Alford, D. V. (1969). A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in southern England. Journal of Animal Ecology, 38, 149–170. https://doi.org/10.2307/2743
Alford, D. V. (1975). Bumblebees. Davis-Poynter. ISBN: 9780706701388.
Andersen, J. L., Manenti, T., Sørensen, J. G., MacMillan, H. A., Loeschcke, V., & Overgaard, J. (2015). How to assess Drosophila cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology, 29(1), 55–65. http://doi.org/10.1111/1365-2435.12310
Atmowidjojo, A. H., Wheeler, D. E., Erickson, E. H., & Cohen, A. C. (1997). Temperature tolerance and water balance in feral and domestic honey bees, Apis mellifera L. Comparative Biochemistry and Physiology Part A: Physiology, 118(4), 1399–1403. https://doi.org/10.1016/S0300-9629(97)00031-5
Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S., Kornbluth, S., & Winfree, R. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences of the United States of America, 108, 20645–20649. https://doi.org/10.1073/pnas.1115559108
Bartomeus, I., Park, M. G., Gibbs, J., Danforth, B. N., Lakso, A. N., & Winfree, R. (2013). Biodiversity ensures plant-pollinator phenological synchrony against climate change. Ecology Letters, 16, 1331–1338. https://doi.org/10.1111/ele.12170
Beekman, M., & van Stratum, P. (2000). Does the diapause experience of bumblebee queens Bombus terrestris affect colony characteristics? Ecological Entomology, 25, 1–6. https://doi.org/10.1046/j.1365-2311.2000.00235.x
Beekman, M., van Stratum, P., & Lingeman, R. (1998). Diapause survival and post-diapause performance in bumblebee queens (Bombus terrestris). Entomologia Experimentalis et Applicata, 89, 207–214. https://doi.org/10.1046/j.1570-7458.1998.00401.x
Beekman, M., van Stratum, P., & Veerman, A. (1999). Selection for non-diapause in the bumblebee Bombus terrestris, with notes on the effect on inbreeding. Entomologia Experimentalis et Applicata, 93, 69–75. https://doi.org/10.1046/j.1570-7458.1999.00563.x
Benoit, J. B. (2010). Water management by dormant insects: Comparisons between dehydration resistance during summer aestivation and winter diapause. In C. Arturo Navas & J. Carvalho (Eds.), Aestivation. PMSB (Vol. 49, pp. 209–229). Springer. https://doi.org/10.1007/978-3-642-02421-4_10
Bergmann, C. (1848). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Gottinger Stud, 3, 595–708.
Bernardino, A. S., & Gaglianone, M. C. (2008). Nest distribution and nesting habits of Xylocopa ordinaria Smith (Hymenoptera, Apidae) in a restinga area in the northern Rio de Janeiro State, Brazil. Revista Brasileira de Entomologia, 52(3), 434–440. https://doi.org/10.1590/S0085-56262008000300017
Biella, P., Ćetković, A., Gogala, A., Neumayer, J., Sárospataki, M., Šima, P., & Smetana, V. (2021). Northwestward range expansion of the bumblebee Bombus haematurus into Central Europe is associated with warmer winters and niche conservatism. Insect Science, 28(3), 861–872. http://doi.org/10.1111/1744-7917.12800
Bishop, J. A., & Armbruster, W. S. (1999). Thermoregulatory abilities of Alaskan bees: Effects of size, phylogeny and ecology. Functional Ecology, 13, 711–724. https://doi.org/10.1046/j.1365-2435.1999.00351.x
Bommarco, R., Lundin, O., Smith, H. G., & Rundlöf, M. (2012). Drastic historic shifts in bumble-bee community composition in Sweden. Proceedings of the Royal Society B: Biological Sciences, 279, 309–315. https://doi.org/10.1098/rspb.2011.0647
Bonebrake, T. C., & Deutsch, C. A. (2012). Climate heterogeneity modulates impact of warming on tropical insects. Ecology, 93, 449–455. https://doi.org/10.2307/23143932
Brochu, K. K., van Dyke, M. T., Milano, N. J., Petersen, J. D., McArt, S. H., Nault, B. A., Kessler, A., & Danforth, B. N. (2020). Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Scientific Reports, 10, 311. https://doi.org/10.1038/s41598-020-58274-2.
