Long, Y.; Wang, S.; Wang, J.; Zhang, T. Mathematical model of heat transfer for a finned tube cross-flow heat exchanger with ice slurry as cooling medium. Procedia Eng. 2016, 146, 513–522. [CrossRef]
Nguyen, P.; Tenno, R. Modelling and control of a flash evaporator through ODE system representation in PDEs form. In Proceedings of the 2016 12th IEEE International Conference on Control and Automation (ICCA), Kathmandu, Nepal, 1–3 June 2016; pp. 317–322.
Maidi, A.; Corriou, J.P. PDE control of heat exchangers by input–output linearization approach. In Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 367–386.
Xu, X.; Dubljevic, S. The state feedback servo-regulator for countercurrent heat-exchanger system modelled by system of hyperbolic PDEs. Eur. J. Control 2016, 29, 51–61. [CrossRef]
Lao, L.; Ellis, M.; Armaou, A.; Christofides, P.D. Economic model predictive control of parabolic PDE systems: Handling state constraints by adaptive proper orthogonal decomposition. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 2758–2763.
Delattre, C.; Dochain, D.; Winkin, J. Observability analysis of nonlinear tubular (bio) reactor models: A case study. J. Process Control 2004, 14, 661–669. [CrossRef]
Boubaker, O.; Babary, J.P.; Ksouri, M. Variable structure estimation and control of nonlinear distributed parameter bioreactors. In Proceedings of the SMC’98 Conference Proceedings, 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), San Diego, CA, USA, 14 October 1998; Volume 4, pp. 3770–3774.
Xing, X.; Liu, J. PDE modelling and vibration control of overhead crane bridge with unknown control directions and parametric uncertainties. IET Control Theory Appl. 2020, 14, 116–126. [CrossRef]
Kircher, K.J.; Zhang, K.M. Testing building controls with the BLDG toolbox. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 1472–1477.
Le Floch, C.; Kara, E.C.; Moura, S. PDE modeling and control of electric vehicle fleets for ancillary services: A discrete charging case. IEEE Trans. Smart Grid 2016, 9, 573–581. [CrossRef]
Ewing, R.; Pilant, M.; Wade, J.; Watson, A. Parameter estimation in petroleum and groundwater modeling. IEEE Comput. Sci. Eng. 1994, 1, 19–31. [CrossRef]
Omosebi, A.; Igbokoyi, A. Boundary effect on pressure behavior of Power-Law non-Newtonian fluids in homogeneous reservoirs. J. Pet. Sci. Eng. 2016, 146, 838–855. [CrossRef]
Ferragut, L.; Asensio, M.I.; Cascón, J.M.; Prieto, D.; Ramírez, J. An efficient algorithm for solving a multi-layer convection– diffusion problem applied to air pollution problems. Adv. Eng. Softw. 2013, 65, 191–199. [CrossRef]
Lotfi, E.M.; Maziane, M.; Hattaf, K.; Yousfi, N. Partial differential equations of an epidemic model with spatial diffusion. Int. J. Partial. Differ. Equ. 2014, 186437. [CrossRef]
Huang, W.; Han, M.; Liu, K. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Math. Biosci. Eng. 2010, 7, 51–66.
Séro-Guillaume, O.; Ramezani, S.; Margerit, J.; Calogine, D. On large scale forest fires propagation models. Int. J. Therm. Sci. 2008, 47, 680–694. [CrossRef]
Vande Wouwer, A.; Point, N.; Porteman, S.; Remy, M. An approach to the selection of optimal sensor locations in distributed parameter systems. J. Process Control 2000, 10, 291–300. [CrossRef]
Fujii, N. Feedback stabilization of distributed parameter systems by a functional observer. SIAM J. Control Optim. 1980, 18, 108–120. [CrossRef]
Vande Wouwer, V.; Zeitz, M. State estimation in distributed parameter systems. In Control Systems, Robotics and Automation— Volume XIV: Nonlinear, Distributed, and Time Delay Systems-III; EOLSS Publishers Co.: Oxford, UK, 2009; p. 92.
Hidayat, Z.; Babuska, R.; De Schutter, B.; Núñez, A. Observers for linear distributed-parameter systems: A survey. In Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Montreal, QC, Canada, 17–18 September 2011; pp. 166–171.
Banks, H.T.; Kunisch, K. Estimation Techniques for Distributed Parameter Systems; Birkhäuser: Boston, MA, USA, 1989
Ray, W. Advanced Process Control, Series in Chemical Engineering; McGraw-Hill: New York, NY, USA, 1981.
Li, H.X.; Qi, C. Modeling of distributed parameter systems for applications—A synthesized review from time–space separation. J. Process Control 2010, 20, 891–901. [CrossRef]
Finlayson, B.A. The Method of Weighted Residuals and Variational Principles; SIAM: Philadelphia, PA, USA, 2013; Volume 73.
Stewart, W.; Sørensen, J. Collocation and Parameter Estimation in Chemical Reaction Engineering; John Wiley and Sons: New York, NY, USA, 1980.
