[en] Species within nearly all extant animal lineages are capable of regenerating body parts. However, it remains unclear whether the gene expression programme controlling regeneration is evolutionarily conserved. Brittle stars are a species-rich class of echinoderms with outstanding regenerative abilities, but investigations into the genetic bases of regeneration in this group have been hindered by the limited genomic resources. Here we report a chromosome-scale genome assembly for the brittle star Amphiura filiformis. We show that the brittle star genome is the most rearranged among echinoderms sequenced so far, featuring a reorganized Hox cluster reminiscent of the rearrangements observed in sea urchins. In addition, we performed an extensive profiling of gene expression during brittle star adult arm regeneration and identified sequential waves of gene expression governing wound healing, proliferation and differentiation. We conducted comparative transcriptomic analyses with other invertebrate and vertebrate models for appendage regeneration and uncovered hundreds of genes with conserved expression dynamics, particularly during the proliferative phase of regeneration. Our findings emphasize the crucial importance of echinoderms to detect long-range expression conservation between vertebrates and classical invertebrate regeneration model systems.
Disciplines :
Zoology
Author, co-author :
Parey, Elise ; Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK. e.parey@ucl.ac.uk
Ortega-Martinez, Olga ; Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
DELROISSE, Jérôme ; Université de Mons - UMONS > Faculté des Sciences > Service de Biologie des Organismes Marins et Biomimétisme
Piovani, Laura ; Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
Czarkwiani, Anna ; Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK ; Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
Dylus, David ; Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK ; Roche Pharmaceutical Research and Early Development (pRED), Cardiovascular and Metabolism, Immunology, Infectious Disease, and Ophthalmology (CMI2O), F. Hoffmann-La Roche Ltd, Basel, Switzerland
Arya, Srishti ; Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK ; MRC Laboratory of Medical Sciences, Imperial College London, London, UK
Dupont, Samuel; Department of Biology and Environmental Science, University of Gothenburg, Kristineberg Marine Research Station, Fiskebäckskil, Sweden ; IAEA Marine Environment Laboratories, Radioecology Laboratory, Quai Antoine 1er, Monaco
Thorndyke, Michael; Department of Biology and Environmental Science, University of Gothenburg, Kristineberg Marine Research Station, Fiskebäckskil, Sweden
Larsson, Tomas; Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
Johannesson, Kerstin ; Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
Buckley, Katherine M ; Department of Biological Sciences, Auburn University, Auburn, AL, USA
Martinez, Pedro ; Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, Barcelona, Spain ; Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
Oliveri, Paola ; Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK. p.oliveri@ucl.ac.uk
Marlétaz, Ferdinand ; Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK. f.marletaz@ucl.ac.uk
S864 - Biologie des Organismes Marins et Biomimétisme
Research institute :
Research Institute for Biosciences
Funders :
Royal Society RCUK | Biotechnology and Biological Sciences Research Council Leverhulme Trust Japan Society for the Promotion of Science London Vetenskapsrådet Fonds De La Recherche Scientifique - FNRS National Science Foundation EC | Horizon 2020 Framework Programme EC | EC Seventh Framework Programm | FP7 Research infrastructures
Funding text :
This work was supported by the Centre for Marine Evolutionary Biology at the University of Gothenburg ( http://www.cemeb.science.gu.se/ ) and the IMAGO project led by Anders Blomberg. E.P. was supported by a Newton International Fellowship from the Royal Society (NIF\\R1\\222125). F.M. was supported by a Royal Society University Research Fellowship (URF\\R1\\191161) and a Japan Society for the Promotion of Science Kakenhi grant (JP 19K06620). L.P. was supported by the Leverhulme Trust Research Project (grant number RPG-2021-436 to F.M. supporting L.P.) and the BBSRC (grant BB/V01109X/1 to F.M. supporting L.P.). O.O.-M. was financially supported by CEMEB through grants from Swedish research councils Formas and VR (217-2008-1719) and from a VR grant to K.J. (253016979). J.D. was supported by an F.R.S.-FNRS research project (PDR, 40013965), previously held an F.R.S.-FNRS \u2018Charg\u00E9 de recherche\u2019 fellowship (CR, 34761044), and also received financial support from an F.R.S.-FNRS research project (PDR, T.0169.20) and the Biosciences Research Institute of the University of Mons. P.M. visited the Department of Genetics, Evolution and Environment of UCL financed by a short-term scientific mission Grant of the EU COST Action MARISTEM (CA-16203). K.M.B. was supported by the National Science Foundation (NSF Award 2131297). P.O. visits to the Kristineberg Marine Station (Sweden) were supported by the KVA fund SL2015-0048 from the Royal Swedish Academy of Sciences and the EU FP7 Research Infrastructures Initiative ASSEMBLE (227799). P.O. was supported by the BBSRC (BB/W017865/1). The IAEA thanks the Government of the Principality of Monaco for the support provided to its Marine Environment Laboratories. We thank the staff at the Kristineberg Center for Marine Research and Innovation, especially U. Schwarz, for assistance during animal collection; A. Sabar\u00ED i Mart\u00ED, E. Onal, L. Henke and W. Hart for assistance in conducting experiments. We acknowledge the Okinawa Institute of Science and Technology sequencing facility and its members for support, especially N. Arakaki and M. Kawamitsu. Finally, we thank J. Rast for helpful comments on the manuscript. The authors dedicate this manuscript to Michael Thorndyke and R. Andrew Cameron, who were both instrumental in the early stages of this project but, sadly, passed away before analyses were completed. Without their contributions, this work would not have been possible.