Brown, M. J. F., Schmid-Hempel, R., & Schmid-Hempel, P. (2003). Queen-controlled sex ratios and worker reproduction in the bumble bee Bombus hypnorum, as revealed by microsatellites. Molecular Ecology, 12(6), 1599–1605. https://doi.org/10.1046/j.1365-294x.2003.01840.x
Burdine, J. D., & McCluney, K. E. (2019). Differential sensitivity of bees to urbanization-driven changes in body temperature and water content. Scientific Reports, 9, 1643. https://doi.org/10.1038/s41598-018-38338-0
Bush, A., Mokany, K., Catullo, R., Hoffmann, A., Kellermann, V., Sgrò, C., McEvey, S., & Ferrier, S. (2016). Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecology Letters, 19(12), 1468–1478. https://doi.org/10.1111/ele.12696
Cameron, S., Hines, H. M., & Williams, P. H. (2007). A comprehensive phylogeny of the bumblebees (Bombus). Biological Journal of the Linnean Society, 91, 161–188. https://doi.org/10.1111/j.1095-8312.2007.00784.x
Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., & Griswold, T. L. (2011). Patterns of widespread decline in North American bumblebees. Proceedings of the National Academy of Sciences of the United States of America, 108, 662–667. https://doi.org/10.1073/pnas.1014743108
Cameron, S. A., & Sadd, B. M. (2019). Global trends in bumble bee health. Annual Review of Entomology, 65, 209–232. https://doi.org/10.1146/annurev-ento-011118-111847
Carvell, C., Bourke, A. F. G., Dreier, S., Freeman, S. N., Hulmes, S., Jordan, W. C., Redhead, J. W., Sumner, S., Wang, J., & Heard, M. S. (2017). Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature, 543, 547–549. https://doi.org/10.1038/nature21709
Chapman, J. W., Reynolds, D. R., & Wilson, K. (2015). Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecology Letters, 18(3), 287–302. https://doi.org/10.1111/ele.12407
Chole, H., Woodard, S. H., & Bloch, G. (2019). Body size variation in bees: Regulation, mechanisms, and relationship to social organisation. Current Opinion in Insect Science, 35, 77–87. https://doi.org/10.1016/j.cois.2019.07.006
Chown, S. L., Hoffman, A. A., Kristensen, T. N., Angilletta, M. J., Stenseth, N. C., & Pertoldi, C. (2010). Adapting to climate change: A perspective from evolutionary physiology. Climate Research, 43, 3–15. https://doi.org/10.3354/cr00879
Chown, S. L., Sørensen, J. G., & Terblanche, J. S. (2011). Water loss in insects; an environmental change perspective. Journal of Insect Physiology, 57, 1070–1084. https://doi.org/10.1016/j.jinsphys.2011.05.004
Cohen, J., Pfeiffer, K., & Francis, J. A. (2018). Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nature Communications, 9, 869. https://doi.org/10.1038/s41467-018-02992-9
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T. J., Bhatt, U. S., Chen, H. W., Coumou, D., Feldstein, S., Gu, H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H. W., … Yoon, J. (2020). Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10, 20–29. https://doi.org/10.1038/s41558-019-0662-y
Cornelissen, T. (2011). Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomology, 40(2), 155–163. https://doi.org/10.1590/S1519-566X2011000200001
Crowther, L. P., Wright, D. J., Richardson, D. S., Carvell, C., & Bourke, A. F. (2019). Spatial ecology of a range-expanding bumble bee pollinator. Ecology and Evolution, 9(3), 986–997. https://doi.org/10.1002/ece3.4722
de Farias-Silva, F. J., & Freitas, B. M. (2020). Thermoregulation in the large carpenter bee Xylocopa frontalis in the face of climate change in the Neotropics. Apidologie, 52, 341–357. https://doi.org/10.1007/s13592-020-00824-8
de Keyser, C. W., Colla, S. R., Kent, C. F., Rafferty, N. E., Richardson, L. L., & Thomson, J. D. (2016). Delving deeper: Questioning the decline of long-tongued bumblebees, long-tubed flowers and their mutualisms with climate change. Journal of Pollination Ecology, 18(6), 36–42. https://doi.org/10.26786/1920-7603(2016)15
Dehon, M., Engel, M. S., Gérard, M., Aytekin, A. M., Gisbain, G., Williams, P. H., Rasmont, P., & Michez, D. (2019). Morphometric analysis of fossil bumblebees (Hymenoptera, Apidae, Bombini) reveals their taxonomic affinities and new evidence for diversification and extinction patterns among Bombus Latreille. ZooKeys, 891, 71–118. https://doi.org/10.3897/zookeys.891.36027
Denlinger, D. L. (2002). Regulation of diapause. Annual Review of Entomology, 47(1), 93–122. https://doi.org/10.1146/annurev.ento.47.091201.145137
Deutsch, C. A., Tewksbury, J. J., Huet, R. B., Shedon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 6668–6672. https://doi.org/10.1073/pnas.0709472105
Diamond, S. E. (2018). Contemporary climate-driven range shifts: Putting evolution back on the table. Functional Ecology, 32(7), 1652–1665. https://doi.org/10.1111/1365-2435.13095
Ding, G., Zhang, S., Huang, J., Naeem, M., & An, J. (2019). Colour patterns, distribution and food plants of the Asian bumblebee Bombus bicoloratus (Hymenoptera: Apidae). Apidologie, 50, 340–352. https://doi.org/10.1007/s13592-019-00648-1
Drossart, M., Michez, D., & Vanderplanck, M. (2017). Invasive plants as potential food resource for native pollinators: A case study with two invasive species and a generalist bumble bee. Scientific Reports, 7, 16242. https://doi.org/10.1038/s41598-017-16054-5
Duchenne, F., Thébault, E., Michez, D., Elias, M., Drake, M., Persson, M., Piot, J. S., Pollet, M., Vanormelingen, P., & Fontaine, C. (2020). Phenological shifts alter the seasonal structure of pollinators assemblages in Europe. Nature Ecology and Evolution, 4, 115–121. https://doi.org/10.1038/s41559-019-1062-4
Duchenne, F., Thébault, E., Michez, D., Gérard, M., Devaux, C., Rasmont, P., Vereecken, N. J., & Fontaine, C. (2020). Long-term effects of global change on occupancy and flight period of wild bees in Belgium. Global Change Biology, 26(12), 6753–6766. https://doi.org/10.1111/gcb.15379
