[en] A promising ethylene sensor based on Sb2MoO6 (SMO) with a permeable lamellar structure and tunable W dopants is proposed. The optimal 5 mol% W-doped SMO featuring atomically distributed heterovalent doping sites enables the ideal combination of high response (121.26/2.6 for 10/0.5 ppm), short response/recovery time (180 s/54 s for 10 ppm), low limit of detection (LoD) (23.18 ppb), excellent selectivity, good long-term stability (45 days), and robust performance in high humidity (LoD of 31.5 ppb at 80 % relative humidity). The rich W4+ doping-induced active sites are primarily responsible for the strengthened gas-sensing performances. Theoretical simulations reveal that W doping modulates the SMO lattice through substitutional and interstitial mechanisms, optimizing adsorption energy and charge transfer between ethylene and Mo sites, thereby resolving the trade-off between high response and recovery speed. Furthermore, the real-world application in detecting and differentiating moldy rice across storage periods underscores its potential for on-site quality monitoring in the grain industry. This work highlights the significant role of heteroatom doping in tailoring material properties, positioning W-doped SMO as a highly effective gas-sensing material for agricultural and environmental applications.
Disciplines :
Chemistry
Author, co-author :
Liu, Kewei; College of Mechanical Engineering, Yangzhou University, Yangzhou, China ; Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons, Belgium
Zheng, Zichen ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface ; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Zhou, Yiwen; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Bittencourt, Carla ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface
Debliquy, Marc ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux
Liu, Qiaoquan; Key Laboratories of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, China
Zhang, Chao ; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
Language :
English
Title :
Heterovalent-doping-induced ultrasensitive and highly exclusive ethylene sensor: Application to crop quality inspection
Research Institute for Materials Science and Engineering
Funders :
China Scholarship Council Outstanding Youth Foundation of Jiangsu Province Science and Technology Plan Project of Wenzhou Municipality
Funding text :
This work was supported by the Outstanding Youth Foundation of Jiangsu Province of China under Grant No. (Grant No. BK20211548 ), the Yangzhou Science and Technology Plan Project (Grant No. YZ2023246 ) and China Scholarship Council (Grant No. 202208320269 ).
Li, Z., Yao, Z., Haidry, A.A., Luan, Y., Chen, Y., Zhang, B.Y., Xu, K., Deng, R., Duc Hoa, N., Zhou, J., Ou, J.Z., Recent advances of atomically thin 2D heterostructures in sensing applications. Nano Today, 40, 2021, 101287, 10.1016/j.nantod.2021.101287.
Park, H., Kim, J.-H., Vivod, D., Kim, S., Mirzaei, A., Zahn, D., Park, C., Kim, S.S., Halik, M., Chemical-recognition-driven selectivity of SnO2-nanowire-based gas sensors. Nano Today, 40, 2021, 101265, 10.1016/j.nantod.2021.101265.
Liu, J., Zhao, Q., Liu, J.L., Wu, Y.S., Cheng, Y., Ji, M.W., Qian, H.M., Hao, W.C., Zhang, L.J., Wei, X.J., Wang, S.G., Zhang, J.T., Du, Y., Dou, S.X., Zhu, H.S., Heterovalent-Doping-Enabled Efficient Dopant Luminescence and Controllable Electronic Impurity Via a New Strategy of Preparing II-VI Nanocrystals. Adv. Mater. 27 (2015), 2753–2761, 10.1002/adma.201500247.
Bera, S., Ghosh, D., Dutta, A., Bhattacharyya, S., Chakraborty, S., Pradhan, N., Limiting Heterovalent B-Site Doping in CsPbI3 Nanocrystals: Phase and Optical Stability. ACS Energy Lett. 4 (2019), 1364–1369, 10.1021/acsenergylett.9b00787.
Cho, S.Y., Koh, H.J., Yoo, H.W., Kim, J.S., Jung, H.T., Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS2. ACS Sens. 2 (2017), 183–189, 10.1021/acssensors.6b00801.
Nipane, A., Karmakar, D., Kaushik, N., Karande, S., Lodha, S., Few-Layer MoS2 p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation. ACS Nano 10 (2016), 2128–2137, 10.1021/acsnano.5b06529.
