Acosta, S., Ojeda-Galván, H.J., Quintana, M., 2D materials towards energy conversion processes in nanofluidics. Phys. Chem. Chem. Phys. 25 (2023), 24264–24277, 10.1039/D3CP00702B.
Banglani, T.H., Chandio, I., Ali, A., Memon, A.A., Yang, J., Kazi, M., Thebo, K.H., Recent progress in 2D and 3D metal–organic framework-based membranes for water sustainability. Environ. Sci. 10 (2024), 1061–1096, 10.1039/D3EW00852E.
Ali, A., Thebo, M., Janwary, D., Iqbal, M., Mughal, W., Yang, J., Thebo, K.H., Covalent organic framework-based lamellar membranes for water desalination applications. RSC Sustainability 1 (2023), 1634–1654, 10.1039/D3SU00212H.
Mahar, I., Memon, F.H., Lee, J.-W., Kim, K.H., Ahmed, R., Soomro, F., Rehman, F., Memon, A.A., Thebo, K.H., Choi, K.H., Two-dimensional transition metal Carbides and Nitrides (MXenes) for water purification and Antibacterial applications. Membranes, 11, 2021, 869, 10.3390/membranes11110869.
Geim, A.K., Grigorieva, I.V., Van der Waals heterostructures. Nature 499:7459 499 (2013), 419–425, 10.1038/nature12385 2013.
Liu, G., Jin, W., Xu, N., Membranen aus zweidimensionalen Materialien: eine neue Familie hochleistungsfähiger Trennmembranen. Angew. Chem. 128 (2016), 13580–13595, 10.1002/ange.201600438.
Sun, P., Zhu, M., Wang, K., Zhong, M., Wei, J., Wu, D., Xu, Z., Zhu, H., Selective ion penetration of graphene oxide membranes. ACS Nano 7 (2013), 428–437, 10.1021/NN304471W/SUPPL_FILE/NN304471W_SI_001.PDF.
Sinha, S., Jyotsna, Arora, S.K., van der Waals Heterostructures based on Liquid Phase Exfoliated MoS2 and WS2 nanosheets. Mater Today Proc 21 (2020), 1840–1845, 10.1016/J.MATPR.2020.01.239.
Sui, X., Yuan, Z., Yu, Y., Goh, K., Chen, Y., 2D material based advanced membranes for separations in organic Solvents. Small, 16, 2020, 10.1002/smll.202003400.
Memon, F.H., Rehman, F., Lee, J., Soomro, F., Iqbal, M., Khan, S.M., Ali, A., Thebo, K.H., Choi, K.H., Transition metal Dichalcogenide-based membranes for water desalination, gas separation, and energy Storage. Separ. Purif. Rev. 52 (2023), 43–57, 10.1080/15422119.2022.2037000.
Huang, H., Ying, Y., Peng, X., Graphene oxide nanosheet: an emerging star material for novel separation membranes. J. Mater. Chem. A 2 (2014), 13772–13782, 10.1039/C4TA02359E.
Xi, Y.-H., Hu, J.-Q., Liu, Z., Xie, R., Ju, X.-J., Wang, W., Chu, L.-Y., Graphene oxide membranes with strong stability in aqueous solutions and Controllable lamellar Spacing. ACS Appl. Mater. Interfaces 8 (2016), 15557–15566, 10.1021/acsami.6b00928.
Abraham, J., Vasu, K.S., Williams, C.D., Gopinadhan, K., Su, Y., Cherian, C.T., Dix, J., Prestat, E., Haigh, S.J., Grigorieva, I.V., Carbone, P., Geim, A.K., Nair, R.R., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12 (2017), 546–550, 10.1038/nnano.2017.21.
Zhuang, P., Fu, H., Xu, N., Li, B., Xu, J., Zhou, L., Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect. Nanophotonics 9 (2020), 4601–4608, 10.1515/nanoph-2020-0396.
Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., Geim, A.K., Unimpeded permeation of water through Helium-Leak–Tight graphene-based membranes. Science 335 (1979), 442–444, 10.1126/science.1211694 2012.
Verweij, H., Schillo, M.C., Li, J., Fast mass transport through carbon Nanotube membranes. Small 3 (2007), 1996–2004, 10.1002/smll.200700368.