Duong, N., & Dornhaus, A. (2012). Ventilation response thresholds do not change with age or self-reinforcement in workers of the bumble bee Bombus impatiens. Insectes Sociaux, 59, 25–32. https://doi.org/10.1007/s00040-011-0183-9
Ferry, C., & Corbet, S. A. (1996). Water collection by bumble bees. Journal of Apicultural Research, 35(3–4), 120–122. https://doi.org/10.1080/00218839.1996.11100922
Fijen, T. P. M. (2020). Mass-migrating bumblebees: An overlooked phenomenon with potential far-reaching implications for bumblebee conservation. Journal of Applied Ecology, 58(2), 274–280. https://doi.org/10.1111/1365-2664.13768
Fourcade, Y., Åström, A., & Öckinger, E. (2019). Climate and land-cover change alter bumblebee species richness and community composition in subalpine areas. Biodiversity and Conservation, 28, 639–653. https://doi.org/10.1007/s10531-018-1680-1
Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126, 131–140. https://doi.org/10.1016/j.biocon.2005.05.002
Gallinat, A. S., Primack, R. B., & Wagner, D. L. (2015). Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 30, 169–176. https://doi.org/10.1016/j.tree.2015.01.004
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology & Evolution, 26, 285–291. https://doi.org/10.1016/j.tree.2011.03.005
Garrison, L. K., Kleineidam, C. J., & Weidenmüller, A. (2018). Behavioral flexibility promotes collective consistency in a social insect. Scientific Reports, 8, 15836. https://doi.org/10.1038/s41598-018-33917-7
Gautier, R., Le Trionnaire, G., Danchin, E., & Sentis, A. (2019). Epigenetics and insect polyphenism: Mechanisms and climate change impacts. Current Opinion in Insect Science, 35, 138–145. https://doi.org/10.1016/j.cois.2019.06.013
Gérard, M., Marinet, B., Maebe, K., Marshall, L., Smagghe, G., Vereecken, N. J., Vray, S., Rasmont, P., & Michez, D. (2020). Shift in size of bumblebee queens over the last century. Global Change Biology, 26, 1185–1195. https://doi.org/10.1111/gcb.14890
Gérard, M., Marshal, L., Martinet, B., & Michez, D. (2021). Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century. Ecography, 44(2), 255–264. https://doi.org/10.1111/ecog.05310
Gérard, M., Vanderplanck, M., Franzen, M., Kuhlmann, M., Potts, G. S., Rasmont, P., Sweiger, O., & Michez, D. (2018). Patterns of size variation in bees at a continental scale: Does Bergmann’s rule apply? Oikos, 127, 1095–1103. https://doi.org/10.1111/oik.05260
Gérard, M., Vanderplanck, M., Wood, T., & Michez, D. (2020). Global warming and plant-pollinator mismatches. Emerging Topics in Life Sciences, 4(1), 77–86. https://doi.org/10.1042/ETLS20190139
Geslin, B., Le Féon, V., Folschweiller, M., Flacher, F., Carmignac, D., Motard, E., Perret, S., & Dajoz, I. (2016). The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecology and Evolution, 6, 6599–6615. https://doi.org/10.1002/ece3.2374
Ghisbain, G., Martinet, B., Wood, T. J., Przybyla, K., Cejas, D., Gérard, M., Rasmont, P., Monfared, A., Valterová, I., & Michez, D. (2021). A worthy conservation target? Revising the status of the rarest bumblebee of Europe. Insect Conservation and Diversity. https://doi.org/10.1111/icad.12500
Giannini, T. C., Costa, W. F., Borges, R. C., Miranda, L., da Costa, C. P. W., Saraiva, A. M., & Fonseca, V. L. I. (2020). Climate change in the Eastern Amazon: Crop-pollinator and occurrence-restricted bees are potentially more affected. Regional Environmental Change, 20, 9. https://doi.org/10.1007/s10113-020-01611-y
Glaum, P., Simao, M.-C., Vaidya, C., Fitch, G., & Iulinao, B. (2017). Big city Bombus: Using natural history and land-use history to find significant environmental drivers in bumblebee declines in urban development. Royal Society Open Science, 4, 170156. https://doi.org/10.1098/rsos.170156
González-Tokman, D., Córdoba-Aguilar, A., Dáttilo, W., Lira-Noriega, A., Sánchez-Guillén, R. A., & Villalobos, F. (2020). Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95, 802–821. https://doi.org/10.1111/brv.12588
Goulson, D. (2010). Bumblebees, behaviour, ecology and conservation (p. 336). Oxford University Press. ISBN: 0-19-852607-5
Goulson, D., Hanley, M., Darvill, B., Ellis, J., & Knight, M. (2005). Causes of rarity in bumblebees. Biological Conservation, 122, 1–8. https://doi.org/10.1016/j.biocon.2004.06.017
Goulson, D., Lye, G. C., & Darvill, B. (2008). Decline and conservation of bumble bees. Annual Review of Entomology, 53, 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454
Gurel, F., Gosterit, A., & Eren, Ö. (2008). Life-cycle and foraging patterns of native Bombus terrestris (L.) (Hymenoptera, Apidae) in the Mediterranean region. Insectes Sociaux, 55, 123–128. https://doi.org/10.1007/s00040-008-0984-7
Hahn, D. A., & Denlinger, D. L. (2007). Meeting the energetic demands of insect diapause: Nutrient storage and utilization. Journal of Insect Physiology, 53(8), 760–773. https://doi.org/10.1016/j.jinsphys.2007.03.018
Hahn, D. A., & Denlinger, D. L. (2011). Energetics of insect diapause. Annual Review of Entomology, 56, 103–121. https://doi.org/10.1146/annurev-ento-112408-085436
Halsch, C. A., Shapiro, A. M., Fordyce, J. A., Nice, C. C., Thorne, J. H., Waetjen, D. P., & Forister, M. L. (2021). Insects and recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 118(2), e2002543117. https://doi.org/10.1073/pnas.2002543117
Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M., & Frank, S. D. (2017). Physiological thermal limits predict differential responses of bees to urban heat island effects. Biology Letters, 13(6), 20170125. https://doi.org/10.1098/rsbl.2017.0125
Hart, A. F., Maebe, K., Brown, G., Smagghe, G., & Ings, T. (2020). Winter activity unrelated to introgression in British bumblebee Bombus terrestris audax. Apidologie, 52, 315–327. https://doi.org/10.1007/s13592-020-00822-w
Heinrich, B. (1974). Thermoregulation in endothermic insects. Science, 185, 747–756. https://doi.org/10.1126/science.185.4153.747
Heinrich, B. (1979). Bumblebee economics. Harvard University Press. ISBN: 978067401639.
