Radiology, nuclear medicine & imaging Chemistry Physics
Author, co-author :
Vuong, Quoc Lam ; Université de Mons > Faculté de Médecine et de Pharmacie > Physique biomédicale
Gillis, Pierre ; Université de Mons > Administration > Extension de l'Université ASBL ; Université de Mons > Faculté des Sciences > FS - Service du Doyen
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys Appl Phys 2003, 36:R167–R181. doi:10.1088/0022-3727/36/13/201.
Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomed 2012, 7:1425–1442. doi:10.2217/nnm.12.109.
Tran N, Webster TJ. Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 2010, 20:8760. doi:10.1039/c0jm00994f.
Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 1999, 201:413–419. doi:10.1016/S0304-8853(99)00088-8.
Knopp T, Buzug TM. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Berlin-Heidelberg, Germany: Springer; 2012.
Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004, 17:484–499. doi:10.1002/nbm.924.
Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A. Magnetic resonance relaxation properties of superparamagnetic particles. WIREs Nanomed Nanobiotechnol 2009, 1:299–310. Available at: http://onlinelibrary.wiley.com/doi/10.1002/wnan.36/full (Accessed May 22, 2014).
Delangre S, Vuong QL, Po C, Gallez B, Gossuin Y. Theoretical and experimental study of ON-resonance saturation, an MRI sequence for positive contrast with superparamagnetic nanoparticles. J Magn Reson 2015, 252:151–162. doi:10.1016/j.jmr.2015.01.007.
Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 2005, 53:999–1005. doi:10.1002/mrm.20477.
Stuber M, Gilson WD, Schär M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 2007, 58:1072–1077. doi:10.1002/mrm.21399.
Zurkiya O, Hu X. Off-resonance saturation as a means of generating contrast with superparamagnetic nanoparticles. Magn Reson Med 2006, 56:726–732. doi:10.1002/mrm.21024.
du Trémolet de Lacheisserie E, Gignoux D, Schlenker M. Magnetism. New York: Springer Science & Business Media; 2005.
Dormann JL. Le phénomène de superparamagnétisme. Rev Phys Appliquée 1981, 16:275–301. doi:10.1051/rphysap:01981001606027500.
Néel L. Theory of the magnetic after-effect in ferromagnetics in the form of small particles with applications to baked clays. Ann Geophys (CNRS) 1949, 5:99–136.
Kötitz R, Fannin PC, Trahms L. Time domain study of Brownian and Néel relaxation in ferrofluids. J Magn Magn Mater 1995, 149:42–46. doi:10.1016/0304-8853(95)00333-9.
Respaud M. Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: deviation from Langevin law. J Appl Phys 1999, 86:556. doi:10.1063/1.370765.
Hanson M, Johansson C, Morup S. The influence of magnetic anisotropy on the magnetization of small ferromagnetic particles. J Phys Condens Matter 1993, 5:725–732. doi:10.1088/0953-8984/5/6/009.
Vuong QL, Gossuin Y, Gillis P, Delangre S. New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents. J Chem Phys 2012, 137:114505. doi:10.1063/1.4751442.
Rorschach HE. A classical theory of NMR relaxation processes. J Magn Reson 1986, 1969:519–530. Available at: http://www.sciencedirect.com/science/article/pii/0022236486903884 (Accessed August 7, 2014).
Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine 2007, 2:609. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2676801/ (Accessed June 12, 2014).
Carroll MRJ, Huffstetler PP, Miles WC, Goff JD, Davis RM, Riffle JS, House MJ, Woodward RC, St Pierre TG. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles. Nanotechnology 2011, 22:325702. doi:10.1088/0957-4484/22/32/325702.
LaConte LE, Nitin N, Zurkiya O, Caruntu D, O'Connor CJ, Hu X, Bao G. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J Magn Reson Imaging 2007, 26:1634–1641. doi:10.1002/jmri.21194.
Renshaw PF, Owen CS, McLaughlin AC, Frey TG, Leigh JS. Ferromagnetic contrast agents: a new approach. Magn Reson Med 1986, 3:217–225. Available at: http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910030205/abstract (Accessed July 31, 2014).
Solomon I, Bloembergen N. Nuclear magnetic interactions in the HF molecule. J Chem Phys 1956, 25:261. doi:10.1063/1.1742867.