Pam, M.E., Hu, J., Ang, Y.S., Huang, S., Kong, D., Shi, Y., Zhao, X., Geng, D., Pennycook, S., Ang, L.K., Yang, H.Y., High-Concentration Niobium-Substituted WS2 Basal Domains with Reconfigured Electronic Band Structure for Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 11 (2019), 34862–34868, 10.1021/acsami.9b08232.
Li, X.F., Lin, M.W., Basile, L., Hus, S.M., Puretzky, A.A., Lee, J., Kuo, Y.C., Chang, L.Y., Wang, K., Idrobo, J.C., Li, A.P., Chen, C.H., Rouleau, C.M., Geohegan, D.B., Xiao, K., Isoelectronic Tungsten Doping in Monolayer MoSe2 for Carrier Type Modulation. Adv. Mater. 28 (2016), 8240–8247, 10.1002/adma.201601991.
Faber, J., Geoffroy, C., Roux, A., Sylvestre, A., Abélard, P., A Systematic investigation of the dc electrical conductivity of rare-earth doped ceria. Appl. Phys. A 49 (1989), 225–232, 10.1007/BF00616848.
Wang, Y., Li, X., Zhang, M., Zhang, J., Chen, Z., Zheng, X., Tian, Z., Zhao, N., Han, X., Zaghib, K., Wang, Y., Deng, Y., Hu, W., Highly Active and Durable Single-Atom Tungsten-Doped NiS0.5Se0.5 Nanosheet @ NiS0.5Se0.5 Nanorod Heterostructures for Water Splitting. Adv. Mater., 34, 2022, 2107053, 10.1002/adma.202107053.
Zhang, Z.J., Chen, X.Y., Sb2MoO6, Bi2MoO6, Sb2WO6, and Bi2WO6 flake-like crystals: Generalized hydrothermal synthesis and the applications of Bi2WO6 and Bi2MoO6 as red phosphors doped with Eu3+ ions. Mater. Sci. Eng. B 209 (2016), 10–16, 10.1016/j.mseb.2015.12.003.
Chen, T., Liu, C., Meng, L., Lu, D., Chen, B., Cheng, Q., Early warning of rice mildew based on gas chromatography-ion mobility spectrometry technology and chemometrics. J. Food Meas. Charact. 15 (2021), 1939–1948, 10.1007/s11694-020-00775-9.
Chang, C., Q&A: How do plants respond to ethylene and what is its importance?. BMC Biol., 14, 2016, 7, 10.1186/s12915-016-0230-0.
Young, R.E., Pratt, H.K., Biale, J.B., Identification of ethylene as a volatile product of the fungus penicillium digitatum. Plant Physiol. 26 (1951), 304–310, 10.1104/pp.26.2.304.
Ha, S.T.T., Kim, Y.-T., Yeam, I., Choi, H.W., In, B.-C., Molecular dissection of rose and Botrytis cinerea pathosystems affected by ethylene. Postharvest Biol. Technol., 194, 2022, 112104, 10.1016/j.postharvbio.2022.112104.
Ebrahimi, A., Zabihzadeh Khajavi, M., Ahmadi, S., Mortazavian, A.M., Abdolshahi, A., Rafiee, S., Farhoodi, M., Novel strategies to control ethylene in fruit and vegetables for extending their shelf life: A review. Int. J. Environ. Sci. Technol. 19 (2022), 4599–4610, 10.1007/s13762-021-03485-x.
Daundasekera, M., Joyce, D.C., Aked, J., Adikaram, N.K.B., Ethylene production by Colletotrichum musae in vitro. Physiol. Mol. Plant Pathol. 62 (2003), 21–28, 10.1016/S0885-5765(03)00024-9.
Al-Masri, M.I., Elad, Y., Sharon, A., Barakat, R., Ethylene production by Sclerotinia sclerotiorum and influence of exogenously applied hormone and its inhibitor aminoethoxyvinylglycine on white mold. Crop Prot. 25 (2006), 356–361, 10.1016/j.cropro.2005.05.010.
