M. Abreu et al., A note on 2-bisections of claw-free cubic graphs, Discrete Appl. Math. 244 (2018), 214–217.
M. Abreu et al., Odd 2-factored snarks, European J. Combin. 36 (2014), 460–472.
M. Abreu, et al., Tree-like snarks, Electron. J. Combin. 23 (2016), no. 3, Paper 3.54.
N. Alon et al., Partitioning into graphs with only small components, J. Combin. Theory Ser. B 87 (2003), 231–243.
K. Ando, Personal communication.
A. Ban and N. Linial, Internal partitions of regular graphs, J. Graph Theory 83 (2016), no. 1, 5–18.
R. Berke and T. Szabó, Relaxed two-coloring of cubic graphs, J. Combin. Theory Ser. B 97 (2007), no. 4, 652–668.
J. C. Bermond et al., On linear k-arboricity, Discrete Math. 52 (1984), 123–132.
J. A. Bondy and U. S. R. Murty, Graph theory, Springer Ser.: Grad. Texts in Math. 244 (2008).
G. Brinkmann et al., House of graphs: A database of interesting graphs, Discrete Appl. Math. 161 (2013), no. 1-2, 311–314. available at http://hog.grinvin.org/
G. Brinkmann and J. Goedgebeur, Homepage of snarkhunter, available at http://caagt.ugent.be/cubic/
G. Brinkmann et al., Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013), 468–488.
G. Brinkmann, J. Goedgebeur, and B. D. McKay, Generation of cubic graphs, Discrete Math. Theor. Comput. Sci. 13 (2011), no. 2, 69–80.
F. Castagna and G. Prins, Every generalized Petersen graph has a Tait coloring, Pacific J. Math. 40 (1972), no. 1, 53–58.
G. Chartrand and F. Harary, Planar permutation graphs, Ann. IHP Probab. Stat. 4 (1967), 433–438.
L. Esperet, G. Mazzuoccolo, and M. Tarsi, Flows and bisections in cubic graphs, J. Graph Theory 86 (2017), no. 2, 149–158.
L. Esperet, G. Mazzuoccolo, and M. Tarsi, The structure of graphs with circular flow number 5 or more, and the complexity of their recognition problem, J. Comb. 7 (2016), 453–479.
J. L. Fouquet et al., On isomorphic linear partitions in cubic graphs, Discrete Math. 309 (2009), no. 22, 6425–6433.
J. Goedgebeur, Program for constructing and testing bisections, available at http://caagt.ugent.be/bisections/
J. Goedgebeur, D. Mattiolo, and G. Mazzuoccolo, A unified approach to construct snarks with circular flow number 5. Arxiv preprint arXiv:1804.00957 (2018), 27 pp.
M. Habib and B. Péroche, Some problems about linear arboricity, Discrete Math. 122 (2017), 55–67.
J. Hägglund and A. Hoffmann-Ostenhof, Construction of permutation snarks, J. Combin. Theory Ser. B 122 (2017), 55–67.
P. Haxell, T. Szabó, and G. Tardos, Bounded size components—partitions and trasversals, J. Combin. Theory Ser. B 88 (2003), 281–297.
D. A. Holton and J. Sheehan, The Petersen graph, Austral. Math. Soc. Lect. Ser., Cambridge University Press, Cambridge, 1993.
B. Jackson and N. C. Wormald, On the linear k-arboricity of cubic graphs, Discrete Math. 162 (1996), 293–297.
F. Jaeger, Balanced variations and flows in multigraphs, Proc. Amer. Math. Soc. 55 (1976), no. 1, 237–242.
T. Kaiser and A. Raspaud, Perfect matchings with restricted intersection in cubic graphs, European J. Combin. 31 (2010), no. 5, 1307–1315.
M. Kochol, Snarks without small cycles, J. Combin. Theory Ser. B 67 (1996), no. 1, 34–47.
N. Linial, J. Matousek, O. Sheffet, and G. Tardos, Graph colouring with no large monochromatic components, Combin. Probab. Comput. 17 (2008), no. 4, 577–589.
C. Lovegrove and R. D. Ringeisen, Crossing numbers of permutation graphs, Proceedings of the Nineteenth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer, Vol. 67, 1988, pp. 125–135. https://trove.nla.gov.au/work/6364747?selectedversion=NBD7516226
E. Máčajová and A. Raspaud, On the strong circular 5-flow conjecture, J. Graph Theory 52 (2006), no. 4, 307–316.
R. Ringeisen, On cycle permutation graphs, Discrete Math. 51 (1984), no. 3, 265–275.
C. Thomassen, Two-coloring of the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory Ser. B 75 (1999), no. 1, 100–109.
N. Wormald, Problem 13, Ars Combin. 23 (1987), 332–334.
C. Q. Zhang, Integer flows and cycle covers of graphs, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 205, Marcel Dekker Inc, New Tork, 1997.