Bloembergen N, Purcell E, Pound R. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 1948, 73:679–712. doi:10.1103/PhysRev.73.679.
Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 1987, 87:901–927. Available at: http://pubs.acs.org/doi/abs/10.1021/cr00081a003 (Accessed August 4, 2014).
Kowalewski J, Kruk D, Parigi G. NMR relaxation in solution of paramagnetic complexes: recent theoretical progress for S ≥ 1. Adv Inorg Chem 2005, 57:41–104.
Gillis P, Koenig SH. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med 1987, 5:323–345. doi:10.1002/mrm.1910050404.
Koenig SH, Brown RD. Field-cycling relaxometry of protein solutions and tissue: implications for MRI. Prog Nucl Magn Reson Spectrosc 1990, 22:487–567. doi:10.1016/0079-6565(90)80008-6.
Roch A, Muller RN. Longitudinal relaxation of water protons in colloidal suspensions of superparamagnetic crystal. In: Proceedings of the 11th Annual Meeting of the Society of Magnetic Resonance in Medicine, Works in Progress 1447, 1992.
Koenig SH, Kellar KE. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 1995, 34:227–233. Available at: http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910340214/full (Accessed August 5, 2014).
Roch A, Muller RN, Gillis P. Water relaxation by SPM particles: neglecting the magnetic anisotropy? A caveat. J Magn Reson Imaging 2001, 14:94–96. Available at: http://onlinelibrary.wiley.com/doi/10.1002/jmri.1157/full (Accessed May 5, 2014).
Roch A, Muller RN, Gillis P. Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 1999, 110:5403–5411. Available at: http://scitation.aip.org/content/aip/journal/jcp/110/11/10.1063/1.478435 (Accessed August 5, 2014).
Lévy M, Gazeau F, Wilhelm C, Neveu S, Devaud M, Levitz P. Revisiting MRI contrast properties of nanoparticles: beyond the superparamagnetic regime. J Phys Chem C 2013, 117:15369–15374. doi:10.1021/jp404199f.
Brooks RA, Moiny F, Gillis P. OnT2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med 2001, 45:1014–1020. doi:10.1002/mrm.1135.
Gillis P, Moiny F, Brooks RA. OnT2-shortening by strongly magnetized spheres: a partial refocusing model. Magn Reson Med 2002, 47:257–263. doi:10.1002/mrm.10059.
Yung K-T. Empirical models of transverse relaxation for spherical magnetic perturbers. Magn Reson Imaging 2003, 21:451–463. Available at: http://www.sciencedirect.com/science/article/pii/S0730725X02006409 (Accessed August 6, 2014).
Brown RJ. Distribution of fields from randomly placed dipoles: free-precession signal decay as result of magnetic grains. Phys Rev 1961, 121:1379. Available at: http://journals.aps.org/pr/abstract/10.1103/PhysRev.121.1379 (Accessed August 5, 2014).
Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994, 32:749–763. Available at: http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910320610/full (Accessed August 6, 2014).
Kurz FT, Kampf T, Heiland S, Bendszus M, Schlemmer H-P, Ziener CH. Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers: spin-echo relaxation time for spherical magnetic perturbers. Magn Reson Med 2014, 71:1888–1895. doi:10.1002/mrm.25196.
Hardy PA, Henkelman RM. Transverse relaxation rate enhancement caused by magnetic particulates. Magn Reson Imaging 1989, 7:265–275. Available at: http://www.sciencedirect.com/science/article/pii/0730725X89905493 (Accessed June 16, 2014).
Bulte JW, Vymazal J, Brooks RA, Pierpaoli C, Frank JA. Frequency dependence of MR relaxation times II. Iron oxides. J Magn Reson Imaging 1993, 3:641–648. doi:10.1002/jmri.1880030414.
Bulte JWM, Brooks RA, Moskowitz BM, Bryant LH, Frank JA. Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION-46L. J Magn Magn Mater 1999, 194:217–223. doi:10.1016/S0304-8853(98)00555-1.
Vuong QL, Berret J-F, Fresnais J, Gossuin Y, Sandre O. A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv Healthc Mater 2012, 1:502–512. doi:10.1002/adhm.201200078.
Abragam A. The Principles of Nuclear Magnetism. London, UK: Oxford University Press; 2006.