Liu, K., Zhang, C., Xu, J., Liu, Q., Research advance in gas detection of volatile organic compounds released in rice quality deterioration process. Compr. Rev. Food Sci. Food Saf. 20 (2021), 5802–5828, 10.1111/1541-4337.12846.
Liu, K., Zheng, Z., Debliquy, M., Zhang, C., Highly-sensitive Volatile Organic Compounds Evaluation by Three-Dimensional ZnFe2O4/ZnSnO3 Heterostructures and Their Predictive Grain Quality Monitoring. Chem. Eng. J., 453, 2023, 139824, 10.1016/j.cej.2022.139824.
Zhang, C., Liu, K., Zheng, Z., Debliquy, M., Defect engineering of nanostructured ZnSnO3 for conductometric room temperature CO2 sensors. Sens. Actuators B, 384, 2023, 133628, 10.1016/j.snb.2023.133628.
Liu, K., Zheng, Z., Xu, J., Zhang, C., Enhanced visible light-excited ZnSnO3 for room temperature ppm-level CO2 detection. J. Alloys Compd., 907, 2022, 164440, 10.1016/j.jallcom.2022.164440.
Zheng, Z., Liu, K., Zhou, Y., Debliquy, M., Zhang, C., Ultrasensitive room-temperature geranyl acetone detection based on Fe@WO 3–x nanoparticles in cooked rice flavor analysis. J. Adv. Ceram. 12 (2023), 1547–1561, 10.26599/jac.2023.9220771.
Xu, J.Y., Liao, H.L., Zhang, C., ZnSnO3 based gas sensors for pyridine volatile marker detection in rice aging during storage. Food Chem., 408, 2023, 10.1016/j.foodchem.2022.135204.
Geng, B., Yang, X., Li, P., Shi, W., Pan, D., Shen, L., W-Doped TiO2 Nanorods for Multimode Tumor Eradication in Osteosarcoma Models under Single Ultrasound Irradiation. ACS Appl. Mater. Interfaces 13 (2021), 45325–45334, 10.1021/acsami.1c14701.
Yang, L., Liao, H., Tian, Y., Hong, W., Cai, P., Liu, C., Yang, Y., Zou, G., Hou, H., Ji, X., Rod‐Like Sb2MoO6: Structure Evolution and Sodium Storage for Sodium‐Ion Batteries. Small Methods, 3, 2019, 10.1002/smtd.201800533.
Kong, D., Wang, Y., Han, J., Gao, Y., Liu, F., Zhou, W., Gao, Y., Lu, G., Tailoring the triethylamine vapor sensing on Co-Fe bimetallic oxide nanosheets assemblies by crystal structure and doping sites. Sens. Actuators B, 407, 2024, 135477, 10.1016/j.snb.2024.135477.
Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32 (1976), 751–767, 10.1107/s0567739476001551.
Yu, B., Li, Y., Wang, Y., Li, N., Xiao, P., Liu, D., Geng, L., Stable Tunable Luminescence of Hetero-valent Eu Ion Activated Ba2InTaO6 Phosphors Synthesized by Defect-Induced Self-Reduction in the Molten-Salt Method. Inorg. Chem. 61 (2022), 2463–2475, 10.1021/acs.inorgchem.1c03312.
Polak, M.P., Scharoch, P., Kudrawiec, R., The effect of isovalent doping on the electronic band structure of group IV semiconductors. J. Phys. D Appl. Phys., 54, 2020, 10.1088/1361-6463/abc503.
Navale, S.C., Ravi, V., Mulla, I.S., Investigations on Ru doped ZnO: Strain calculations and gas sensing study. Sens. Actuators, B 139 (2009), 466–470, 10.1016/j.snb.2009.03.068.
Kilic, M.E., Lee, J.-H., Lee, K.-R., Oxygen ion transport in doped ceria: effect of vacancy trapping. J. Mater. Chem. A 9 (2021), 13883–13889, 10.1039/d1ta00926e.