S. Stöhr T.D. O’Hara B. Thuy Global diversity of brittle stars (Echinodermata: Ophiuroidea) PLoS ONE 2012 7 e31940 22396744 3292557
T.D. O’Hara A.F. Hugall S.N.C. Woolley G. Bribiesca-Contreras N.J. Bax Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors Nature 2019 565 636 639 30675065
B. Vistisen B. Vismann Tolerance to low oxygen and sulfide in Amphiura filiformis and Ophiura albida (Echinodermata: Ophiuroidea) Mar. Biol. 1997 128 241 246 1:CAS:528:DyaK2sXktVyru7c%3D
K. Vopel D. Thistle R. Rosenberg Effect of the brittle star Amphiura filiformis (Amphiuridae, Echinodermata) on oxygen flux into the sediment Limnol. Oceanogr. 2003 48 2034 2045 1:CAS:528:DC%2BD3sXotFCqsrg%3D
S. Dupont M. Thorndyke Bridging the regeneration gap: insights from echinoderm models Nat. Rev. Genet. 2007 8 320 1:CAS:528:DC%2BD2sXivVGktbo%3D
C.V. Mosher L. Watling Partners for life: a brittle star and its octocoral host Mar. Ecol. Prog. Ser. 2009 397 81 88
B. Thuy et al. Ancient origin of the modern deep-sea fauna PLoS ONE 2012 7 e46913 1:CAS:528:DC%2BC38XhsFKltb3E 23071660 3468611
J. Delroisse et al. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence Open Biol. 2017 7 160300 28381628 5413902
D.V. Dylus A. Czarkwiani L.M. Blowes M.R. Elphick P. Oliveri Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution Genome Biol. 2018 19 29490679 5831733
M.J. Telford et al. Phylogenomic analysis of echinoderm class relationships supports Asterozoa Proc. R. Soc. B 2014 281 20140479 24850925 4046411
T.D. O’Hara A.F. Hugall B. Thuy A. Moussalli Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record Curr. Biol. 2014 24 1874 1879 25065752
J.T. Cannon et al. Phylogenomic resolution of the hemichordate and echinoderm clade Curr. Biol. 2014 24 2827 2832 1:CAS:528:DC%2BC2cXhvV2nu73P 25454590
N. Mongiardino Koch et al. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record Elife 2022 11 e72460 35315317 8940180
Sea Urchin Genome Sequencing Consortium. The genome of the sea urchin Strongylocentrotus purpuratus Science 2006 314 941 952 3159423
F. Raible et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome Dev. Biol. 2006 300 461 475 1:CAS:528:DC%2BD28Xht1KrtrfM 17067569
B.T. Livingston et al. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus Dev. Biol. 2006 300 335 348 1:CAS:528:DC%2BD28Xht1KrtrbO 16987510
J.P. Rast L.C. Smith M. Loza-Coll T. Hibino G.W. Litman Genomic insights into the immune system of the sea urchin Science 2006 314 952 956 1:CAS:528:DC%2BD28XhtFyqtLbO 17095692 3707132
M.R. Hall et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest Nature 2017 544 231 234 1:CAS:528:DC%2BC2sXlvVKhsL8%3D 28379940
T. Chen et al. The Holothuria leucospilota genome elucidates sacrificial organ expulsion and bioadhesive trap enriched with amyloid-patterned proteins Proc. Natl Acad. Sci. USA 2023 120 e2213512120 1:CAS:528:DC%2BB3sXptFeitr4%3D 37036994 10120082
P.L. Davidson et al. Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins Nat. Ecol. Evol. 2022 6 1907 1920 36266460
P.L. Davidson et al. Chromosomal-level genome assembly of the sea urchin Lytechinus variegatus substantially improves functional genomic analyses Genome Biol. Evol. 2020 12 1080 1086 1:CAS:528:DC%2BB3cXis1eks7bF 32433766 7455304
X. Zhang et al. The sea cucumber genome provides insights into morphological evolution and visceral regeneration PLoS Biol. 2017 15 e2003790 29023486 5638244