Bordonali L, Kalaivani T, Sabareesh KP, Innocenti C, Fantechi E, Sangregorio C, Casula MF, Lartigue L, Larionova J, Guari Y. NMR-D study of the local spin dynamics and magnetic anisotropy in different nearly monodispersed ferrite nanoparticles. J Phys Condens Matter 2013, 25:66008. doi:10.1088/0953-8984/25/6/066008.
Freed JH. Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J Chem Phys 1978, 68:4034. doi:10.1063/1.436302.
Ayant Y, Belorizky E, Aluzon J, Gallice J. Calcul des densités spectrales résultant d'un mouvement aléatoire de translation en relaxation par interaction dipolaire magnétique dans les liquides. J Phys 1975, 36:991–1004. doi:10.1051/jphys:019750036010099100.
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008, 108:2064–2110. doi:10.1021/cr068445e.
Batlle X, Labarta A. Finite-size effects in fine particles: magnetic and transport properties. J Phys Appl Phys 2002, 35:R15–R42. doi:10.1088/0022-3727/35/6/201.
CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. Cleveland, Ohio: CRC Press; 1976.
Bulte JWM, Brooks RA, Moskowitz BM, Bryant LH Jr, Frank JA. T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): theory and experiment. Acad Radiol 1998, 5 (suppl 1):S137–S140. doi:10.1016/S1076-6332(98)80084-6.
Arosio P, Thévenot J, Orlando T, Orsini F, Corti M, Mariani M, Bordonali L, Innocenti C, Sangregorio C, Oliveira H, et al. Hybrid iron oxide-copolymer micelles and vesicles as contrast agents for MRI: impact of the nanostructure on the relaxometric properties. J Mater Chem B 2013, 1:5317. doi:10.1039/c3tb00429e.
Gossuin Y, Orlando T, Basini M, Henrard D, Lascialfari A, Mattea C, Stapf S, Vuong QL. NMR relaxation induced by iron oxide particles: testing theoretical models. Nanotechnology 2016, 27:155706. doi:10.1088/0957-4484/27/15/155706.
Basini M, Orlando T, Arosio P, Casula MF3, Espa D, Murgia S, Sangregorio C, Innocenti C, Lascialfari A. Local spin dynamics of iron oxide magnetic nanoparticles dispersed in different solvents with variable size and shape: a 1 H NMR study. J Chem Phys 2017, 146:34703. doi:10.1063/1.4973979.
Rollet AL, Neveu S, Porion P, Dupuis V, Cherrak N, Levitz P. New approach for understanding experimental NMR relaxivity properties of magnetic nanoparticles: focus on cobalt ferrite. Phys Chem Chem Phys 2016, 18:32981–32991. doi:10.1039/C6CP06012A.
Orlando T, Albino M, Orsini F, Innocenti C, Basini M, Arosio P, Sangregorio C, Corti M, Lascialfari A. On the magnetic anisotropy and nuclear relaxivity effects of Co and Ni doping in iron oxide nanoparticles. J Appl Phys 2016, 119:134301. doi:10.1063/1.4945026.
Bulte JW, Brooks RA, Moskowitz BM, Bryant LH, Frank JA. Relaxometry and magnetometry of the MR contrast agent MION-46L. Magn Reson Med 1999, 42:379–384.
Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001, 11:2319–2331. doi:10.1007/s003300100908.
Jung CW, Jacobs P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 1995, 13:661–674. doi:10.1016/0730-725X(95)00024-B.
Koenig SH, Kellar KE, Fujii DK, Gunther WH, Briley-Saebø K, Spiller M. Three types of physical measurements needed to characterize iron oxide nanoparticles for MRI and MRA. Acad Radiol 2002, 9:S5–S10. doi:10.1016/S1076-6332(03)80386-0.
Kellar KE, Fujii DK, Gunther WH, Briley-Saebø K, Bjørnerud A, Spiller M, Koenig SH. NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 2000, 11:488–494. doi:10.1002/(SICI)1522-2586(200005)11:5<488::AID-JMRI4>3.0.CO;2-V.
Xie X, Zhang C. Controllable assembly of hydrophobic superparamagnetic iron oxide nanoparticle with mPEG-PLA copolymer and its effect on MR transverse relaxation rate. J Nanomater 2011, 2011:1–7. doi:10.1155/2011/152524.
Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K, Huh YM, Haam S. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 2007, 46:8836–8839. doi:10.1002/anie.200703554.
Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G. Theory of the BOLD effect in the capillary region: an analytical approach for the determination of T2 in the capillary network of myocardium. Magn Reson Med 1999, 41:51–62. Available at: http://bio.physik.uni-wuerzburg.de/people/kh/Bauer%20et%20al.%20MRM%201999(2).pdf (Accessed October 20, 2014).
Grivet J-P. NMR relaxation parameters of a Lennard-Jones fluid from molecular-dynamics simulations. J Chem Phys 2005, 123:34503. doi:10.1063/1.1955447.
Majumdar S, Gore J. Studies of diffusion in random fields produced by variations in susceptibility. J Magn Reson 1988, 1969:41–55. doi:10.1016/0022-2364(88)90155-2.
Bao N, Gupta A. Self-assembly of superparamagnetic nanoparticles. J Mater Res 2011, 26:111–121. doi:10.1557/jmr.2010.25.
Douziech-Eyrolles L, Marchais H, Hervé K, Munnier E, Soucé M, Linassier C, Dubois P, Chourpa I. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2007, 2:541. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2676819/ (Accessed June 16, 2014).
Lévy M, Wilhelm C, Devaud M, Levitz P, Gazeau F. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity: magnetic and NMR behaviors of cell-processed USPIO. Contrast Media Mol Imaging 2012, 7:373–383. doi:10.1002/cmmi.504.
Kostopoulou A, Velu SK, Thangavel K, Orsini F, Brintakis K, Psycharakis S, Ranella A, Bordonali L, Lappas A, Lascialfari A. Colloidal assemblies of oriented maghemite nanocrystals and their NMR relaxometric properties. Dalton Trans 2014, 43:8395. doi:10.1039/c4dt00024b.
Roch A, Gossuin Y, Muller RN, Gillis P. Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J Magn Magn Mater 2005, 293:532–539. doi:10.1016/j.jmmm.2005.01.070.
Vuong QL, Gillis P, Gossuin Y. Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents. J Magn Reson 2011, 212:139–148. doi:10.1016/j.jmr.2011.06.024.
Matsumoto Y, Jasanoff A. T2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn Reson Imaging 2008, 26:994–998. doi:10.1016/j.mri.2008.01.039.
Brown KA, Vassiliou CC, Issadore D, Berezovsky J, Cima MJ, Westervelt RM. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation. J Magn Magn Mater 2010, 322:3122–3126. doi:10.1016/j.jmmm.2010.05.044.
Forge D, Gossuin Y, Roch A, Laurent S, Elst LV, Muller RN. Development of magnetic chromatography to sort polydisperse nanoparticles in ferrofluids. Contrast Media Mol Imaging 2010, 5:126–132. doi:10.1002/cmmi.374.
Félix-González N, Urbano-Bojorge AL, Mina-Rosales A, del Pozo-Guerrero F, Serrano-Olmedo JJ. Assessment of a heuristic model for characterization of magnetic nanoparticles as contrast agent in MRI. Concepts Magn Reson Part A 2015, 44A:279–286. doi:10.1002/cmr.a.21361.
Kruk D, Korpała A, Taheri SM, Kozłowski A, Förster S, Rössler EA. 1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion. J Chem Phys 2014, 140:174504. doi:10.1063/1.4871461.
Chen D-X, Taboada E, Roig A. Experimental study on T2 relaxation time of protons in water suspensions of iron-oxide nanoparticles: cases of composite nanospheres. J Magn Magn Mater 2011, 323:2487–2492. doi:10.1016/j.jmmm.2011.05.022.
Balasubramaniam S, Kayandan S, Lin YN, Kelly DF, House MJ, Woodward RC, St Pierre TG, Riffle JS, Davis RM. Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T 2-weighted MRI contrast. Langmuir 2014, 30:1580–1587. doi:10.1021/la403591z.
Hak S, Goa PE, Stenmark S, Bjerkholt FF, Haraldseth O. Transverse relaxivity of iron oxide nanocrystals clustered in nanoemulsions: experiment and theory: T2 relaxivity of iron oxide clusters. Magn Reson Med 2015, 74:858–867. doi:10.1002/mrm.25465.
