[en] The physical design is one of the crucial phases of advanced database design life cycle. This is due to its important role in selecting optimization structures such as materialized views, indexes, and partitioning to speed up the performance of queries. This phase has been amplified by the continually needs of storing and managing in efficient way the deluge of data in storage systems. This situation motivates the editors of commercial and non-commercial Database Management Systems (e.g. SQL Tuning Advisor-Oracle and Parinda-PostgreSQL) to propose tools (called advisors) to assist database administrators in their tasks when selecting their relevant optimization structures for a given database/data warehouse schema and a workload. The maturity of research performed in the physical design motivates us to go further and capitalize the knowledge and expertise in terms of processes, the algorithms, the cost models used to quantify the benefit of the selected optimization structures, etc. used by the research community. In this paper, we first propose a physical design language called PhyDL that allows describing all inputs and outputs of the physical design phase. Secondly, to increase the reuse of the existing advisors, we elaborate a repository called Meta-Advisor that persists all components of the physical design. Finally, a case study of our contribution is presented to stress the meta-advisor repository and highlights its importance.
Disciplines :
Computer science
Author, co-author :
Ouared, Abdelkader; National High School for Computer Science (ESI), Algiers, Algeria
Ouhammou, Yassine; LIAS/ISAE-ENSMA, Poitiers, France
Roukh, Amine ; Université de Mons - UMONS > Faculté Polytechnique > Service Informatique, Logiciel et Intelligence artificielle ; University of Mostaganem, Mostaganem, Algeria
Language :
English
Title :
A meta-advisor repository for database physical design
Publication date :
2016
Event name :
International Conference on Model and Data Engineering
Event place :
Almeria, Esp
Event date :
21-09-2016 => 23-09-2016
Main work title :
Model and Data Engineering - 6th International Conference, MEDI 2016, Proceedings
Agrawal, S., Chaudhuri, S., Narasayya, V.: Materialized view and index selection tool for microsoft SQL server 2000. ACM SIGMOD Rec. 30(2), 608 (2001)
Asperti, A., Padovani, L., Coen, C.S., Guidi, F., Schena, I.: Mathematical knowledge management in HELM. Ann. Math. Artif. Intell. 38(1–3), 27–46 (2003)
Bellatreche, L., Boukhalfa, K., Alimazighi, Z.: SimulPh.D.: a physical design simulator tool. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 263–270. Springer, Heidelberg (2009)
Bellatreche, L., Bress, S., Kerkad, A., Boukorca, A., Salmi, C.: The generalized physical design problem in data warehousing environment: towards a generic cost model. In: MIPRO, pp. 1131–1137. IEEE (2013)
Bellatreche, L., Cheikh, S., et al.: How to exploit the device diversity and database interaction to propose a generic cost model? In: IDEAS. ACM (2013)
Boukorca, A., Bellatreche, L., Cuzzocrea, A.: SLEMAS: an approach for selecting materialized views under query scheduling constraints. In: COMAD, pp. 66–73. Computer Society of India (2014)
Brown, D.P., Chaware, J., Koppuravuri, M.: Index selection in a database system, 3 March 2009. US Patent 7, 499, 907
Chaudhuri, S., Narasayya, V.: Self-tuning database systems: a decade of progress. In: VLDB, pp. 3–14. VLDB Endowment (2007)
Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M., Ziauddin, M.: Automatic SQL tuning in Oracle 10g. In: VLDB, pp. 1098–1109. VLDB Endowment (2004)
Giurgiu, I., Botezatu, M., Wiesmann, D.: Comprehensible models for reconfiguring enterprise relational databases to avoid incidents. In: CIKM. ACM (2015)
O.M. Group: OMG MOF 2 XMI mapping specification. Version 2.4.1 (2011). http://www.omg.org/spec/XMI/2.4.1/. Accessed 4 June 2016
Gupta, H., Mumick, I.S.: Selection of views to materialize under a maintenance cost constraint. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 453–470. Springer, Heidelberg (1998)
Hamid, B.: A Model Repository Description Language-MRDL. In: Kapitsaki, G., Santana de Almeida, E. (eds.) ICSR 2016. LNCS, vol. 9679, pp. 350–367. Springer, Heidelberg (2016). doi:10.1007/978-3-319-35122-3_23
Iman, E., Ashraf, A., Daniel, C.Z., Calisto, Z.: Recommending XML physical designs for XML databases. VLDB J. 22(4), 447–470 (2013)
Kerkad, A., Bellatreche, L., Richard, P., Ordonez, C., Geniet, D.: A query beehive algorithm for data warehouse buffer management and query scheduling. IJDWM 10(3), 34–58 (2014)
La Rosa, M., Reijers, H.A., et al.: Apromore: an advanced process model repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)
Maier, C., Dash, D., Alagiannis, I., Ailamaki, A., Heinis, T.: PARINDA: an interactive physical designer for PostgreSQL. In: EDBT, pp. 701–704. ACM (2010)
Mami, I., Bellahsene, Z.: A survey of view selection methods. ACM SIGMOD Rec. 41(1), 20–29 (2012)
Manegold, S., Boncz, P.A.: Optimizing database architecture for the new bottleneck: memory access. VLDB J. Int. J. Very Large Data Bases 9, 231–246 (2000)
Musset, J., Juliot, E., Lacrampe, S.: Acceleo référence. Technical report, Obeo et Acceleo (2006)
Steinberg, D., Budinsky, F., et al.: EMF: Eclipse Modeling Framework. The Eclipse Series (2008). Gamma, E., Nackman, L., Wiegand, J. (eds.)
Sun, Y.-J.J., Barukh, M.C., Benatallah, B., Beheshti, S.-M.-R.: Scalable SaaSbased process customization with casewalls. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 218–233. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48616-0_14
Varadarajan, R., Bharathan, V., et al.: DBdesigner: a customizable physical design tool for vertica analytic database. In: ICDE, pp. 1084–1095. IEEE (2014)
Zhang, N., Tatemura, J., Patel, J.M., Hacigümüs, H.: Towards cost-effective storage provisioning for DBMSS. VLDB 5(4), 274–285 (2011)
Zilio, D.C., Zuzarte, C., et al.: Recommending materialized views and indexes with the IBM DB2 design advisor. In: ICAC, pp. 180–187. IEEE (2004)