Heinrich, B., & Buchmann, S. L. (1986). Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta. Journal of Comparative Physiology B, 156, 557–562. https://doi.org/10.1007/BF00691042
Hill, J., Griffiths, H. M., & Thomas, C. D. (2011). Climate change and evolutionary adaptations at species’ range margins. Annual Review of Entomology, 56, 143–159. https://doi.org/10.1146/annurev-ento-120709-144746
Hines, H. M. (2008). Historical biogeography, divergence times, and diversification patterns of bumblebees (Hymenoptera: Apidae: Bombus). Systematic Biology, 57, 58–75. https://doi.org/10.1080/10635150801898912
Hosler, J. S., Burns, J. E., & Esch, H. E. (2000). Flight muscle resting potential and species-specific differences in chill-coma. Journal of Insect Physiology, 46, 621–627. https://doi.org/10.1016/s0022-1910(99)00148-1
Hrncir, M., Maia-Silva, C., da Silva Teixeira-Souza, V. H., & Imperatriz-Fonseca, V. L. (2019). Stingless bees and their adaptations to extreme environments. Journal of Comparative Physiology A, 205, 415–426. https://doi.org/10.1007/s00359-019-01327-3
Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A. M., Jess, M., & Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1665–1679. https://doi.org/10.1098/rstb.2012.0005
Ings, T., Schikora, J., & Chittka, L. (2005). Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia, 144, 508–516. https://doi.org/10.1007/s00442-005-0081-9
IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core writing team, RK Pachauri & LA Meyer (Eds.)] (pp. 151). IPCC.
Jackson, J. M., Pimsler, M. L., Oyen, K. J., Koch-Uhuad, J. B., Herndon, J. D., Strange, J. P., Dillon, M. E., & Lozier, J. D. (2018). Distance, elevation, and environment as drivers of diversity and divergence in bumblebees across latitude and altitude. Molecular Ecology, 27, 2926–2942. https://doi.org/10.1111/mec.14735
Jackson, J., Pimsler, M., Oyen, K., Strange, J., Dillon, M., & Lozier, J. (2020). Local adaptation across a complex bioclimatic landscape in two montane bumblebee species. Molecular Ecology, 29, 920–939. https://doi.org/10.1111/mec.15376
Jaffé, R., Veiga, J. C., Pope, N. S., Lanes, E. C. M., Carvalho, C. S., Alves, R., Andrade, S. C. S., Arias, M. C., Bonatti, V., Carvalho, A. T., de Castro, M. S., Contrera, F. A. L., Francoy, T. M., Freitas, B. M., Giannini, T. C., Hrncir, M., Martins, C. F., Oliveira, G., Saraiva, A. M., … Imperatriz-Fonseca, V. L. (2019). Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 12, 1164–1177. https://doi.org/10.1111/eva.12794
Jaworski, T., & Hilszczański, J. (2013). The effect of temperature and humidity changes on insects development and their impact on forest ecosystems in the context of expected climate change. Forest Research Papers, 74, 345–355. https://doi.org/10.2478/frp-2013-0033
Kearns, C. A., Inouye, D. W., & Waser, N. M. (1998). Endangered mutualisms: The conservation of plant–pollinator interactions. Annual Review of Ecology and Systematics, 29, 83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83
Kelemen, E. P., Cao, N., Cao, T., Davidowitz, G., & Dornhaus, A. (2019). Metabolic rate predicts the lifespan of workers in the bumble bee Bombus impatiens. Apidologie, 50, 195–203. https://doi.org/10.1007/s13592-018-0630-y
Kellermann, V., Overgaard, J., Hoffmann, A. A., Flojgaard, C., Svenning, J.-C., & Loeschcke, V. (2012). Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16228–16233. https://doi.org/10.1073/pnas.1207553109
Kellermann, V., & van Heerwaarden, B. (2019). Terrestrial insects and climate change: Adaptive responses in key traits. Physiological Entomology, 44, 99–115. https://doi.org/10.1111/phen.12282
Kerr, J. T., Pindar, A., Galpern, P., Packer, L., Potts, S. G., Roberts, S. M., Rasmont, P., Schweiger, O., Colla, S. R., Richardson, L. L., Wagner, D. L., Gall, L. F., Sikes, D. S., & Pantoja, A. (2015). Climate change impacts on bumblebees converge across continents. Science, 349, 177–180. https://doi.org/10.1126/science.aaa7031
Kim, B. G., Shim, J. K., Kim, D. W., Kwon, Y. J., & Lee, K. Y. (2008). Tissue-specific variation of heat shock protein gene expression in relation to diapause in the bumblebee Bombus terrestris. Entomological Research, 38, 10–16. https://doi.org/10.1111/j.1748-5967.2008.00142.x
Kingsolver, J. G., & Buckley, L. B. (2017). Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1723). http://doi.org/10.1098/rstb.2016.0147.