Ouni, B., Haj Lakhdar, M., Boughalmi, R., Larbi, T., Boukhachem, A., Madani, A., Boubaker, K., Amlouk, M., Investigation of electrical and dielectric properties of antimony oxide (Sb2O4) semiconductor thin films for TCO and optoelectronic applications. J. Non-Cryst. Solids 367, 2013, 1–7, 10.1016/j.jnoncrysol.2013.02.006.
J.J.M.H. Holland, New York, Handbook of X-rays, 1967.
Westbrook, J.H., Wood, D.L., Embrittlement of Grain Boundaries by Equilibrium Segregation. Nature 192 (1961), 1280–1281, 10.1038/1921280b0.
Devaraj, A., Wang, W., Vemuri, R., Kovarik, L., Jiang, X., Bowden, M., Trelewicz, J.R., Mathaudhu, S., Rohatgi, A., Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys. Acta Mater. 165 (2019), 698–708, 10.1016/j.actamat.2018.09.038.
Hohl, J., Kumar, P., Misra, M., Menezes, P., Mushongera, L.T., Thermodynamic stabilization of nanocrystalline aluminum. J. Mater. Sci. 56 (2021), 14611–14623, 10.1007/s10853-021-06224-2.
Dorn, K.V., Blaschkowski, B., Netzsch, P., Hoppe, H.A., Hartenbach, I., Blue Excitement: The Lanthanide(III) Chloride Oxidomolybdates(VI) Ln3Cl3[MoO6] (Ln = La, Pr, and Nd) and Their Spectroscopic Properties. Inorg. Chem. 58 (2019), 8308–8315, 10.1021/acs.inorgchem.9b00098.
Zhang, L., Wang, Z., Hu, C., Shi, B., Enhanced photocatalytic performance by the synergy of Bi vacancies and Bi0 in Bi0-Bi2-δMoO6. Appl. Catal., B 257, 2019, 117785, 10.1016/j.apcatb.2019.117785.
Ye, S., Yu, D.C., Wang, X.M., Song, E.H., Zhang, Q.Y., Anomalous upconversion emission of Eu3+–Yb3+–MoO6 in double perovskites induced by a laser. J. Mater. Chem. C 1 (2013), 1588–1594, 10.1039/c2tc00556e.
Frost, R., Bahfenne, S., A Raman spectroscopic study of the antimony mineral klebelsbergite Sb4O4(OH)2(SO4). J. Raman Spectrosc. 42 (2011), 219–223, 10.1002/jrs.2676.
Zhang, L., Xu, T., Zhao, X., Zhu, Y., Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl Catal B 98 (2010), 138–146, 10.1016/j.apcatb.2010.05.022.
Makhloufi, R., Hachani, S.E., Fettah, A., Messai, B., Wet Chemical Synthesis of Sb4O5Cl2 Used as an Effective Photocatalyst for Methylene Blue and Crystal Violet Degradation under Visible Light Irradiation. Ann. Chim.-Sci. Mat. 46 (2022), 69–74, 10.18280/acsm.460202.
Li, W.X., Wang, Z.Z., Li, Y., Ghasemi, J.B., Li, J., Zhang, G.K., Visible-NIR light-responsive 0D/2D CQDs/Sb2WO6 nanosheets with enhanced photocatalytic degradation performance of RhB: Unveiling the dual roles of CQDs and mechanism study. J. Hazard. Mater., 424, 2022, 10.1016/j.jhazmat.2021.127595.
Shi, Y., Wang, H., Wang, Z., Wu, T., Song, Y., Guo, B., Wu, L., Pt decorated hierarchical Sb2WO6 microspheres as a surface functionalized photocatalyst for the visible-light-driven reduction of nitrobenzene to aniline. J. Mater. Chem. A 8 (2020), 18755–18766, 10.1039/d0ta06099b.
Ma, J., Liu, Y., Zhang, H., Ai, P., Gong, N., Wu, Y., Yu, D., Room temperature ppb level H2S detection of a single Sb-doped SnO2 nanoribbon device. Sens. Actuators B 216 (2015), 72–79, 10.1016/j.snb.2015.04.025.