F. Marlétaz et al. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes Cell Genom. 2023 3 37082140 10112332
M.K.N. Lawniczak et al. The genome sequence of the spiny starfish, Marthasterias glacialis (Linnaeus, 1758) Wellcome Open Res. 2021 6 295 36936045 10015122
A.B. Smith Deuterostomes in a twist: the origins of a radical new body plan Evol. Dev. 2008 10 493 503 18638326
R.A. Cameron et al. Unusual gene order and organization of the sea urchin hox cluster J. Exp. Zool. B 2006 306 45 58
B. David R. Mooi How Hox genes can shed light on the place of echinoderms among the deuterostomes Evodevo 2014 5 24959343 4066700
R. Mooi B. David Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes Annu. Rev. Ecol. Evol. Syst. 2008 39 43 62
C.J. Lowe G.A. Wray Radical alterations in the roles of homeobox genes during echinoderm evolution Nature 1997 389 718 721 1:CAS:528:DyaK2sXmvVShtb0%3D 9338781
K.W. Baughman et al. Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci Genesis 2014 52 952 958 1:CAS:528:DC%2BC2cXitFSqtrfF 25394327
M. Byrne P. Martinez V. Morris Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited Evol. Dev. 2016 18 137 143 26763653
M. Srivastava Beyond casual resemblance: rigorous frameworks for comparing regeneration across species Annu. Rev. Cell Dev. Biol. 2021 37 415 440 1:CAS:528:DC%2BB3MXhs1SmsrbI 34288710
A.G. Lai A.A. Aboobaker EvoRegen in animals: time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes Dev. Biol. 2018 433 118 131 1:CAS:528:DC%2BC2sXhvFSnu7zK 29198565
A.E. Bely K.G. Nyberg Evolution of animal regeneration: re-emergence of a field Trends Ecol. Evol. 2010 25 161 170 19800144
G.A. Cary A. Wolff O. Zueva J. Pattinato V.F. Hinman Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa BMC Biol. 2019 17 30795750 6385403
J.A. Goldman K.D. Poss Gene regulatory programmes of tissue regeneration Nat. Rev. Genet. 2020 21 511 525 1:CAS:528:DC%2BB3cXhtFSgs7%2FO 32504079 7448550
L. Bideau P. Kerner J. Hui M. Vervoort E. Gazave Animal regeneration in the era of transcriptomics Cell. Mol. Life Sci. 2021 78 3941 3956 1:CAS:528:DC%2BB3MXis1OmsLg%3D 33515282 11072743
M. Sköld R. Rosenberg Arm regeneration frequency in eight species of Ophiuroidea (Echinodermata) from European sea areas J. Sea Res. 1996 35 353 362
G.C.A. Duineveld G.J. Van Noort Observations on the population dynamics of Amphiura filiformis (Ophiuroidea: Echinodermata) in the southern North Sea and its exploitation by the dab, Limanda limanda Neth. J. Sea Res. 1986 20 85 94
A. Czarkwiani D.V. Dylus P. Oliveri Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis Gene Expr. Patterns 2013 13 464 472 1:CAS:528:DC%2BC3sXhsleisbzI 24051028 3838619
A. Czarkwiani C. Ferrario D.V. Dylus M. Sugni P. Oliveri Skeletal regeneration in the brittle star Amphiura filiformis Front. Zool. 2016 13 27110269 4841056
L. Piovani A. Czarkwiani C. Ferrario M. Sugni P. Oliveri Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration BMC Biol. 2021 19 1:CAS:528:DC%2BB3MXkvFKhsLg%3D 33461552 7814545
A. Czarkwiani J. Taylor P. Oliveri Neurogenesis during brittle star arm regeneration is characterised by a conserved set of key developmental genes Biology 2022 11 1360 1:CAS:528:DC%2BB38XisFentbrK 36138839 9495562
M.Y. Hu I. Casties M. Stumpp O. Ortega-Martinez S. Dupont Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis J. Exp. Biol. 2014 217 2411 2421 24737772
S. Purushothaman et al. Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue–undergoing regeneration J. Proteom. 2015 112 113 124 1:CAS:528:DC%2BC2cXhsV2kt7bE