Kingsolver, J. G., Woods, H. A., Buckley, L. B., Potter, K. A., MacLean, H. J., & Higgins, J. K. (2011). Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology, 51, 719–732. https://doi.org/10.1093/icb/icr015
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L. G., Henry, M., Isaacs, R., Klein, A.-M., Kremen, C., M'Gonigle, L. K., Rader, R., Ricketts, T. H., Williams, N. M., Lee Adamson, N., Ascher, J. S., Báldi, A., Batáry, P., Benjamin, F., Biesmeijer, J. C., Blitzer, E. J., … Potts, S. G. (2015). Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 6, 7414. https://doi.org/10.1038/ncomms8414
Koch, J. B., Looney, C., Hopkins, B., Lichtenberg, E. M., Sheppard, W. S., & Strange, J. P. (2019). Projected climate change will reduce habitat suitability for bumble bees in the Pacific Northwest. bioRxiv, 610071. https://doi.org/10.1101/610071
Kohno, K., Sokabe, T., Tominaga, M., & Kadowaki, T. (2010). Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. Journal of Neuroscience, 30, 12219–12229. https://doi.org/10.1523/JNEUROSCI.2001-10.2010
Laverty, T. M., & Plowright, R. C. (1988). Flower handling by bumblebees: A comparison of specialists and generalists. Animal Behavior, 36, 733–740. https://doi.org/10.1016/S0003-3472(88)80156-8
Le Conte, Y., & Navajas, M. (2008). Climate change: Impact on honeybee populations and diseases. Revue Scientifique et Technique (International Office of Epizootics), 27, 499–510. https://doi.org/10.20506/RST.27.2.1819
Lee, C. K., Williams, P. H., & Pearson, R. G. (2019). Climate change vulnerability higher in arctic than alpine bumblebees. Frontiers of Biogeography, 11(4), e42455. https://doi.org/10.21425/F5FBG42455
Lecocq, T., Gérard, M., Michez, D., & Dellicour, S. (2017). Conservation genetics of European bees: New insights from the continental scale. Conservation Genetics, 18(3), 585–596. https://doi.org/10.1007/s10592-016-0917-3
Lozier, J. D., & Cameron, S. A. (2009). Comparative genetic analyses of historical and contemporary collections highlight contrasting demographic histories for the bumble bees Bombus pensylvanicus and B. impatiens in Illinois. Molecular Ecology, 18, 1875–1886. https://doi.org/10.1111/j.1365-294X.2009.04160.x
Lozier, J. D., Strange, J. P., Stewart, I. J., & Cameron, S. A. (2011). Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Molecular Ecology, 20, 4870–4888. https://doi.org/10.1111/j.1365-294X.2011.05314.x
MacMillan, H. A., Knee, J. M., Dennis, A. B., Udaka, H., Marshall, K. E., Merritt, T. J., & Sinclair, B. J. (2016). Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Scientific Reports, 6, 28999. https://doi.org/10.1038/srep28999
Maebe, K., De Baets, A., Vandamme, P., Vereecken, N., Michez, D., & Smagghe, G. (2020). Intraspecies variation in thermal tolerance of bumblebees. Journal of Thermal Biology, 99. https://doi.org/10.1016/j.jtherbio.2021.103002
Maebe, K., Meeus, I., Ganne, M., De Meulemeester, T., Biesmeijer, K., & Smagghe, G. (2015). Microsatellite analysis of museum specimens reveals historical differences in genetic diversity between declining and more stable Bombus species. PLoS One, 10(6), e0127870. https://doi.org/10.1371/journal.pone.0127870
Maebe, K., Meeus, I., Vray, S., Claeys, T., Dekoninck, W., Boevé, J.-L., Rasmont, P., & Smagghe, G. (2016). A century of temporal stability of genetic diversity in wild bumblebees. Scientific Reports, 6, 38289. https://doi.org/10.1038/srep38289
Makinson, J. C., Woodgate, J. L., Reynolds, A., Capaldi, E. A., Perry, C. J., & Chittka, L. (2019). Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Scientific Reports, 9, 4651. https://doi.org/10.1038/s41598-019-40355-6
Marshall, L., Biesmeijer, J. C., Rasmont, P., Vereecken, N. J., Dvorak, L., Fitzpatrick, U., Francis, F., Neumayer, J., Ødegaard, F., Paukkunen, J. P. T., Pawlikowski, T., Reemer, M., Roberts, S. P. M., Straka, J., Vray, S., & Dendoncker, N. (2018). The interplay of climate and land use change affects the distribution of EU bumblebees. Global Change Biology, 24, 101–116. https://doi.org/10.1111/gcb.13867
Marshall, L., Perdijk, F., Dendoncker, N., Kunin, W., Roberts, S., & Biesmeijer, J. C. (2020). Bumblebees moving up: Shifts in elevation ranges in the Pyrenees over 115 years. Proceedings of the Royal Society B: Biological Sciences, 287(1938), 20202201. https://doi.org/10.1098/rspb.2020.2201
Martinet, B., Dellicour, S., Zambra, E., Przybyla, K., Lecocq, T., Boustani, M., Ghisbain, G., Brasero, N., Baghirov, R., Michez, D., & Rasmont, P. (2021). Global effects of extreme temperatures on wild bumblebees. Conservation Biology. https://doi.org/10.1111/cobi.13685
Martinet, B., Zambra, E., Przybyla, K., Lecocq, T., Nonclercq, D., Rasmont, P., Michez, D., & Hennerbert, E. (2021). Mating under climate change: Impact of simulated heatwaves on reproduction of model pollinators. Functional Ecology, 35(3), 739–752. https://doi.org/10.1111/1365-2435.13738
Matsuura, H., Sokabe, T., Kohno, K., Tominaga, M., & Kadowaki, T. (2009). Evolutionary conservation and changes in insect TRP channels. BMC Evolutionary Biology, 9, 228. https://doi.org/10.1186/1471-2148-9-228
Michez, D., Rasmont, P., Terzo, M., & Vereecken, N. J. (2019). Bees of Europe. Hymenoptera of Europe (Vol. 1, pp. 552). Édition N.A.P. ISBN: 978-2-913688-34-6
Miller-Struttmann, N. E., Geib, J. C., Franklin, J. D., Kevan, P. G., Holdo, R. M., Ebert-May, D., Lynn, A. M., Kettenbach, J. A., Hedrick, E., & Galen, C. (2015). Functional mismatch in a bumblebee pollination mutualism under climate change. Science, 25, 1541–1544. https://doi.org/10.1126/science.aab0868