Lefèvre, L.; Dochain, D.; De Azevedo, S.F.; Magnus, A. Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods. Comput. Chem. Eng. 2000, 24, 2571–2588. [CrossRef]
Temam, R. Infinite Dimensional Dynamical Systems in Mechanics and Physics; Springer: New York, NY, USA, 1988.
Christofides, P.D.; Daoutidis, P. Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. J. Math. Anal. Appl. 1997, 216, 398–420. [CrossRef]
Foias, C.; Jolly, M.; Kevrekidis, I.; Sell, G.R.; Titi, E. On the computation of inertial manifolds. Phys. Lett. A 1988, 131, 433–436. [CrossRef]
Foias, C.; Temam, R. The algebraic approximation of attractors: The finite dimensional case. Phys. D Nonlinear Phenom. 1988, 32, 163–182. [CrossRef]
Christofides, P.D. Robust control of parabolic PDE systems. Chem. Eng. Sci. 1998, 53, 2949–2965. [CrossRef]
Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000.
Boyd, J.P. Chebyshev and Fourier Spectral Methods; Dover Publications: Mineola, NY, USA, 2001.
Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Thomas, A., Jr. Spectral Methods in Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1988.
Atwell, J.A. Proper Orthogonal Decomposition for Reduced Order Control of Partial Differential Equations; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2000.
Pinnau, R. Model reduction via proper orthogonal decomposition. In Model Order Reduction: Theory, Research Aspects and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 95–109.
Luo, Z.; Chen, G. Proper Orthogonal Decomposition Methods for Partial Differential Equations; Academic Press: Cambridge, MA, USA, 2018.
Vande Wouwer, A.V.; Saucez, P.; Vilas, C. Simulation of ODE/PDE Models with MATLAB, Octave and Scilab; Springer: Cham, Switzerland, 2014.
Damak, T.; Babary, J.; Nihtilä, M. Observer design and sensor location in distributed parameter bioreactors. In Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes; Elsevier: Amsterdam, The Netherlands,1992; pp. 87–92.
Alonso, A.A.; Kevrekidis, I.G.; Banga, J.R.; Frouzakis, C.E. Optimal sensor location and reduced order observer design for distributed process systems. Comput. Chem. Eng. 2004, 28, 27–35. [CrossRef]
Torres, L.; Besancon, G.; Georges, D. A collocation model for water-hammer dynamics with application to leak detection. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 3890–3894.
Gunder, T.; Sehlinger, A.; Skoda, R.; Mönnigmann, M. Sensor placement for reduced-order model-based observers in hydraulic fluid machinery. IFAC-PapersOnLine 2018, 51, 414–419. [CrossRef]
Ghattassi, M.; Boutayeb, M.; Roche, J.R. Reduced order observer of finite dimensional radiative-conductive heat transfer systems. SIAM J. Control Optim. 2018, 56, 2485–2512. [CrossRef]
Jacob, B.; Partington, J.R. Admissibility of control and observation operators for semigroups: A survey. In Current Trends in Operator Theory and Its Applications; Birkhäuser: Basel, Switzerland, 2004; pp. 199–221.
Tucsnak, M.; Weiss, G. Observation and Control for Operator Semigroups; Birkhäuser: Basel, Switzerland, 2009.
Chen, W.; Tu, F. Modal observability and detectability for infinite dimensional systems. Appl. Math. Lett. 1995, 8, 61–65. [CrossRef]
Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences Volume 44; Springer: New York, NY, USA, 1983.
Curtain, R.; Zwart, H. An Introduction to Infinite Dimensional Linear Systems Theory; Texts in Applied Mathematics Volume 21; Springer: New York, NY, USA, 1995.
Vries, D.; Keesman, K.; Zwart, H. A Luenberger observer for an infinite dimensional bilinear system: A UV disinfection example. IFAC Proc. Vol. 2007, 40, 667–672. [CrossRef]
Schaum, A.; Moreno, J.; Meurer, T. Dissipativity-based observer design for a class of coupled 1-D semi-linear parabolic PDE systems. IFAC-PapersOnLine 2016, 49, 98–103. [CrossRef]
Curtain, R.F. Infinite-dimensional filtering. SIAM J. Control 1975, 13, 89–104. [CrossRef]
Curtain, R.F. Estimation theory for abstract evolution equations excited by general white noise processes. SIAM J. Control Optim. 1976, 14, 1124–1150. [CrossRef]
Afshar, S.; Morris, K.; Khajepour, A. State-of-charge estimation using an EKF-based adaptive observer. IEEE Trans. Control Syst. Technol. 2018, 27, 1907–1923. [CrossRef]
Germ, F. Estimation for Linear and Semi-Linear Infinite-Dimensional Systems. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2019.