S. Dupont M.C. Thorndyke Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis J. Exp. Biol. 2006 209 3873 3881 16985203
C. Sinigaglia et al. Distinct gene expression dynamics in developing and regenerating crustacean limbs Proc. Natl Acad. Sci. USA 2022 119 e2119297119 1:CAS:528:DC%2BB38XhvFemtLzL 35776546 9271199
R. Stewart et al. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema PLoS Comput. Biol. 2013 9 e1002936 1:CAS:528:DC%2BC3sXlvValsbs%3D 23505351 3591270
Y. Li et al. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms Commun. Biol. 2020 3 371 1:CAS:528:DC%2BB3cXhtVKltLbM 32651448 7351957
O. Simakov et al. Deeply conserved synteny resolves early events in vertebrate evolution Nat. Ecol. Evol. 2020 4 820 830 32313176 7269912
O. Simakov et al. Deeply conserved synteny and the evolution of metazoan chromosomes Sci. Adv. 2022 8 1:CAS:528:DC%2BB38XkvFyhu7Y%3D 35108053 8809688
J. Liu Y. Zhou Y. Pu H. Zhang A chromosome-level genome assembly of a deep-sea starfish (Zoroaster cf. ophiactis) Sci. Data 2023 10 1:CAS:528:DC%2BB3sXhs1SnsbjF 37528102 10394057
P.L. Davidson H.A. Lessios G.A. Wray W.O. McMillan C. Prada Near-chromosomal-level genome assembly of the sea urchin Echinometra lucunter, a model for speciation in the sea Genome Biol. Evol. 2023 15 evad093 37280750 10244470
L.M. Schiebelhut J.B. Puritz M.N. Dawson Decimation by sea star wasting disease and rapid genetic change in a keystone species, Pisaster ochraceus Proc. Natl Acad. Sci. USA 2018 115 7069 7074 1:CAS:528:DC%2BC1cXitlWru7bI 29915091 6142263
Y. Lee et al. Chromosome-level genome assembly of Plazaster borealis sheds light on the morphogenesis of multiarmed starfish and its regenerative capacity Gigascience 2022 11
R.N. Ketchum et al. A chromosome-level genome assembly of the highly heterozygous sea urchin Echinometra sp. EZ reveals adaptation in the regulatory regions of stress response genes Genome Biol. Evol. 2022 14 evac144 36161313 9557091
A. Belyayev Bursts of transposable elements as an evolutionary driving force J. Evol. Biol. 2014 27 2573 2584 1:STN:280:DC%2BC2M7nvV2qtg%3D%3D 25290698
R. Annunziata P. Martinez M.I. Arnone Intact cluster and chordate-like expression of ParaHox genes in a sea star BMC Biol. 2013 11 23803323 3710244
C. Arenas-Mena P. Martinez R.A. Cameron E.H. Davidson Expression of the Hox gene complex in the indirect development of a sea urchin Proc. Natl Acad. Sci. USA 1998 95 13062 13067 1:CAS:528:DyaK1cXntFWkuro%3D 9789041 23710
D.V. Dylus et al. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks Evodevo 2016 7 26759711 4709884
J. Delroisse et al. High opsin diversity in a non-visual infaunal brittle star BMC Genomics 2014 15 25429842 4289182
J. Delroisse O. Ortega-Martinez S. Dupont J. Mallefet P. Flammang De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae Mar. Genomics 2015 23 109 121 26044617
Q. Tu R.A. Cameron E.H. Davidson Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus Dev. Biol. 2014 385 160 167 1:CAS:528:DC%2BC3sXhvFOgsbbM 24291147
M.I. Arnone et al. Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity Dev. Biol. 2006 300 63 73 1:CAS:528:DC%2BD28Xht1KrtrfI 16959236
M. Kikuchi A. Omori D. Kurokawa K. Akasaka Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus Dev. Genes Evol. 2015 225 275 286 1:CAS:528:DC%2BC2MXhtlelsbzM 26250612
Y. Hara et al. Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus Dev. Genes Evol. 2006 216 797 809 1:CAS:528:DC%2BD28Xht1entb%2FK 17013610