Mola, J. M., & Williams, N. M. (2019). A review of methods for the study of bumblebee movement. Apidologie, 50(4), 497–514. https://doi.org/10.1007/s13592-019-00662-3
Montero-Mendieta, S., Tan, K., Christmas, M. J., Olsson, A., Vilà, C., Wallberg, A., & Webster, M. T. (2018). The genomic basis of adaptation to high-altitude habitats in the eastern honeybee (Apis cerana). Molecular Ecology, 28(4), 746–760. https://doi.org/10.1111/mec.14986
Nicolson, S. W. (2009). Water homeostasis in bees, with the emphasis on sociality. Journal of Experimental Biology, 212, 429–434. https://doi.org/10.1242/jeb.022343
Nogués-Bravo, D., Rodríguez-Sánchez, F., Orsini, L., de Boer, E., Jansson, R., Morlon, H., Fordham, D. A., & Jackson, S. T. (2018). Cracking the code of biodiversity responses to past climate change. Trends in Ecology & Evolution, 33(10), 765–776. https://doi.org/10.1016/j.tree.2018.07.005
Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A., & Loeuille, N. (2012). Eco-evolutionary responses of biodiversity to climate change. Nature Climate Change, 2(10), 747–751. https://doi.org/10.1038/nclimate1588
Ogilvie, J. E., Griffin, S. R., Gezon, Z. J., Inouye, B. D., Underwood, N., Inouye, D. W., & Irwin, R. E. (2017). Interannual bumblebee abundance is driven by indirect climate effects on floral resource phenology. Ecology Letters, 20, 1507–1515. https://doi.org/10.1111/ele.12854
Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644
Ornosa, C., Torres, F., & De la Rua, P. (2017). Updated list of bumblebees (Hymenoptera: Apidae) from the Spanish Pyrenees with notes on their decline and conservation status. Zootaxa, 4237(1), 41–77. https://doi.org/10.11646/zootaxa.4237.1.3
Overgaard, J., & MacMillan, H. A. (2017). The integrative physiology of insect shill tolerance. Annual Review of Physiology, 79, 187–208. https://doi.org/10.1146/annurev-physiol-022516-034142
Owen, E. L., Bale, J. S., & Hayward, S. A. L. (2013). Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding. PLoS One, 8, e80061. https://doi.org/10.1371/journal.pone.0080061
Owen, E. L., Bale, J. S., & Hayward, S. A. L. (2016). Establishment risk of the commercially imported bumblebee Bombus terrestris dalmatinus-can they survive UK winters?. Apidologie, 47(1), 66–75. https://doi.org/10.1007/s13592-015-0376-8
Oyen, K. J., & Dillon, M. E. (2018). Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status. Journal of Experimental Biology, 221, jeb165589. https://doi.org/10.1242/jeb.165589
Oyen, K. J., Giri, S., & Dillon, M. E. (2016). Altitudinal variation in bumblebee (Bombus) critical thermal limits. Journal of Thermal Biology, 59, 52–57. https://doi.org/10.1016/j.jtherbio.2016.04.015
Peat, J., Darvill, B., Ellis, J., & Goulson, D. (2005). Effects of climate on intra- and interspecific size variation in bumblebees. Functional Ecology, 19, 145–151. https://doi.org/10.1111/j.0269-8463.2005.00946
Penick, C., Diamond, S., Sanders, N., & Dunn, R. (2016). Beyond thermal limits: Comprehensive metrics of performance identify key axes of thermal adaptation in ants. Functional Ecology, 31, 1091–1100.
Peters, M. K., Peisker, J., Steffan-drwenter, I., & Hoiss, B. (2016). Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. Journal of Biogeography, 43, 2040–2049.
Pimsler, M. L., Oyen, K. J., Herndon, J. D., Jackson, J. M., Strange, J. P., Dillon, M. E., & Lozier, J. D. (2020). Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Scientific Reports, 10(1), 17063.
Ploquin, E. F., Herrera, J. M., & Obeso, J. R. (2013). Bumblebee community homogenization after uphill shifts in montane areas of northern Spain. Oecologia, 173, 1649–1660. https://doi.org/10.1007/s00442-013-2731-7
Pyke, G. H., Inouye, D. W., & Thomson, J. D. (2011). Activity and abundance of bumble bees near Crested Butte, Colorado: Diel, seasonal, and elevation effects. Ecological Entomology, 36(4), 511–521.
Pyke, G. H., Inouye, D. W., & Thomson, J. D. (2012). Local geographic distributions of bumble bees near Crested Butte, Colorado: Competition and community structure revisited. Environmental Entomology, 41(6), 1332–1349. https://doi.org/10.1603/EN11284
Pyke, G. H., Thomson, J. D., Inouye, D. W., & Miller, T. J. (2016). Effects of climate change on phenologies and distributions of bumblebees and the plants they visit. Ecosphere, 7, e01267. https://doi.org/10.1002/ecs2.1267
Ramírez-Delgado, V. H., Sanabria-Urbán, S., Serrano-Meneses, M. A., & del Castillo, R. C. (2016). The converse to Bergmann’s rule in bumblebees, a phylogenetic approach. Ecology and Evolution, 6, 6160–6169. https://doi.org/10.1002/ece3.2321
Rapti, Z., Duennes, M. A., & Cameron, S. A. (2014). Defining the colour pattern phentotype in bumblebees (Bombus): A new model for evo devo. Biological Journal of the Linnean Society, 133, 384–404. https://doi.org/10.1111/bij.12356
Rasmont, P., Coppee, A., Michez, D., & De Meulemeester, T. (2008). An overview of the Bombus terrestris (L. 1758) subspecies (Hymenopetera: Apidae). Annales de la Société Entomologique de France, 44, 243–250. https://doi.org/10.1080/00379271.2008.10697559
Rasmont, P., Franzen, M., Lecocq, T., Harpke, A., Roberts, S., Biesmeijer, K., Castro, L., Cederberg, B., Dvorak, L., Fitzpatrick, U., Gonseth, Y., Haubruge, E., Mahe, G., Manino, A., Michez, D., Neumayer, J., Odegaard, F., Paukkunen, J., Pawlikowski, T., … Schweiger, O. (2015). Climatic risk and distribution atlas of European bumblebees. Biodiversity and Ecosystem Risk Assessment, 10(Special Issue), 246. https://doi.org/10.3897/biorisk.10.4749
Rasmont, P., Ghisbain, G., & Terzo, M. (2021). Bumblebees of Europe and neighbouring regions. NAP Editions (Paris). In press.
Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annual Review of Ecology Evolution and Systematics, 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535
Sanderson, R. A., Goffe, L. A., & Leifert, C. (2015). Time-series models to quantify short-term effects of meteorological conditions on bumblebee forager activity in agricultural landscapes. Agricultural and Forest Entomology, 17, 270–276. https://doi.org/10.1111/afe.12102
Saunders, S. D. (2014). Insect photoperiodism: Effects of temperature on the induction of insect diapause and diverse roles for the circadian system in the photoperiodic response. Entomological Science, 17, 25–40. https://doi.org/10.1111/ens.12059
Scriven, J. J., Whitehorn, P. R., Goulson, D., & Tinsley, M. C. (2016). Bergmann’s body-size rule operates in facultatively endothermic insects: Evidence from a complex of cryptic bumblebee species. PLoS One, 11, e0163307. https://doi.org/10.1371/journal.pone.0163307
Sgrò, C. M., Terblanche, J. S., & Hoffmann A. A. (2016). What can plasticity contribute to insect responses to climate change? Annual Review of Entomology, 61(1), 433–451. http://doi.org/10.1146/annurev-ento-010715-023859
Sirois-Delisle, C., & Kerr, J. T. (2018). Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports, 8, 14464. https://doi.org/10.1038/s41598-018-32665-y
Stelzer, R. J., Chittka, L., Carlton, M., & Ings, T. C. (2010). Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain. PLoS One, 5, e9559. https://doi.org/10.1371/journal.pone.0009559
Stelzer, R. J., Stanewsky, R., & Chittka, L. (2010). Circadian foraging rhythms of bumblebees monitored by radio-frequency identification. Journal of Biological Rhythms, 25, 257–267. https://doi.org/10.1177/0748730410371750
Stemkovski, M., Pearse, W. D., Griffin, S. R., Pardee, G. L., Gibbs, J., Griswold, T., Neff, J. L., Oram, R., Rightmyer, M. G., Sheffield, C. S., Wright, K., Inouye, B. D., Inouye, D. W., & Irwin, R. E. (2020). Bee phenology is predicted by climatic variation and functional traits. Ecology Letters, 23, 1589–1598. https://doi.org/10.1111/ele.13583
Storey, K. B., & Storey, J. M. (2012). Insect cold hardiness: Metabolic, gene, and protein adaptation. Canadian Journal of Zoology, 90, 456–475. https://doi.org/10.1139/z2012-011
Streinzer, M., Chakravorty, J., Neumayer, J., Megu, K., Narah, J., Schmitt, T., Bharti, H., Spaethe, J., & Brockmann, A. (2019). Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus Latreille) in the East Himalaya, Arunachal Pradesh, India. ZooKeys, 825, 71–89. https://doi.org/10.3897/zookeys.851.32956
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences, 111, 5610–5615. https://doi.org/10.1073/pnas.1316145111
Surholt, B., Greive, H., Baal, T., & Bertsch, A. (1990). Non-shivering thermogenesis in asynchronous flight muscles of bumblebees? Comparative studies on males of Bombus terrestris, Xylocopa sulcatipes and Acherontia atropos. Comparative Biochemistry and Physiology Part A: Physiology, 97, 493–499. https://doi.org/10.1016/0300-9629(90)90116-A
Telonis-Scott, M., Gane, M., DeGaris, S., Sgrò, C. M., & Hoffmann, A. A. (2012). High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection. Molecular Biology and Evolution, 29, 1335–1351. https://doi.org/10.1093/molbev/msr294
Telonis-Scott, M., Sgrò, C. M., Hoffmann, A. A., & Griffin, P. C. (2016). Cross-study comparison reveals common genomic, network, and functional signatures of desiccation resistance in Drosophila melanogaster. Molecular Biology and Evolution, 33, 1053–1067. https://doi.org/10.1093/molbev/msv349
Theodorou, P., Baltz, L. M., Paxton, R. J., & Soro, A. (2021). Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evolutionary Applications, 14(1), 53–68. http://doi.org/10.1111/eva.13087
Theodorou, P., Radzevičiūte, R., Kahnt, B., Soro, A., Grosse, I., & Paxton, R. J. (2018). Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proceedings of the Royal Society B, 285, 20172806. https://doi.org/10.1098/rspb.2017.2806
Thompson, P. L., & Fronhofer, E. A. (2019). The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21061–21067. https://doi.org/10.1073/pnas.1911796116
Tian, L., Rahman, S. R., Ezray, B. D., Franzini, L., Strange, J. P., Lhomme, P., & Hines, H. M. (2019). A homeotic shift late in development drives mimetic color variation in a bumblebee. Proceedings of the National Academy of Sciences of the United States of America, 116, 11857–11865. https://doi.org/10.1073/pnas.1900365116
Tiedeken, E. J., Egan, P. A., Stevenson, P., Wright, G., Brown, M., Power, E. F., Farrell, I. W., Matthews, S. M., & Stout, J. C. (2016). Nectar chemistry modulates the impact of an invasive plant on native pollinators. Functional Ecology, 30(6), 885–893. https://doi.org/10.1111/1365-2435.12588
Tsai, C. C., Childers, R. A., Nan Shi, N., Ren, C., Pelaez, J. N., Bernard, G. D., Pierce, N. E., & Yu, N. (2020). Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nature Communications, 11, 551. https://doi.org/10.1038/s41467-020-14408-8
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., Cornwell, W., Gianoli, E., Kleunen, M., Naya, D. E., Nicotra, A. B., Poorter, H., & Zavala, M. A. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17(11), 1351–1364. https://doi.org/10.1111/ele.12348