Van Roosbroeck R, Van Roy W, Stakenborg T, Trekker J, D'Hollander A, Dresselaers T, Himmelreich U, Lammertyn J, Lagae L. Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI. ACS Nano 2014, 8:2269–2278. doi:10.1021/nn406158h.
Pöselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Maßlo C, Weller H. Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T 2-weighted spin–echo imaging. ACS Nano 2012, 6:1619–1624. doi:10.1021/nn204591r.
Carroll MRJ, Woodward RC, House MJ, Teoh WY, Amal R, Hanley TL, St Pierre TG. Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents. Nanotechnology 2010, 21:35103. doi:10.1088/0957-4484/21/3/035103.
Sun N, Chen D-X, Gu H-C, Wang X-L. Experimental study on relaxation time of protons in water suspensions of iron-oxide nanoparticles: waiting time dependence. J Magn Magn Mater 2009, 321:2971–2975. doi:10.1016/j.jmmm.2009.04.073.
Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F. Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 2003, 49:646–654. doi:10.1002/mrm.10418.
Simon GH, Bauer J, Saborovski O, Fu Y, Corot C, Wendland MF, Daldrup-Link HE. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur Radiol 2006, 16:738–745. doi:10.1007/s00330-005-0031-2.
Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 2002, 48:52–61. doi:10.1002/mrm.10192.
Ros PR, Freeny PC, Harms SE, Seltzer SE, Davis PL, Chan TW, Stillman AE, Muroff LR, Runge VM, Nissenbaum MA, et al. Hepatic MR imaging with ferumoxides: a multicenter clinical trial of the safety and efficacy in the detection of focal hepatic lesions. Radiology 1995, 196:481–488. doi:10.1148/radiology.196.2.7617864.
Arnold P, Ward J, Wilson D, Ashley Guthrie J, Robinson PJ. Superparamagnetic iron oxide (SPIO) enhancement in the cirrhotic liver: a comparison of two doses of ferumoxides in patients with advanced disease. Magn Reson Imaging 2003, 21:695–700. doi:10.1016/S0730-725X(03)00101-2.
Kehagias DT, Gouliamos AD, Smyrniotis V, Vlahos LJ. Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J Magn Reson Imaging 2001, 14:595–601. doi:10.1002/jmri.1224.
Kreft BP, Tanimoto A, Leffler S, Finn JP, Oksendal AN, Stark DD. Contrast-enhanced MR imaging of diffuse and focal splenic disease with use of magnetic starch microspheres. J Magn Reson Imaging 1994, 4:373–379. doi:10.1002/jmri.1880040324.
Anzai Y, Blackwell KE, Hirschowitz SL, Rogers JW, Sato Y, Yuh WT, Runge VM, Morris MR, McLachlan SJ, Lufkin RB. Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology 1994, 192:709–715. doi:10.1148/radiology.192.3.7520182.
Bjørnerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system: superparamagnetic contrast agents. NMR Biomed 2004, 17:465–477. doi:10.1002/nbm.904.
Bjerner T, Johansson L, Wikström G, Ericsson A, Briley-Soebo K, Bjørnerud A, Ahlström H. In and ex vivo MR evaluation of acute myocardial ischemia in pigs by determining R1 in steady state after the administration of the intravascular contrast agent NC100150 injection. Invest Radiol 2004, 39:479–486. doi:10.1097/01.rli.0000128658.63611.b3.
Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, et al. Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 2013, 7:500–512. doi:10.1021/nn3046055.
Chambon C, Clement O, Le Blanche A, Schouman-Claeys E, Frija G. Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging 1993, 11:509–519. doi:10.1016/0730-725X(93)90470-X.
Kellar KE, Fujii DK, Gunther WH, Briley-Saebø K, Bjornerod A, Spiller M, Koenig SH. Important considerations in the design of iron oxide nanoparticles as contrast agents for Tl-weighted MRI and MRA. Acad Radiol 2002, 9:S34–S37. doi:10.1016/S1076-6332(03)80391-4.
Ittrich H, Peldschus K, Raabe N, Kaul M, Adam G. Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Bildgeb Verfahr 2013, 185:1149–1166. doi:10.1055/s-0033-1335438.
Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging: SPIONs for molecular and cellular imaging. Contrast Media Mol Imaging 2015, 10:329–355. doi:10.1002/cmmi.1638.
Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001, 19:1141–1147. doi:10.1038/nbt1201-1141.
Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, Tang CY, Aguinaldo G, Pappolla M, Duff K, Wisniewski T, et al. Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003, 50:293–302. doi:10.1002/mrm.10529.
Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001, 7:1241–1244. doi:10.1038/nm1101-1241.
Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 2006, 5:85–92.
Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta BBA Bioenerg 1996, 1275:161–203. doi:10.1016/0005-2728(96)00022-9.
Néel L. Superparamagnétisme des grains très fins antiferromagnétiques. C R Acad Sci 1961, 252:4075–4080.
Kilcoyne SH, Cywinski R. Ferritin: a model superparamagnet. J Magn Magn Mater 1995, 140–144:1466–1467. doi:10.1016/0304-8853(94)00626-1.
Gossuin Y, Muller RN, Gillis P. Relaxation induced by ferritin: a better understanding for an improved MRI iron quantification. NMR Biomed 2004, 17:427–432. doi:10.1002/nbm.903.
Doyle FH, Pennock JM, Banks LM, McDonnell MJ, Bydder GM, Steiner RE, Young IR, Clarke GJ, Pasmore T, Gilderdale DJ. Nuclear magnetic resonance imaging of the liver: initial experience. Am J Roentgenol 1982, 138:193–200. doi:10.2214/ajr.138.2.193.
Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. MRI of brain iron. Am J Roentgenol 1986, 147:103–110. doi:10.2214/ajr.147.1.103.
Brittenham GM, Badman DG, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Workshop. Noninvasive measurement of iron: report of an NIDDK workshop. Blood 2003, 101:15–19. doi:10.1182/blood-2002-06-1723.
Chen JC, Hardy PA, Clauberg M, Joshi JG, Parravano J, Deck JH, Henkelman RM, Becker LE, Kucharczyk W. T2 values in the human brain: comparison with quantitative assays of iron and ferritin. Radiology 1989, 173:521–526. doi:10.1148/radiology.173.2.2798884.
Bulte JWM, Miller GF, Vymazal J, Brooks RA, Frank JA. Hepatic hemosiderosis in non-human primates: quantification of liver iron using different field strengths. Magn Reson Med 1997, 37:530–536. doi:10.1002/mrm.1910370409.
Vymazal J, Brooks RA, Baumgarner C, Tran V, Katz D, Bulte JW, Bauminger R, Di Chiro G. The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 1996, 35:56–61. doi:10.1002/mrm.1910350108.
Gossuin Y, Roch A, Muller RN, Gillis P, Lo Bue F. Anomalous nuclear magnetic relaxation of aqueous solutions of ferritin: an unprecedented first-order mechanism. Magn Reson Med 2002, 48:959–964. doi:10.1002/mrm.10316.
Vymazal J, Brooks RA, Zak O, McRill C, Shen C, Di Chiro G. T1 and T2 of ferritin at different field strengths: effect on MRI. Magn Reson Med 1992, 27:368–374. doi:10.1002/mrm.1910270218.
Hocq A, Luhmer M, Saussez S, Louryan S, Gillis P, Gossuin Y. Effect of magnetic field and iron content on NMR proton relaxation of liver, spleen and brain tissues: relaxation rates of liver, spleen and brain tissues. Contrast Media Mol Imaging 2015, 10:144–152. doi:10.1002/cmmi.1610.
Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435:1214–1217. doi:10.1038/nature03808.
Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009, 54:L1–L10. doi:10.1088/0031-9155/54/5/L01.
Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, Magnani M. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 2010, 55:6461–6473. doi:10.1088/0031-9155/55/21/008.
Bulte JWM, Gleich B, Weizenecker J, Bernard S, Walczak P, Borgert J, Aerts H, Boeve H. Developing cellular MPI: initial experience. In: Proceedings of the ISMRM 16th Annual Meeting 1675, 2008.
Bulte JWM, Walczak P, Janowski M, Krishnan KM, Arami H, Halkola A, Gleich B, Rahmer J. Quantitative ‘hot-spot’ imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging. Tomography 2015, 1:91–97. doi:10.18383/j.tom.2015.00172.