., Zhou, Y. & Yao, H. An in vivo evaluation of acute toxicity of cobalt ferrite nanoparticles in larval-embryo Zebrafish (Danio rerio). Aquat. Toxicol. 166, 21-28 (2015).
Ahmad, F., Yao, H., Zhou, Y. & Liu, X. Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: Interaction, adaptation and oxidative stress. Chemosphere 139, 479-485 (2015).
Horev-Azaria, L. et al. Predictive Toxicology of cobalt ferrite nanoparticles: Comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part. Fibre Toxicol. 10, 32 (2013).
Romih, T. et al. Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber. Sci. Total Environ. 508, 76-84 (2015).
López-Moreno, M. L. et al. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci. Total Environ. 550, 45-52 (2016).
Simonsen, L. O., Harbak, H. & Bennekou, P. Cobalt metabolism and toxicology-A brief update. Sci. Total Environment 432, 210-215 (2012).
Chattopadhyay, S. et al. Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-/caspase-8/p38-MAPK signaling in human leukemia cells. J. Appl. Toxicol. 35, 603-613 (2015).
Joshi, J. & Zimmerman, A. Ferritin: an expanded role in metabolic regulation. Toxicol. 48, 21-29 (1988).
Bresgen, N. & Eckl, P. Oxidative Stress and the Homeodynamics of Iron Metabolism. Biomolecules 5, 808 (2015).
Niederer, W. Ferritin: iron incorporation and iron release. Experientia 26, 218-220 (1970).
Pead, S. et al. Metal ion binding to apo, holo, and reconstituted horse spleen ferritin. J. Inorg. Biochem. 59, 15-27 (1995).
Price, D. & Joshi, J. G. Ferritin: a zinc detoxicant and a zinc ion donor. Proc. Nat. Acad. Sci. 79, 3116-3119 (1982).
Fleming, J. & Joshi, J. G. Ferritin: isolation of aluminum-ferritin complex from brain. Proc. Nat. Acad. Sci. 84, 7866-7870 (1987).
Lindenschmidt, R. et al. Ferritin and in vivo beryllium toxicity. Toxicol. Appl. Pharmacol. 82, 344-350 (1986).
Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684-687 (1991).
Galvez, N. et al. Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. J. Mat. Chem. 16, 2757-2761 (2006).
Kim, J.-W. et al. Cobalt oxide hollow nanoparticles derived by bio-templating. Chem. Comm. 4101-4103 (2005).
Cutrin, J. C., Crich, S. G., Burghelea, D., Dastrù, W. & Aime, S. Curcumin/Gd Loaded Apoferritin: A Novel "Theranostic" Agent To Prevent Hepatocellular Damage in Toxic Induced Acute Hepatitis. Mol. Pharmaceutics 10, 2079-2085 (2013).
Harada, T. & Yoshimura, H. Synthesis of rare earth doped yttrium-vanadate nanoparticles encapsulated within apoferritin. Phys. Chem. Chem. Phys. 16, 14947-14952 (2014).
Liu, X. et al. Apoferritin-camouflaged Pt nanoparticles: surface effects on cellular uptake and cytotoxicity. J. Mat. Chem. 21, 7105-7110 (2011).
Kálmán, F. K., Geninatti-Crich, S. & Aime, S. Reduction/Dissolution of a-MnOOH Nanophase in the Ferritin Cavity To Yield a Highly Sensitive, Biologically Compatible Magnetic Resonance Imaging Agent. Angewandte Chem. 49, 612-615 (2010).
Levy, M. et al. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21, 395103 (2010).
Arbab, A. S. et al. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 18, 383-389 (2005).
Soenen, S. J. H. et al. Intracellular Nanoparticle Coating Stability Determines Nanoparticle Diagnostics Efficacy and Cell Functionality. Small 6, 2136-2145 (2010).
Javed, Y. et al. Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating. Small 10, 3325-3337 (2014).
Yang, Z. et al. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Comm. 3453-3455 (2007).
Macara, I. G., Hoy, T. G. & Harrison, P. M. The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake. Biochem. J. 126, 151-162 (1972).
Luciani, A. et al. Adipose Tissue Macrophages: MR Tracking to Monitor Obesity-associated Inflammation. Radiology 263, 786-793 (2012).
Kurz, T., Terman, A., Gustafsson, B. & Brunk, U. T. Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 129, 389-406 (2008).
Kurz, T., Gustafsson, B. & Brunk, U. T. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic. Biol. Med. 50, 1647-1658 (2011).
Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247-1248 (1981).
Ricolleau, C. et al. Performances of an 80-200 kV microscope employing a cold-FEG and an aberration-corrected objective lens. Microscopy 62, 283-293 (2013).