Y. Li et al. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation Cell Discov. 2018 4 29 29951224 6018497
C. Arenas-Mena R.A. Cameron E.H. Davidson Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo Dev. Growth Differ. 2006 48 463 472 1:CAS:528:DC%2BD28XhtFSjs7nE 16961593
A. Yamazaki S. Yamakawa Y. Morino Y. Sasakura H. Wada Gene regulation of adult skeletogenesis in starfish and modifications during gene network co-option Sci. Rep. 2021 11 1:CAS:528:DC%2BB3MXit1aqsLrK 34635691 8505446
H.C. Seo et al. Miniature genome in the marine chordate Oikopleura dioica Science 2001 294 2506 1:CAS:528:DC%2BD38Xnt1er 11752568
N.H. Putnam et al. The amphioxus genome and the evolution of the chordate karyotype Nature 2008 453 1064 1071 1:CAS:528:DC%2BD1cXntlGjtb4%3D 18563158
F. Leulier B. Lemaitre Toll-like receptors—taking an evolutionary approach Nat. Rev. Genet. 2008 9 165 178 1:CAS:528:DC%2BD1cXitVGhtrw%3D 18227810
M. Nei X. Gu T. Sitnikova Evolution by the birth-and-death process in multigene families of the vertebrate immune system Proc. Natl Acad. Sci. USA 1997 94 7799 7806 1:CAS:528:DyaK2sXksl2nsbg%3D 9223266 33709
A. Saco B. Novoa S. Greco M. Gerdol A. Figueras Bivalves present the largest and most diversified repertoire of toll-like receptors in the animal kingdom, suggesting broad-spectrum pathogen recognition in marine waters Mol. Biol. Evol. 2023 40 msad133 1:CAS:528:DC%2BB3sXitFajsrjL 37279919 10279657
E.L.G. Pryzdial A. Leatherdale E.M. Conway Coagulation and complement: key innate defense participants in a seamless web Front. Immunol. 2022 13 918775 1:CAS:528:DC%2BB38Xit1Olu77P 36016942 9398469
T.G. Loof O. Schmidt H. Herwald U. Theopold Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J. Innate Immun. 2011 3 34 40 1:CAS:528:DC%2BC3cXhsFOgtLrK 21051879
P.C. Hanington S.-M. Zhang The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation J. Innate Immun. 2011 3 17 27 1:CAS:528:DC%2BC3cXhsFOgtLrI 21063081
C.M. Arenas Gómez K.Z. Sabin K. Echeverri Wound healing across the animal kingdom: crosstalk between the immune system and the extracellular matrix Dev. Dyn. 2020 249 834 846 32314465 7383677
C. Ferrario et al. Fundamental aspects of arm repair phase in two echinoderm models Dev. Biol. 2018 433 297 309 1:CAS:528:DC%2BC1cXhslWhsA%3D%3D 29291979
B. Suárez-Álvarez H. Liapis H.-J. Anders Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology Lab Invest. 2016 96 378 390 26752746
R. Ramachandra et al. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis Glycobiology 2017 27 438 449 1:CAS:528:DC%2BC1cXhvVOnsLfI 28130266
R. Karra A.K. Knecht K. Kikuchi K.D. Poss Myocardial NF-κB activation is essential for zebrafish heart regeneration Proc. Natl Acad. Sci. USA 2015 112 13255 13260 1:CAS:528:DC%2BC2MXhs1Ogs7fP 26472034 4629358
A.R. Straughn S.M. Hindi G. Xiong A. Kumar Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis J. Mol. Cell. Biol. 2019 11 53 66 1:CAS:528:DC%2BB3cXjslClt7o%3D 30239789
Y. Wenger W. Buzgariu S. Reiter B. Galliot Injury-induced immune responses in Hydra Semin. Immunol. 2014 26 277 294 1:CAS:528:DC%2BC2cXhs1SqurvF 25086685
M. Cui et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance Nat. Commun. 2021 12 5270 1:CAS:528:DC%2BB3MXitVSjs7nI 34489413 8421386
G. Ayaz H. Yan N. Malik J. Huang An updated view of the roles of p53 in embryonic stem cells Stem Cells 2022 40 883 891 35904997 9585900