Secchi, E., Marbach, S., Niguès, A., Stein, D., Siria, A., Bocquet, L., Massive radius-dependent flow slippage in carbon nanotubes. Nature 537 (2016), 210–213, 10.1038/nature19315.
Gupta, I., Chakraborty, J., Roy, S., Farinas, E.T., Mitra, S., Nanocarbon immobilized membranes for generating bacteria and endotoxin free water via membrane distillation. Sep. Purif. Technol., 259, 2021, 118133, 10.1016/j.seppur.2020.118133.
Pendergast, M.M., Hoek, E.M.V., A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 4, 2011, 1946, 10.1039/c0ee00541j.
Liu, X., Zhang, L., Cui, X., Zhang, Q., Hu, W., Du, J., Zeng, H., Xu, Q., 2D material nanofiltration membranes: from fundamental Understandings to Rational Design. Adv. Sci., 8, 2021, 10.1002/advs.202102493.
Lee, K.P., Arnot, T.C., Mattia, D., A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J Memb Sci 370 (2011), 1–22, 10.1016/j.memsci.2010.12.036.
Ren, C.E., Hatzell, K.B., Alhabeb, M., Ling, Z., Mahmoud, K.A., Gogotsi, Y., Charge- and size-selective ion sieving through Ti 3 C 2 T x MXene membranes. J. Phys. Chem. Lett. 6 (2015), 4026–4031, 10.1021/acs.jpclett.5b01895.
Yan, Y.G., Wang, W.S., Li, W., Loh, K.P., Zhang, J., A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale 9 (2017), 18951–18958, 10.1039/C7NR07193K.
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3 (2008), 563–568, 10.1038/nnano.2008.215.
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M., Improved Synthesis of graphene oxide. ACS Nano 4 (2010), 4806–4814, 10.1021/nn1006368.
Ferrari, A.C., Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143 (2007), 47–57, 10.1016/j.ssc.2007.03.052.
Lee, A.Y., Yang, K., Anh, N.D., Park, C., Lee, S.M., Lee, T.G., Jeong, M.S., Raman study of D∗ band in graphene oxide and its correlation with reduction. Appl. Surf. Sci., 536, 2021, 147990, 10.1016/j.apsusc.2020.147990.
López-Díaz, D., López Holgado, M., García-Fierro, J.L., Velázquez, M.M., Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 121 (2017), 20489–20497, 10.1021/acs.jpcc.7b06236.
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 2006, 187401, 10.1103/PhysRevLett.97.187401.
Ferrari, A.C., Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61 (2000), 14095–14107, 10.1103/PhysRevB.61.14095.
Martins Ferreira, E.H., Moutinho, M.V.O., Stavale, F., Lucchese, M.M., Capaz, R.B., Achete, C.A., Jorio, A., Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B, 82, 2010, 125429, 10.1103/PhysRevB.82.125429.
Yeh, C.-N., Raidongia, K., Shao, J., Yang, Q.-H., Huang, J., On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7 (2015), 166–170, 10.1038/nchem.2145.
Mata-Cruz, I., Vargas-Caamal, A., Yañez-Soto, B., López-Valdivieso, A., Merino, G., Quintana, M., Mimicking rose petal wettability by chemical modification of graphene films. Carbon N Y 121 (2017), 472–478, 10.1016/j.carbon.2017.06.018.
Perez-Gavilan, A., de Castro, J.V., Arana, A., Merino, S., Retolaza, A., Alves, S.A., Francone, A., Kehagias, N., Sotomayor-Torres, C.M., Cocina, D., Mortera, R., Crapanzano, S., Pelegrín, C.J., Garrigos, M.C., Jiménez, A., Galindo, B., Araque, M.C., Dykeman, D., Neves, N.M., Marimón, J.M., Antibacterial activity testing methods for hydrophobic patterned surfaces. Sci. Rep., 11, 2021, 6675, 10.1038/s41598-021-85995-9.
Perreault, F., Fonseca de Faria, A., Elimelech, M., Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44 (2015), 5861–5896, 10.1039/C5CS00021A.
Yang, S.-T., Chen, S., Chang, Y., Cao, A., Liu, Y., Wang, H., Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 359 (2011), 24–29, 10.1016/j.jcis.2011.02.064.
