[en] Amphiura filiformis is a common burrowing brittle star from muddy environments along the European shores. This species emits a blue light at the level of the arm spine tips when mechanically stimulated. Although the putative luciferase of A. filiformis was recently discovered, the ultrastructure of the luminous cells, i.e. the photocytes, remain unknown for this species as well as for most other bioluminescent echinoderms. In this study, we describe the morphology of the arm and spines in the brittle star A. filiformis and compare it to the luciferase expression pattern revealed by immunohistochemistry. Luciferase is expressed at the base of the spine and at the arm tips within well-defined photocyte clusters. Additionally, we investigated the ultrastructure of spine tissues before and after chemical stimulation of light emission in order to identify photocytes and improve our comprehension of the photogenesis phenomenon in brittle stars. Type II granular cells, found in the basal to mid-basal portion of the spine inner tissues and showing ultrastructural modifications during light-emission, are proposed as photocytes. Putative photocytes appear intimately associated with the spine nerve plexus as well as with mucus cells and presumptive pigment cells. Photocytes are characterised by the presence of specific vesicles with reticulated contents in their cytoplasm. Furthermore, the structure of the calcified spine ossicle has been investigated using microCT scanning.
Anctil, M., Development of bioluminescence and photophores in the midshipman fish, Porichthys notatus. J. Morphol. 151 (1977), 363–395.
Anctil, M., Ultrastructural correlates of luminescence in Porichthys photophores: i., Effects of Spinal Cord Stimulation and Exogenous Noradrenaline Revue canadienne de biologie/editee par l'Universite de Montreal, 38, 1979, 67–80.
Anderson, J.M., Cormier, M.J., Lumisomes, the cellular site of bioluminescence in coelenterates. J. Biol. Chem. 248 (1973), 2937–2943.
Ball, B., Jangoux, M., Ultrastructure of the tube foot sensory-secretory complex in Ophiocomina nigra (Echinodermata, Ophiuridea). Zoomorphology 109 (1990), 201–209.
Ball, B., Jangoux, M., Unusual sensory structures on the spines and tentacle scales of the brittlestar Ophiocomina nigra (Echinodermata). Echinoderm Research, 1990, Balkema, Rotterdam, 191–195.
Bassot, J., Nicolas, M., 1978. Photosomes-flashing paracrystals of endoplasmic-reticulum, Biologie Cellulaire. Soc. Fr. Microsc. Elect. 67 Rue Maurice-Gunsbourg, 94200 Ivry sur Seine, France, pp. 163–164.
Bassot, J.-M., Fast Membrane Transformation in a Flashing Endoplasmic Reticulum Recent Advances in Biological Membrane Studies. 1985, Springer, 259–284.
Bell, A.C., Histology and Ultrastructure of Acrocnida Brachiata. 1974, Queen's University Belfast.
Brehm, P., Morin, J.G., Localization and characterization of luminescent cells in Ophiopsila californica and Amphipholis squamata (Echinodermata: ophiuroidea). Biol. Bull. 152 (1977), 12–25.
Brehm, P., Bioluminescence. The Anatomy and Physiology of Its Nervous Control in Ophiopsila Californica. Ph. D. Thesis. 1975, University of California.
Buchanan, J.B., Mucus secretion within the spines of ophiuroid echinoderms. Proceedings of the Zoological Society of London, Wiley Online Library, 1963, 251–259.
Byrne, M., Microscopic anatomy of invertebrates. Ophiuroidea 14 (1994), 247–343.
Clark, G., Heidenhain's Azan Modification Staining Method Staining Procedures. 1981, Williams and Wilkins, London, 117–118.
D'Aniello, S., Delroisse, J., Valero-Gracia, A., Lowe, E., Byrne, M., Cannon, J., Halanych, K.M., Elphick, M., Mallefet, J., Kaul-Strehlow, S., Opsin evolution in the Ambulacraria. Mar. Genomics 24 (2015), 177–183.
DeSa, R., Hastings, J.W., The Characterization of Scintillons Bioluminescent particles from the marine dinoflagellate, Gonyaulax polyedra. J. Gen. Physiol. 51 (1968), 105–122.
Deheyn, D., Alvà, V., Jangoux, M., Fine structure of the photogenous areas in the bioluminescent ophiuroidAmphipholis squamata (Echinodermata, Ophiuridea). Zoomorphology 116 (1996), 195–204.