M. Kawaguchi et al. Co-option of the PRDM14-CBFA2T complex from motor neurons to pluripotent cells during vertebrate evolution Development 2019 146 dev168633 30630825
S.K. Oh et al. RORα is crucial for attenuated inflammatory response to maintain intestinal homeostasis Proc. Natl Acad. Sci. USA 2019 116 21140 21149 1:CAS:528:DC%2BC1MXhvFyhsrjF 31570593 6800319
R. Villot et al. ZNF768: controlling cellular senescence and proliferation with ten fingers Mol. Cell Oncol. 2021 8 35419475 8997246
D. Han et al. ZBTB12 is a molecular barrier to dedifferentiation in human pluripotent stem cells Nat. Commun. 2023 14 1:CAS:528:DC%2BB3sXjtlGks7Y%3D 36759523 9911396
T.J. Huat et al. IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells BMC Neurosci. 2014 15 25047045 4117972
S.C. Herrera E.A. Bach JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates Development 2019 146 dev167643 30696713 6361132
N. Xu Y. Lao Y. Zhang D.A. Gillespie Akt: a double-edged sword in cell proliferation and genome stability J. Oncol. 2012 2012 951724 22481935 3317191
R.S. Apte D.S. Chen N. Ferrara VEGF in signaling and disease: beyond discovery and development Cell 2019 176 1248 1264 1:CAS:528:DC%2BC1MXks1Sgt70%3D 30849371 6410740
J.M. Gross R.E. Peterson S.-Y. Wu D.R. McClay LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo Development 2003 130 1989 1999 1:CAS:528:DC%2BD3sXjslGrs7s%3D 12642501
L.A. Slota D.R. McClay Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo Dev. Biol. 2018 435 138 149 1:CAS:528:DC%2BC1cXisVSqt70%3D 29331498 5837949
L.A. Slota E.M. Miranda D.R. McClay Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus Evodevo 2019 10 30792836 6371548
J. Barrera-Redondo J.S. Lotharukpong H.-G. Drost S.M. Coelho Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra Genome Biol. 2023 24 36964572 10037820
H. Kiyokawa et al. Airway basal stem cells reutilize the embryonic proliferation regulator, Tgfβ-Id2 axis, for tissue regeneration Dev. Cell 2021 56 1917 1929.e9 1:CAS:528:DC%2BB3MXhtlait7vO 34129836
Y. Zhou J.J. Chen STAT3 plays an important role in DNA replication by turning on WDHD1 Cell Biosci. 2021 11 10 1:CAS:528:DC%2BB3MXit1ekurw%3D 33413624 7792067
K.M. Angileri N.A. Bagia C. Feschotte Transposon control as a checkpoint for tissue regeneration Development 2022 149 dev191957 1:CAS:528:DC%2BB38XjtFCjtLnF 36440631 10655923
W. Hoch Formation of the neuromuscular junction. Agrin and its unusual receptors Eur. J. Biochem. 1999 265 1 10 1:CAS:528:DyaK1MXmsFKlurY%3D 10491152
M. Novinec D. Kordis V. Turk B. Lenarcic Diversity and evolution of the thyroglobulin type-1 domain superfamily Mol. Biol. Evol. 2006 23 744 755 1:CAS:528:DC%2BD28XjtFCmsbs%3D 16368776
A. Yan et al. Identification and functional characterization of a novel antistasin/WAP-like serine protease inhibitor from the tropical sea cucumber, Stichopus monotuberculatus Fish. Shellfish Immunol. 2016 59 203 212 1:CAS:528:DC%2BC28XhvVWmtbrL 27989867
M.N. Elkasrawy M.W. Hamrick Myostatin (GDF-8) as a key factor linking muscle mass and bone structure J. Musculoskelet. Neuronal Interact. 2010 10 56 63 1:CAS:528:DC%2BC3cXjtVKhtLY%3D 20190380
S. McCroskery et al. Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice J. Cell Sci. 2005 118 3531 3541 1:CAS:528:DC%2BD2MXpvFKmtLs%3D 16079293
Schiffer, P. H. et al. The slow evolving genome of the xenacoelomorph worm Xenoturbella bocki. Preprint at bioRxivhttps://doi.org/10.1101/2022.06.24.497508 (2022).