Kang, K.M., Kim, D.W., Ren, C.E., Cho, K.M., Kim, S.J., Choi, J.H., Nam, Y.T., Gogotsi, Y., Jung, H.-T., Selective molecular separation on Ti 3 C 2 T x –graphene oxide membranes during pressure-Driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 9 (2017), 44687–44694, 10.1021/acsami.7b10932.
Han, Y., Xu, Z., Gao, C., Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23 (2013), 3693–3700, 10.1002/adfm.201202601.
Zhang, M., Sun, J., Mao, Y., Liu, G., Jin, W., Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. J Memb Sci 574 (2019), 196–204, 10.1016/j.memsci.2018.12.071.
Zhang, P., Wang, Y., Li, P., Luo, X., Feng, J., Kong, H., Li, T., Wang, W., Duan, X., Liu, Y., Li, M., Improving stability and separation performance of graphene oxide/graphene nanofiltration membranes by adjusting the laminated regularity of stacking-sheets. Sci. Total Environ., 827, 2022, 154175, 10.1016/j.scitotenv.2022.154175.
Yang, Q., Su, Y., Chi, C., Cherian, C.T., Huang, K., Kravets, V.G., Wang, F.C., Zhang, J.C., Pratt, A., Grigorenko, A.N., Guinea, F., Geim, A.K., Nair, R.R., Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16 (2017), 1198–1202, 10.1038/nmat5025.
Akbari, A., Sheath, P., Martin, S.T., Shinde, D.B., Shaibani, M., Banerjee, P.C., Tkacz, R., Bhattacharyya, D., Majumder, M., Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun., 7, 2016, 10891, 10.1038/ncomms10891.
Kandambeth, S., Biswal, B.P., Chaudhari, H.D., Rout, K.C., Kunjattu H, S., Mitra, S., Karak, S., Das, A., Mukherjee, R., Kharul, U.K., Banerjee, R., Selective molecular sieving in Self‐standing porous Covalent‐organic‐framework membranes. Adv. Mater., 29, 2017, 10.1002/adma.201603945.
Pang, J., Cui, X., Feng, Y., Guo, Z., Kong, G., Yu, L., Zhang, C., Wang, R., Kang, Z., Sun, D., Fabrication of Graphene oxide membrane with multiple “Plug-ins” for efficient dye nanofiltration. Sep. Purif. Technol., 278, 2021, 119504, 10.1016/j.seppur.2021.119504.
Halder, A., Karak, S., Addicoat, M., Bera, S., Chakraborty, A., Kunjattu, S.H., Pachfule, P., Heine, T., Banerjee, R., Ultrastable Imine‐based Covalent organic Frameworks for Sulfuric Acid Recovery: an effect of Interlayer hydrogen bonding. Angew. Chem. Int. Ed. 57 (2018), 5797–5802, 10.1002/anie.201802220.
Yang, L., Jia, F., Juan, Z., Yu, D., Sun, L., Song, Y., Wang, Y., Huang, L., Tang, J., High-permeable graphene oxide/graphitic carbon nitride composite nanofiltration membrane for selective separation of dye and desalination. J. Environ. Chem. Eng., 11, 2023, 109306, 10.1016/j.jece.2023.109306.
Fan, H., Gu, J., Meng, H., Knebel, A., Caro, J., High‐flux membranes based on the Covalent organic framework COF‐LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57 (2018), 4083–4087, 10.1002/anie.201712816.
Wei, S., Xie, Y., Xing, Y., Wang, L., Ye, H., Xiong, X., Wang, S., Han, K., Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J Memb Sci 582 (2019), 414–422, 10.1016/j.memsci.2019.03.085.
Morelos-Gomez, A., Cruz-Silva, R., Muramatsu, H., Ortiz-Medina, J., Araki, T., Fukuyo, T., Tejima, S., Takeuchi, K., Hayashi, T., Terrones, M., Endo, M., Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12 (2017), 1083–1088, 10.1038/nnano.2017.160.
Rehman, F., Hussain Memon, F., Ullah, S., Jafar Mazumder, M.A., Al‐Ahmed, A., Khan, F., Hussain Thebo, K., Recent Development in Laminar transition metal dichalcogenides‐based membranes towards water desalination: a review. Chem. Rec., 22, 2022, 10.1002/tcr.202200107.