Deheyn, D., Mallefet, J., Jangoux, M., Cytological changes during bioluminescence production in dissociated photocytes from the ophiuroid Amphipholis squamata (Echinodermata). Cell Tissue Res. 299 (2000), 115–128.
Deheyn, D., Mallefet, J., Jangoux, M., Expression of bioluminescence in Amphipholis squamata (Ophiuroidea: echinodermata) in presence of various organisms: a laboratory study. J. Mar. Biol. Assoc. U. K. 80 (2000), 179–180.
Delroisse, J., Flammang, P., Mallefet, J., Marine luciferases: are they really taxon-specific? A putative luciferase evolved by co-option in an echinoderm lineage. Lumin.: J. Biol. Chem. Lumin. 29 (2014), 15–16.
Delroisse, J., Ullrich-Lüter, E., Ortega-Martinez, O., Dupont, S., Arnone, M.-I., Mallefet, J., Flammang, P., High opsin diversity in a non-visual infaunal brittle star. BMC Genomics, 15, 2014, 1.
Delroisse, J., Ortega-Martinez, O., Dupont, S., Mallefet, J., Flammang, P., De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Mar. Genomics 23 (2015), 109–121.
Delroisse, J., Mallefet, J., Flammang, P., De novo adult transcriptomes of two European brittle stars: spotlight on opsin-based photoreception. PLoS One, 11, 2016, e0152988.
Delroisse, J., Ullrich-Lüter, E., Blaue, S., Ortega-Martinez, O., Eeckhaut, I., Flammang, P., Mallefet, J., A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol., 7, 2017, 160300.
Dewael, Y., Mallefet, J., Luminescence in ophiuroids (Echinodermata) does not share a common nervous control in all species. J. Exp. Biol. 205 (2002), 799–806.
Dietrich, H., Fontaine, A., A decalcification method for ultrastructure of echinoderm tissues. Stain Technol. 50 (1975), 351–354.
Dupont, S., Mallefet, J., Vanderlinden, C., Effect of β-adrenergic antagonists on bioluminescence control in three species of brittlestars (Echinodermata: ophiuroidea). Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 138 (2004), 59–66.
Emson, R., Herring, J., Bioluminescence in deep and shallow water brittlestars. Echinodermata: 656–662. Proceedings of the Fifth International Echinoderm Conference, Galway, 1984, 24–29.
Gabe, M., Techniques Histologiques. 1968, Masson, Paris.
García-Arrarás, J., Viruet, E., Enteric nerve fibers of holothurians are recognized by an antibody to acetylated α-tubulin. Neurosci. Lett. 157 (1993), 153–156.
Garcia-Arraras, J.E., Rojas-Soto, M., Jimenez, L.B., Diaz-Miranda, L., The enteric nervous system of echinoderms: unexpected complexity revealed by neurochemical analysis. J. Exp. Biol. 204 (2001), 865–873.
Germain, G., Anctil, M., Luminescent activity and ultrastructural characterization of photocytes dissociated from the coelenterate Renilla köllikeri. Tissue Cell 20 (1988), 701–720.
Grober, M.S., Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Anim. Behav. 36 (1988), 493–501.
Grober, M.S., Responses of tropical reef fauna to brittle-star luminescence (Echinodermata: ophiuroidea). J. Exp. Mar. Biol. Ecol. 115 (1988), 157–168.
Haddock, S.H., Moline, M.A., Case, J.F., Bioluminescence in the sea. Marine Science, 2, 2010.
Hamanaka, T., Michinomae, M., Seidou, M., Miura, K., Inoue, K., Kito, Y., Luciferase activity of the intracellular microcrystal of the firefly squid, Watasenia scintillans. FEBS Lett. 585 (2011), 2735–2738.
Hanson, F.E., Miller, J., Reynolds, G.T., Subunit coordination in the firefly light organ. Biol. Bull. 137 (1969), 447–464.
Harvey, E., Bioluminescence. 1952, Academic Press, New York 649 pp.
Herring, P.J., New observations on the bioluminescence of echinoderms. J. Zool. 172 (1974), 401–418.
Herring, P.J., Bioluminescence in Action. 1978, Academic Press.
Herring, P.J., Bioluminescent echinoderms: unity of function in diversity of expression. Echinoderm Res., 1995, 1–17.