H. Philippe et al. Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria Curr. Biol. 2019 29 1818 1826.e6 1:CAS:528:DC%2BC1MXpvVyntL8%3D 31104936
C. Arenas-Mena A.R. Cameron E.H. Davidson Spatial expression of Hox cluster genes in the ontogeny of a sea urchin Development 2000 127 4631 4643 1:CAS:528:DC%2BD3cXosl2is70%3D 11023866
G. Marçais C. Kingsford A fast, lock-free approach for efficient parallel counting of occurrences of k-mers Bioinformatics 2011 27 764 770 21217122 3051319
T.R. Ranallo-Benavidez K.S. Jaron M.C. Schatz GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes Nat. Commun. 2020 11 1:CAS:528:DC%2BB3cXlt1Wisb0%3D 32188846 7080791
M. Kolmogorov J. Yuan Y. Lin P.A. Pevzner Assembly of long, error-prone reads using repeat graphs Nat. Biotechnol. 2019 37 540 546 1:CAS:528:DC%2BC1MXosV2qsrs%3D 30936562
R. Vaser I. Sović N. Nagarajan M. Šikić Fast and accurate de novo genome assembly from long uncorrected reads Genome Res. 2017 27 737 746 1:CAS:528:DC%2BC2sXhtFyjsrvM 28100585 5411768
H. Li Minimap2: pairwise alignment for nucleotide sequences Bioinformatics 2018 34 3094 3100 1:CAS:528:DC%2BC1MXhtVamu73J 29750242 6137996
A. Rhie B.P. Walenz S. Koren A.M. Phillippy Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies Genome Biol. 2020 21 1:CAS:528:DC%2BB3cXhvVKmu7rF 32928274 7488777
Y. Chen Y. Zhang A.Y. Wang M. Gao Z. Chong Accurate long-read de novo assembly evaluation with Inspector Genome Biol. 2021 22 34775997 8590762
D. Guan et al. Identifying and removing haplotypic duplication in primary genome assemblies Bioinformatics 2020 36 2896 2898 1:CAS:528:DC%2BB3cXisFCktb%2FO 31971576 7203741
Open2C et al. Pairtools: from sequencing data to chromosome contacts. Preprint at bioRxivhttps://doi.org/10.1101/2023.02.13.528389 (2023).
C. Zhou S.A. McCarthy R. Durbin YaHS: yet another Hi-C scaffolding tool Bioinformatics 2023 39 btac808 1:CAS:528:DC%2BB3sXhsFKisLbN 36525368
O. Dudchenko et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds Science 2017 356 92 95 1:CAS:528:DC%2BC2sXlsVymsbo%3D 28336562 5635820
J.M. Flynn et al. RepeatModeler2 for automated genomic discovery of transposable element families Proc. Natl Acad. Sci. USA 2020 117 9451 9457 1:CAS:528:DC%2BB3cXnvFeqt74%3D 32300014 7196820
H. Yan A. Bombarely S. Li DeepTE: a computational method for de novo classification of transposons with convolutional neural network Bioinformatics 2020 36 4269 4275 1:CAS:528:DC%2BB3cXisVylsbfO 32415954
W. Bao K.K. Kojima O. Kohany Repbase Update, a database of repetitive elements in eukaryotic genomes Mob. DNA 2015 6 26045719 4455052
R. Hubley et al. The Dfam database of repetitive DNA families Nucleic Acids Res. 2016 44 D81 D89 1:CAS:528:DC%2BC2sXhtV2nsrjN 26612867
Parey, E. et al. Supplemental datasets for the brittle star A. filiformis genome. Zenodohttps://doi.org/10.5281/zenodo.10785182 (2024).
M.J. Hubisz K.S. Pollard A. Siepel PHAST and RPHAST: phylogenetic analysis with space/time models Brief. Bioinform. 2011 12 41 51 1:CAS:528:DC%2BC3MXhtlelsro%3D 21278375
Parey, E. & Marlétaz, F. eparey/AnnotateSnakeMake: Genome Annotation Workflow v1.0.0. Zenodo https://doi.org/10.5281/zenodo.11084023 (2024).
