Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, I. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors 2009, 9, 4728, 10.3390/s90604728
Chen, Z.; Lu, C. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005, 3, 274-295, 10.1166/sl.2005.045
Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire. J. Am. Chem. Soc. 2007, 129, 6070-6071, 10.1021/ja070788m
Sakai, Y.; Sadaoka, Y.; Matsuguchi, M. Humidity Sensors Based on Polymer Thin Films. Sens. Actuators, B 1996, 35, 85-90, 10.1016/S0925-4005(96)02019-9
Chen, H.-W.; Wu, R.-J.; Chan, K.-H.; Sun, Y.-L.; Su, P.-G. The Application of CNT/Nafion Composite Material to Low Humidity Sensing Measurement. Sens. Actuators, B 2005, 104, 80-84, 10.1016/j.snb.2004.04.105
Jung, I.; Dikin, D.; Park, S.; Cai, W.; Mielke, S. L.; Ruoff, R. S. Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets. J. Phys. Chem. C 2008, 112, 20264-20268, 10.1021/jp807525d
Yao, Y.; Chen, X.; Zhu, J.; Zeng, B.; Wu, Z.; Li, X. The Effect of Ambient Humidity on the Electrical Properties of Graphene Oxide Films. Nanoscale Res. Lett. 2012, 7, 363-370, 10.1186/1556-276X-7-363
Tai, Y.; Bera, T. K.; Lubineau, G.; Yang, Z. Combining the Converse Humidity/Resistance Response Behaviors of rGO Films for Flexible Logic Devices. J. Mater. Chem. C 2017, 5, 3848-3854, 10.1039/C7TC00686A
Yuan, W.; Shi, G. Graphene-Based Gas Sensors. J. Mater. Chem. A 2013, 1, 10078-10091, 10.1039/c3ta11774j
Rathi, K.; Pal, K. Impact of Doping on GO: Fast Response-Recovery Humidity Sensor. ACS Omega 2017, 2, 842-851, 10.1021/acsomega.6b00399
Teradal, N. L.; Marx, S.; Morag, A.; Jelinek, R. Porous Graphene Oxide Chemi-capacitor Vapor Sensor Array. J. Mater. Chem. C 2017, 5, 1128-1135, 10.1039/C6TC05364E
Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samorì, P. Chemical Sensing with 2D Materials. Chem. Soc. Rev. 2018, 47, 4860-4908, 10.1039/C8CS00417J
Naik, G.; Krishnaswamy, S. Room-Temperature Humidity Sensing Using Graphene Oxide Thin Films. Graphene 2016, 5, 1-13, 10.4236/graphene.2016.51001
Papamatthaiou, S.; Argyropoulos, D. P.; Farmakis, F.; Masurkar, A.; Alexandrou, K.; Kymissis, I.; Georgoulas, N. The Effect of Thermal Reduction and Film Thickness on fast Response Transparent Graphene Oxide Humidity Sensors. Proc. Eng. 2016, 168, 301-304, 10.1016/j.proeng.2016.11.201
Hwang, S. H.; Kang, D.; Ruoff, R. S.; Shin, H. S.; Park, Y. B. Poly(vinyl alcohol) Reinforced and Toughened with Poly(dopamine)-Treated Graphene Oxide, and Its Use for Humidity Sensing. ACS Nano 2014, 8, 6739-6747, 10.1021/nn500504s
Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394-3398, 10.1021/nl0717715
Bi, H. C.; Yin, K. B.; Xie, X.; Ji, J.; Wan, S.; Sun, L. T.; Terrones, M.; Dresselhaus, M. S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714 10.1038/srep02714
Tang, M.; Zhang, C.; Zhang, J. Y.; Zhao, Q. L.; Hou, Z. L.; Zhan, K. T. Ultrafast-Response Humidity Sensor with High Humidity Durability Based on a Freestanding Film of Graphene Oxide Supramolecular. Phys. Status Solidi A 2020, 217, 1900869 10.1002/pssa.201900869
Kim, S. G.; Lee, S. S.; Lee, E.; Yoon, J.; Lee, H. S. Kinetics of Hydrazine Reduction of Thin Films of Graphene Oxide and the Determination of Activation Energy by the Measurement of Electrical Conductivity. RSC Adv. 2015, 5, 102567-102573, 10.1039/C5RA18446K
Phan, D. T.; Chung, G. S. Effects of Rapid Thermal Annealing on Humidity Sensor Based on Graphene Oxide Thin Films. Sens. Actuators, B 2015, 220, 1050-1055, 10.1016/j.snb.2015.06.055
Lee, S.-W.; Choi, B. I.; Kim, J. C.; Woo, S.-B.; Kim, Y.-G.; Kwon, S.; Yoo, J.; Seo, Y.-S. Sorption/desorption hysteresis of thin-film humidity sensors based on graphene oxide and its derivative. Sens. Actuators, B 2016, 237, 575-580, 10.1016/j.snb.2016.06.113
Steiner, T. Effect of Acceptor Strength on C-H...O Hydrogen-Bond Lengths as Revealed by and Quantified from Crystallographic Data. J. Chem. Soc., Chem. Commun. 1994, 2341-2342, 10.1039/C39940002341
Park, K. D.; Liu, R.; Kohn, H. Useful Tools for Biomolecule Isolation, Detection, and Identification: Acylhydrazone-Based Cleavable Linkers. Chem. Biol. 2009, 16, 763-772, 10.1016/j.chembiol.2009.06.005