Vanderplanck, M., Declèves, S., Roger, N., Decroo, C., Caulier, G., Glauser, G., Gerbaux, P., Lognay, G., Richel, A., Escaravage, N., & Michez, D. (2018). Is non-host pollen suitable for generalist bumblebees? Insect Science, 25(2), 259–272. https://doi.org/10.1111/1744-7917.12410
Vanderplanck, M., Martinet, B., Carvalheiro, L. G., Rasmont, P., Barraud, A., Renaudeau, C., & Michez, D. (2019). Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Scientific Reports, 9, 12596. https://doi.org/10.1038/s41598-019-49025-z
Vasiliev, D., & Greenwood, S. (2021). The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Science of the Total Environment, 775, 145788. https://doi.org/10.1016/j.scitotenv.2021.145788
Veloz, S. D., Williams, J. W., Blois, J. L., He, F., Otto-Bliesner, B., & Liu, Z. (2012). No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18(5), 1698–1713. https://doi.org/10.1111/J.1365-2486.2011.02635.X
Velthuis, H. H. W., & van Doorn, A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37, 421–451. https://doi.org/10.1051/apido:2006019
Vesterlund, S., Lilley, T. M., van Ooik, T., & Sorvari, J. (2014). The effect of overwintering temperature on the body energy reserves and phenoloxidase activity of bumblebee Bombus lucorum queens. Insectes Sociaux, 61, 265–272. https://doi.org/10.1007/s00040-014-0351-9
Vesterlund, S., & Sorvari, J. (2014). Longevity of starved bumblebee queens (Hymenoptera: Apidae) is shorter at high than low temperatures. European Journal of Entomology, 111(2), 217–220. https://doi.org/10.14411/eje.2014.035
Vogt, D. F. (1986). Thermoregulation in bumblebee colonies. I. Thermoregulatory versus brood-maintenance behaviors during acute changes in ambient temperature. Physiological Zoology, 59(1), 55–59. https://doi.org/10.1086/physzool.59.1.30156090
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R., & Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences of the United States of America, 118(2), e2023989118. https://doi.org/10.1073/pnas.2023989118
Wang, X.-Y., Tang, J., Wu, T., Wu, D., & Huang, S.-Q. (2019). Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401–1406. https://doi.org/10.1016/j.cub.2019.03.023
Weidenmüller, A. (2004). The control of nest climate in bumblebee (Bombus terrestris) colonies: Interindividual variability and self-reinforcement in fanning response. Behavioral Ecology, 15, 120–128. https://doi.org/10.1093/beheco/arg101
Weidenmüller, A., Chen, R., & Meyer, B. (2019). Reconsidering response threshold models, short-term response patterns in thermoregulating bumblebees. Behavioral Ecology and Sociobiology, 73, 112. https://doi.org/10.1007/s00265-019-2709-5
Weidenmüller, A., Kleineidam, C., & Tautz, J. (2002). Collective control of nest climate parameters in bumblebee colonies. Animal Behavior, 63, 1065–1071. https://doi.org/10.1006/anbe.2002.3020
Westhus, C., Kleineidam, C. J., Roces, F., & Weidenmüller, A. (2013). Behavioural plasticity in the fanning response of bumblebee workers: Impact of experience and rate of temperature change. Animal Behavior, 85, 27–34. https://doi.org/10.1016/j.anbehav.2012.10.003
Williams, P. H. (1998). An annotated checklist of bumblebees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bulletin of the British Museum (Natural History). Entomology, 67, 69–152.
Williams, P. H. (2007). The distribution of bumblebee colour patterns worldwide: Possible significance for thermoregulation, crypsis, and warning mimicry. Biological Journal of the Linnean Society, 92, 97–118. https://doi.org/10.1111/j.1095-8312.2007.00878.x
Williams, P. H., & Jepsen, S. (2020). IUCN BBSG – Bumblebee Specialist Group Report 2019 (pp. 27). Natural History Museum. https://doi.org/10.13140/RG.2.2.15618.84166
Woodard, S. H. (2017). Bumblebee ecophysiology: Integrating the changing environment and the organism. Current Opinion in Insect Science, 22, 101–108. https://doi.org/10.1016/j.cois.2017.06.001
Xu, J., Strange, J. P., Welker, D. L., & James, R. R. (2013). Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae). BMC Genomics, 14, 874. https://doi.org/10.1186/1471-2164-14-874
Yerushalmi, S., Bodenhaimer, S., & Bloch, G. (2006). Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. Journal of Experimental Biology, 209, 1044–1051. https://doi.org/10.1242/jeb.02125
Zambra, E., Martinet, B., Brasero, N., Michez, D., & Rasmont, P. (2020). Hyperthermic stress resistance of bumblebee males: Test case of Belgian species. Apidologie, 51, 911–920. https://doi.org/10.1007/s13592-020-00771-4
Zayed, A. (2009). Bee genetics and conservation. Apidologie, 40, 237–262. https://doi.org/10.1051/apido/2009026
Zayed, A., Packer, L., Grixti, J. C., Ruz, L., Owen, R. E., & Toro, H. (2005). Increased genetic differentiation in a specialist versus a generalist bee: Implications for conservation. Conservation Genetics, 6, 1017–1026. https://doi.org/10.1007/s10592-005-9094-5
Zhao, H., Li, G., Guo, D., Li, H., Liu, Q., Xu, B., & Guo, X. (2021). Response mechanisms to heat stress in bees. Apidologie, 52, 388–399. https://doi.org/10.1007/s13592-020-00830-w