Wu, H., Yu, J., Li, Z., Yao, G., Cao, R., Li, X., Zhu, H., He, A., Tang, Z., Microhotplate gas sensors incorporated with Al electrodes and 3D hierarchical structured PdO/PdO2-SnO2:Sb materials for sensitive VOC detection. Sens. Actuators, B, 329, 2021, 10.1016/j.snb.2020.128984.
Lu, X., Wang, Z., Lu, L., Yang, G., Niu, C., Wang, H., Synthesis of Hierarchical Sb2MoO6 Architectures and Their Electrochemical Behaviors as Anode Materials for Li-Ion Batteries. Inorg. Chem. 55 (2016), 7012–7019, 10.1021/acs.inorgchem.6b00856.
Santoni, A., Rondino, F., Malerba, C., Valentini, M., Mittiga, A., Electronic structure of Ar+ ion-sputtered thin-film MoS2: A XPS and IPES study. Appl. Surf. Sci. 392 (2017), 795–800, 10.1016/j.apsusc.2016.09.007.
Tan, H., Ji, Q., Wang, C., Duan, H., Kong, Y., Wang, Y., Feng, S., Lv, L., Hu, F., Zhang, W., Chu, W., Sun, Z., Yan, W., Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res. 15 (2022), 3010–3016, 10.1007/s12274-021-3934-6.
Yao, G., Yu, J., Wu, H., Li, Z., Zou, W., Zhu, H., Huang, Z., Huang, H., Tang, Z., P-type Sb doping hierarchical WO3 microspheres for superior close to room temperature ammonia sensor. Sens. Actuators, B, 359, 2022, 10.1016/j.snb.2022.131365.
Woo, H.-S., Kwak, C.-H., Kim, I.-D., Lee, J.-H., Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors. J. Mater. Chem. A 2 (2014), 6412–6418, 10.1039/c4ta00387j.
Zi, B., Zheng, H., Zhou, T., Zhang, Y., Lu, Q., Chen, M., Sun, H., Xiao, B., Qiu, Z., Zhao, J., He, T., Zhang, J., Liu, Q., Pr doping promotes the formation of Pt single atoms by regulating metal-support interaction for remarkable photocatalytic hydrogen production. JCIS 680 (2025), 298–306, 10.1016/j.jcis.2024.11.018.
Wang, Z., Li, Y., Cheng, Q., Wang, X., Wang, J., Zhang, G., Sb-based photocatalysts for degradation of organic pollutants: A review. J. Clean. Prod., 367, 2022, 10.1016/j.jclepro.2022.133060.
Zhao, Y., Shi, H.X., Yang, D.Y., Fan, J., Hu, X.Y., Liu, E.Z., Fabrication of a Sb2MoO6/g-C3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. J. Phys. Chem. C 124 (2020), 13771–13778, 10.1021/acs.jpcc.0c03209.
Mohsin, G., Mohammad, Z., Study of Morphological, Electrical and Optical behaviour of Amorphous Chalcogenide Semiconductor. Jagannathan, T., Sergey Ivanovich, P., (eds.) Advances in Condensed-Matter and Materials Physics, 2020, IntechOpen, Rijeka p. Ch. 4.
Han, J., Zhou, W., Kong, D., Gao, Y., Gao, Y., Wang, Y., Lu, G., High-performance NO2 gas sensor enabled by Fe, N co-doped GQDs modification and pulse-driven temperature modulation. Sens. Actuators B, 417, 2024, 136040, 10.1016/j.snb.2024.136040.
Souri, M., Salar Amoli, H., Yamini, Y., Three-dimensionally ordered porous In-doped SmFeO3 perovskite gas sensor for highly sensitive and selective detection of formaldehyde. Sens. Actuators, B, 404, 2024, 135213, 10.1016/j.snb.2023.135213.
Cao, J., Zhang, N., Wang, S., Zhang, H., Electronic structure-dependent formaldehyde gas sensing performance of the In2O3/Co3O4 core/shell hierarchical heterostructure sensors. J. Colloid Interface Sci. 577 (2020), 19–28, 10.1016/j.jcis.2020.05.028.
Gao, X., Zhang, T., An overview: Facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B 277 (2018), 604–633, 10.1016/j.snb.2018.08.129.