S. Abbasi and A. Jamshed, A degree constraint for uniquely Hamiltonian graphs, Graphs Combin. 22 (2006), no. 4, 433-442, DOI 10.1007/s00373-006-0666-z. MR2270365
C.A. Barefoot and R. C. Entringer, A census of maximum uniquely Hamiltonian graphs, J. Graph Theory 5 (1981), no. 3, 315-321, DOI 10.1002/jgt.3190050313. MR625073
C. Berge, Graphs and Hypergraphs, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Translated from the French by Edward Minieka; North-Holland Mathematical Library, Vol. 6. MR0357172
J. A. Bondy and B. Jackson, Vertices of small degree in uniquely Hamiltonian graphs, J. Combin. Theory Ser. B 74 (1998), no. 2, 265-275, DOI 10.1006/jctb.1998.1845. MR1654125
J.M. Boyer andW.J. Myrvold, On the cutting edge: simplified O(n) planarity by edge addition, J. Graph Algorithms Appl. 8 (2004), no. 3, 241-273, DOI 10.7155/jgaa.00091. MR2166815
G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. Melot, House of Graphs: a database of interesting graphs, Discrete Appl. Math. 161 (2013), no. 1-2, 311-314, DOI 10.1016/j.dam.2012.07.018. MR2973372
G. Brinkmann and J. Goedgebeur, Generation of cubic graphs and snarks with large girth, J. Graph Theory 86 (2017), no. 2, 255-272, DOI 10.1002/jgt.22125. MR3684787
G. Brinkmann, J. Goedgebeur, and B. D. McKay, Generation ofcubic graphs, Discrete Math. Theor. Comput. Sci. 13 (2011), no. 2, 69-79. MR2820891
G. Brinkmann and B. D. McKay, Fast generation ofplanar graphs, MATCH Commun. Math. Comput. Chem. 58 (2007), no. 2, 323-357. MR2357364
G. L. Chia and C. Thomassen, On the number of longest and almost longest cycles in cubic graphs, Ars Combin. 104 (2012), 307-320. MR2951794
G. L. Chia and Q. R. Yu, On the number of Hamilton cycles in cubic graphs, Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995), Congr. Numer. 110 (1995), 13-32. MR1369314
R. C. Entringer and H. Swart, Spanning cycles of nearly cubic graphs, J. Combin. Theory Ser. B 29 (1980), no. 3, 303-309, DOI 10.1016/0095-8956(80)90087-8. MR602422
H. Fleischner, Uniquely Hamiltonian graphs of minimum degree 4, J. Graph Theory 75 (2014), no. 2, 167-177, DOI 10.1002/jgt.21729. MR3150571
T. G. Fowler, Unique coloring ofplanar graphs, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)-Georgia Institute of Technology. MR2698714
J. Goedgebeur, B. Meersman, and C. T. Zamfirescu, Homepage of genhypohamiltonian: http://caagt.ugent.be/uhg/.
E. Grinberg, Three-connected graphs with exactly one Hamiltonian cycle (in Russian), Republican Foundation of Algorithms and Programmes. Computing centre, P. Stutschka University, Riga, USSR, 1986.
P. Haxell, B. Seamone, and J. Verstraete, Independent dominating sets and Hamiltonian cycles, J. Graph Theory 54 (2007), no. 3, 233-244, DOI 10.1002/jgt.20205. MR2290229
M. Haythorpe, On the minimum number ofHamiltonian cycles in regular graphs, Exp. Math. 27 (2018), no. 4, 426-430, DOI 10.1080/10586458.2017.1306813. MR3894721
D. Holton and R. E. L. Aldred, Planar graphs, regular graphs, bipartite graphs and Hamil-tonicity, Australas. J. Combin. 20 (1999), 111-131. MR1723867
B. D. McKay, nauty User's Guide (Version 2.5). Technical Report TR-CS-90-02, Department of Computer Science, Australian National University. The latest version of the software is available at http://cs.anu.edu.au/~bdm/nauty.
B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998), no. 2, 306-324, DOI 10.1006/jagm.1997.0898. MR1606516
B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94-112, DOI 10.1016/j.jsc.2013.09.003. MR3131381
M. Meringer, Fast generation ofregular graphs and construction ofcages, J. Graph Theory 30 (1999), no. 2, 137-146, DOI 10.1002/(SICI)1097-0118(199902)30:2(137::AID-JGT7)3.0.CO;2-G. MR1665972
J. Petersen, Die Theorie der regularen graphs (German), Acta Math. 15 (1891), no. 1, 193220, DOI 10.1007/BF02392606. MR1554815
I. Pivotto and G. Royle, Highly-connected planar cubic graphs with few or many Hamilton cycles, https://arxiv. org/abs/1901.10683.
G. F. Royle, The smallest uniquely hamiltonian graph with minimum degree at least 3, https://mathoverflow.net/questions/255784/what-is-the-smallest-uniquely-hamiltonian-graph-with-minimum-degree-at-least-3/, 2017.
A. J. Schwenk, Enumeration of Hamiltonian cycles in certain generalized Petersen graphs, J. Combin. Theory Ser. B 47 (1989), no. 1, 53-59, DOI 10.1016/0095-8956(89)90064-6. MR1007713
B. Seamone, On uniquely Hamiltonian claw-free and triangle-free graphs, Discuss. Math. Graph Theory 35 (2015), no. 2, 207-214, DOI 10.7151/dmgt.1784. MR3338746
J. Sheehan, The multiplicity of Hamiltonian circuits in a graph, Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), Academia, Prague, 1975, pp. 477-480. MR0398896
J. Sheehan, Graphs with exactly one Hamiltonian circuit, J. Graph Theory 1 (1977), no. 1, 37-43, DOI 10.1002/jgt.3190010110. MR0460180
N. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/.
A. G. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Ann. Discrete Math. 3 (1978), 259-268. Advances in graph theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977). MR499124
C. Thomassen, Planar cubic hypo-Hamiltonian and hypotraceable graphs, J. Combin. Theory Ser. B 30 (1981), no. 1, 36-44, DOI 10.1016/0095-8956(81)90089-7. MR609592
C. Thomassen, On the number of Hamiltonian cycles in bipartite graphs, Combin. Probab. Comput. 5 (1996), no. 4, 437-442, DOI 10.1017/S0963548300002182. MR1426436
C. Thomassen, Independent dominating sets and a second Hamiltonian cycle in regular graphs, J. Combin. Theory Ser. B 72 (1998), no. 1, 104-109, DOI 10.1006/jctb.1997.1794. MR1604697
W. T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21 (1946), 98-101, DOI 10.1112/jlms/s1-21.2.98. MR0019300
W. T. Tutte, Hamiltonian circuits (English, with Italian summary), Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Accad. Naz. Lincei, Rome, 1976, pp. 193-199. Atti dei Convegni Lincei, No. 17. MR0480185