Kim, H.; Kang, Y. J.; Jeong, E. S.; Kang, S.; Kim, K. T. Glucose-Responsive Disassembly of Polymersomes of Sequence-Specific Boroxole-Containing Block Copolymers under Physiologically Relevant Conditions. ACS Macro Lett. 2012, 1, 1194-1198, 10.1021/mz3004192
Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand., Sect. A 1977, 81 A, 89-96, 10.6028/jres.081A.011
Dreyer, D. R.; Jia, H.-P.; Bielawski, C. W. Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angew. Chem., Int. Ed. 2010, 49, 6813-6816, 10.1002/anie.201003238
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228-240, 10.1039/B917103G
Zhang, X.; Ciesielski, A.; Richard, F.; Chen, P.; Prasetyanto, E. A.; De Cola, L.; Samorì, P. Modular Graphene-Based 3D Covalent Networks: Functional Architectures for Energy Applications. Small 2016, 12, 1044-1052, 10.1002/smll.201503677
Lin, Y.; Jin, J.; Song, M. Preparation and Characterisation of Covalent Polymer Functionalized Graphene Oxide. J. Mater. Chem. 2011, 21, 3455-3461, 10.1039/C0JM01859G
Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical Functionalization of Graphene and its Applications. Prog. Mater. Sci. 2012, 57, 1061-1105, 10.1016/j.pmatsci.2012.03.002
Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Harnessing the Chemistry of Graphene Oxide. Chem. Soc. Rev. 2014, 43, 5288-5301, 10.1039/C4CS00060A
Compton, O. C.; Dikin, D. A.; Putz, K. W.; Brinson, L. C.; Nguyen, S. T. Electrically Conductive "Alkylated" Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper. Adv. Mater. 2010, 22, 892-896, 10.1002/adma.200902069
Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J. Synthesis and Characterisation of Hydrophilic and Organophilic Graphene Nanosheets. Carbon 2009, 47, 1359-1364, 10.1016/j.carbon.2009.01.027
Zhao, Y.; Ding, H.; Zhong, Q. Preparation and Characterization of Aminated Graphite Oxide for CO2 Capture. Appl. Surf. Sci. 2012, 258, 4301-4307, 10.1016/j.apsusc.2011.12.085
Li, W.; Tang, X.-Z.; Zhang, H.-B.; Jiang, Z.-G.; Yu, Z.-Z.; Du, X.-S.; Mai, Y.-W. Simultaneous Surface Functionalization and Reduction of Graphene Oxide with Octadecylamine for Electrically Conductive Polystyrene Composites. Carbon 2011, 49, 4724-4730, 10.1016/j.carbon.2011.06.077
Slobodian, O. M.; Lytvyn, P. M.; Nikolenko, A. S.; Naseka, V. M.; Khyzhun, O. Y.; Vasin, A. V.; Sevostianov, S. V.; Nazarov, A. N. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy. Nanoscale Res. Lett. 2018, 13, 139 10.1186/s11671-018-2536-z
Tegou, E.; Pseiropoulos, G.; Filippidou, M. K.; Chatzandroulis, S. Low-Temperature Thermal Reduction of Graphene Oxide Films in Ambient Atmosphere: Infra-Red Spectroscopic Studies and Gas Sensing Applications. Microelectron. Eng. 2016, 159, 146-150, 10.1016/j.mee.2016.03.030
Moldoveanu, S. C. Pyrolysis of Amines and Imines, In Pyrolysis of Organic Molecules, 2 nd ed.; Elsevier, 2019; pp 327-347, Chapter 8.
Patel, M.; Feng, W.; Savaram, K.; Khoshi, M. R.; Huang, R.; Sun, J.; Rabie, E.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H. Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications. Small 2015, 11, 3358-3368, 10.1002/smll.201403402
Wang, Y.; Liao, X.; Luo, Y.; Yang, Q.; Li, G. Influence of Surface-functionalized Graphene Oxide on the Cell Morphology of Poly(methyl methacrylate) Composite. J. Mater. Sci. Technol. 2015, 31, 463-466, 10.1016/j.jmst.2015.01.010
Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R. M.; Chhowalla, M.; Cho, K.; Chabal, Y. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. J. Phys. Chem. C 2011, 115, 19761-19781, 10.1021/jp2052618
Chen, Y.; Zhang, X.; Zhang, D.; Yu, P.; Ma, Y. High Performance Supercapacitors Based on Reduced Graphene Oxide in Aqueous and Ionic Liquid Electrolytes. Carbon 2011, 49, 573-580, 10.1016/j.carbon.2010.09.060
Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210-3228, 10.1016/j.carbon.2011.11.010
Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47-57, 10.1016/j.ssc.2007.03.052
Muchharla, B.; Narayanan, T. N.; Balakrishnan, K.; Ajayan, P. M.; Talapatra, S. Temperature Dependent Electrical Transport of Disordered Reduced Graphene Oxide. 2d Materials 2014, 1, 011008 10.1088/2053-1583/1/1/011008
Zhang, D.; Tong, J.; Xia, B. Humidity-Sensing Properties of Chemically Reduced Graphene Oxide/Polymer Nanocomposite Film Sensor Based on Layer-by-Layer Nano Self-Assembly. Sens. Actuators, B 2014, 197, 66-72, 10.1016/j.snb.2014.02.078