Holland, N.D., Nealson, K.H., The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms. Acta Zool. 59 (1978), 169–185.
Jones, A., Mallefet, J., Aposematic use of bioluminescence in Ophiopsila aranea (Ophiuroidea, Echinodermata). Luminescence 25 (2010), 155–156.
Loo, L.-O., Jonsson, P.R., Sköld, M., Karlsson, Ö., Passive suspension feeding in Amphiura filiformis (Echinodermata: ophiuroidea): feeding behaviour in flume flow and potential feeding rate of field populations. Mar. Ecol. Prog. Ser. 139 (1996), 143–155.
Mallefet, J., Vanhoutte, P., Baguet, F., Study of Amphipholis squamata luminescence. Echinoderm Res. 1991 (1992), 125–130.
Mallefet, J., Physiology of bioluminescence in echinoderms. Echinoderm Res., 1998, 93–102.
Mallefet, J., Echinoderm Bioluminescence: Where, How and Why Do so Many Ophiuroids Glow?. 2009.
Mangold, E., Leuchtende schlangensterne und die flimmerbewegrung bei ophiopsila. Pflügers Archiv Eur. J. Physiol. 118 (1907), 613–640.
Millott, N., Coordination of Spine Movements in Echinoids, Physiology of Echinodermata. 1966, John Wiley & Son, Inc, 465–485.
Oertel, D., Linberg, K.A., Case, J.F., Ultrastructure of the larval firefly light organ as related to control of light emission. Cell Tissue Res. 164 (1975), 27–44.
Pentreath, R., Feeding mechanisms and the functional morphology of podia and spines in some New Zealand ophiuroids (Echinodermata). J. Zool. 161 (1970), 395–429.
Purushothaman, S., Saxena, S., Meghah, V., Swamy, C.V.B., Ortega-Martinez, O., Dupont, S., Idris, M., Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue-undergoing regeneration. J. Proteomics 112 (2015), 113–124.
Reichensperger, A., Die drüsengebilde der ophiuren. Z. Wiss Zool. 91 (1908), 304–350.
Renwart, M., Delroisse, J., Flammang, P., Claes, J.M., Mallefet, J., Cytological changes during luminescence production in lanternshark (Etmopterus spinax Linnaeus, 1758) photophores. Zoomorphology 134 (2015), 107–116.
Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17 (1963), 208–212.
Richardson, K., Jarett, L., Finke, E., Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35 (1960), 313–323.
Saper, C.B., A guide to the perplexed on the specificity of antibodies. J. Histochem. Cytochem. 57 (2009), 1–5.
Shimomura, O., Chemical Principles and Methods. 2006.
Smalley, K., Tarwater, D., Davidson, T., Localization of fluorescent compounds in the firefly light organ. J. Histochem. Cytochem. 28 (1980), 323–329.
Smith, J., The structure and function of the tube feet in certain echinoderms. J. Mar. Biol. Assoc. U. K. 22 (1937), 345–357.
Sterzinger, I., Über das Leuchtvermögen von Amphiura squamata Sars. Z. Wiss. Zool. 88 (1907), 358–384.
Swales, L., Herring, P., Lane, N., Unusual membranous structures in the bioluminescent cells of the deep sea crustacean Scina. Biol. Cell 57 (1986), 53–62.
Vanderlinden, C., Mallefet, J., Synergic effects of tryptamine and octopamine on ophiuroid luminescence (Echinodermata). J. Exp. Biol. 207 (2004), 3749–3756.
Vanderlinden, C., Dewael, Y., Mallefet, J., Screening of second messengers involved in photocyte bioluminescence control of three ophiuroid species (Ophiuroidea: echinodermata). J. Exp. Biol. 206 (2003), 3007–3014.
Viviani, D., Phosphorescentia maris quatuordecim lucescentium animalculorum novis speciebus illustrata. typ. J. Giossi, 1805, 5–7.
Whitfield, P., Emson, R., Presumptive ciliated receptors associated with the fibrillar glands of the spines of the echinoderm Amphipholis squamata. Cell Tissue Res. 232 (1983), 609–624.
Widder, E.A., Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328 (2010), 704–708.
Wilson, T., Hastings, J.W., Annual review of cell and developmental biology. Bioluminescence 14 (1998), 197–230.