F.A. Simão R.M. Waterhouse P. Ioannidis E.V. Kriventseva E.M. Zdobnov BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs Bioinformatics 2015 31 3210 3212 26059717
R.D. Finn et al. Pfam: the protein families database Nucleic Acids Res. 2014 42 D222 D230 1:CAS:528:DC%2BC2cXos1al 24288371
E. Levy Karin M. Mirdita J. Söding MetaEuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics Microbiome 2020 8 1:CAS:528:DC%2BB38XjtlGmtrk%3D 32245390 7126354
B. Buchfink K. Reuter H.-G. Drost Sensitive protein alignments at tree-of-life scale using DIAMOND Nat. Methods 2021 18 366 368 1:CAS:528:DC%2BB3MXosVCltrw%3D 33828273 8026399
M. Krzywinski et al. Circos: an information aesthetic for comparative genomics Genome Res. 2009 19 1639 1645 1:CAS:528:DC%2BD1MXhtFCjsLvJ 19541911 2752132
Z. Hao et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms PeerJ Comput Sci. 2020 6 33816903 7924719
A.M. Kozlov D. Darriba T. Flouri B. Morel A. Stamatakis RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference Bioinformatics 2019 35 4453 4455 1:CAS:528:DC%2BB3cXhtFalsL3F 31070718 6821337
N. Comte et al. Treerecs: an integrated phylogenetic tool, from sequences to reconciliations Bioinformatics 2020 36 4822 4824 1:CAS:528:DC%2BB3MXht12gsbvF 33085745
R. Derelle H. Philippe J.K. Colbourne Broccoli: combining phylogenetic and network analyses for orthology assignment Mol. Biol. Evol. 2020 37 3389 3396 1:CAS:528:DC%2BB3MXht1amtLnF 32602888
F.K. Mendes D. Vanderpool B. Fulton M.W. Hahn CAFE 5 models variation in evolutionary rates among gene families Bioinformatics 2020 36 5516 5518 1:CAS:528:DC%2BB3MXht12gtLnM
N. Lartillot T. Lepage S. Blanquart PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating Bioinformatics 2009 25 2286 2288 1:CAS:528:DC%2BD1MXhtVelu7fP 19535536
Benton, M. J., Donoghue, P. C. J. & Asher, R. J. in The Timetree of Life (eds Hedges, S. B. & Kumar, S.) 35–86 (Oxford Univ. Press, 2009).
C.P. Cantalapiedra A. Hernández-Plaza I. Letunic P. Bork J. Huerta-Cepas eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale Mol. Biol. Evol. 2021 38 5825 5829 1:CAS:528:DC%2BB38Xhslyrt78%3D 34597405 8662613
T. Wu et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data Innovation 2021 2 1:CAS:528:DC%2BB38XitVemt7jI 34557778 8454663
F. Supek M. Bošnjak N. Škunca T. Šmuc REVIGO summarizes and visualizes long lists of gene ontology terms PLoS ONE 2011 6 e21800 1:CAS:528:DC%2BC3MXhtVeht7zI 21789182 3138752
N.L. Bray H. Pimentel P. Melsted L. Pachter Near-optimal probabilistic RNA-seq quantification Nat. Biotechnol. 2016 34 525 527 1:CAS:528:DC%2BC28XlsVansL8%3D 27043002
M.D. Robinson D.J. McCarthy G.K. Smyth edgeR: a Bioconductor package for differential expression analysis of digital gene expression data Bioinformatics 2010 26 139 140 1:CAS:528:DC%2BD1MXhs1WlurvO 19910308
M.D. Robinson A. Oshlack A scaling normalization method for differential expression analysis of RNA-seq data Genome Biol. 2010 11 20196867 2864565
L. Kumar M.E. Futschik Mfuzz: a software package for soft clustering of microarray data Bioinformation 2007 2 5 7 18084642 2139991
S. Heinz et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities Mol. Cell 2010 38 576 589 1:CAS:528:DC%2BC3cXns1SlsLc%3D 20513432 2898526
M. Martin Cutadapt removes adapter sequences from high-throughput sequencing reads EMBnet J. 2011 17 10 12
S. Schloissnig et al. The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci Proc. Natl Acad. Sci. USA 2021 118 e2017176118 1:CAS:528:DC%2BB3MXovVanurg%3D 33827918 8053990
E. Boutet D. Lieberherr M. Tognolli M. Schneider A. Bairoch UniProtKB/Swiss-Prot Methods Mol. Biol. 2007 406 89 112 1:CAS:528:DC%2BD1cXhvVCnur0%3D 18287689
H.-H. Jeong H.K. Yalamanchili C. Guo J.M. Shulman Z. Liu An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data Pac. Symp. Biocomput. 2018 23 168 179 29218879
M.I. Love W. Huber S. Anders Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 2014 15 25516281 4302049
S. Kumar G. Stecher M. Suleski S.B. Hedges TimeTree: a resource for timelines, timetrees, and divergence times Mol. Biol. Evol. 2017 34 1812 1819 1:CAS:528:DC%2BC1cXitFOmtrfI 28387841
R. Freeman et al. Identical genomic organization of two hemichordate hox clusters Curr. Biol. 2012 22 2053 2058 1:CAS:528:DC%2BC38XhsFSjsr7E 23063438 4524734