Aamo, O.M.; Salvesen, J.; Foss, B.A. Observer design using boundary injections for pipeline monitoring and leak detection. IFAC Proc. Vol. 2006, 39, 53–58. [CrossRef]
Castillo, F.; Witrant, E.; Prieur, C.; Dugard, L. Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control. Automatica 2013, 49, 3180–3188. [CrossRef]
Fridman, E.; Orlov, Y. An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems. Automatica 2009, 45, 2060–2066. [CrossRef]
Schaum, A.; Moreno, J.A.; Fridman, E.; Alvarez, J. Matrix inequality-based observer design for a class of distributed transport-reaction systems. Int. J. Robust Nonlinear Control 2014, 24, 2213–2230. [CrossRef]
Papachristodoulou, A.; Anderson, J.; Valmorbida, G.; Prajna, S.; Seiler, P.; Parrilo, P.A.; Peet, M.M.; Jagt D. Sum of Squares Optimization Toolbox for MATLAB User’s Guide. 2021. Available online: https://www.academia.edu/2781832/Sum_of_ Squares_Optimization_Toolbox_for_MATLAB_User_s_guide (accessed on 16 September 2021).
Lofberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), Taipei, Taiwan, 2–4 September 2004; pp. 284–289.
Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 1999, 11, 625–653. [CrossRef]
Gahlawat, A.; Peet, M.M. A convex sum-of-squares approach to analysis, state feedback and output feedback control of parabolic PDEs. IEEE Trans. Autom. Control 2016, 62, 1636–1651. [CrossRef]
Gahlawat, A.; Peet, M.M. Designing observer-based controllers for PDE systems: A heat-conducting rod with point observation and boundary control. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 6985–6990.
Smyshlyaev, A.; Krstic, M. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Trans. Autom. Control 2004, 49, 2185–2202. [CrossRef]
Smyshlyaev, A.; Krstic, M. Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 2005, 54, 613–625. [CrossRef]
Tsubakino, D.; Hara, S. Backstepping observer design for parabolic PDEs with measurement of weighted spatial averages. Automatica 2015, 53, 179–187. [CrossRef]
Jadachowski, L.; Meurer, T.; Kugi, A. State estimation for parabolic PDEs with varying parameters on 3-dimensional spatial domains. IFAC Proc. Vol. 2011, 44, 13338–13343. [CrossRef]
Jadachowski, L.; Meurer, T.; Kugi, A. Backstepping observers for linear PDEs on higher-dimensional spatial domains. Automatica 2015, 51, 85–97. [CrossRef]
Miranda, R.; Chairez, I.; Moreno, J. Observer design for a class of parabolic PDE via sliding modes and backstepping. In Proceedings of the 2010 11th International Workshop on Variable Structure Systems (VSS), Mexico City, Mexico, 26–28 June 2010; pp. 215–220.
Abdelhedi, A.; Saadi, W.; Boutat, D.; Sbita, L. Backstepping and sliding modes for observer design of distributed parameter system. Trans. Inst. Meas. Control 2018, 40, 542–549. [CrossRef]
Vazquez, R.; Schuster, E.; Krstic, M. Magnetohydrodynamic state estimation with boundary sensors. Automatica 2008, 44, 2517–2527. [CrossRef]
Vazquez, R.; Krstic, M.; Coron, J.M. Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 4937–4942.
Moura, S.; Bendtsen, J.; Ruiz, V. Observer design for boundary coupled PDEs: Application to thermostatically controlled loads in smart grids. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 6286–6291.
Baccoli, A.; Pisano, A. Anticollocated backstepping observer design for a class of coupled reaction-diffusion PDEs. J. Control Sci. Eng. 2015, 2015, 53. [CrossRef]
Liu, B.N.; Boutat, D.; Liu, D.Y. Backstepping observer-based output feedback control for a class of coupled parabolic PDEs with different diffusions. Syst. Control Lett. 2016, 97, 61–69. [CrossRef]
Drakunov, S.; Utkin, V. Sliding mode observers. Tutorial. In Proceedings of the 1995 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December 1995; Volume 4, pp. 3376–3378.
Orlov, Y.V. Sliding mode observer-based synthesis of state derivative-free model reference adaptive control of distributed parameter systems. J. Dyn. Syst. Meas. Control 2000, 122, 725–731. [CrossRef]
Kamran, N.N.; Drakunov, S.V. Sliding mode observer for fluid flow. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; pp. 1195–1200.
Orlov, Y.; Chakrabarty, S.; Zhao, D.; Spurgeon, S.K. Sliding mode observer design for a parabolic PDE in the presence of unknown inputs. Asian J. Control 2019, 21, 224–235. [CrossRef]
Dimassi, H.; Winkin, J.J.; Wouwer, A.V. A sliding mode observer for a linear reaction–convection–diffusion equation with disturbances. Syst. Control Lett. 2019, 124, 40–48. [CrossRef]
Kharkovskaia, T.; Efimov, D.; Fridman, E.; Polyakov, A.; Richard, J.P. Interval observer design and control of uncertain non-homogeneous heat equations. Automatica 2020, 111, 108595. [CrossRef]
Kharkovskaya, T.; Efimov, D.; Polyakov, A.; Richard, J.P. Design of interval observers and controls for PDEs using finite-element approximations. Automatica 2018, 93, 302–310. [CrossRef]
Kharkovskaia, T.; Efimov, D.; Fridman, E.; Polyakov, A.; Richard, J.P. On design of interval observers for parabolic PDEs. IFAC-PapersOnLine 2017, 50, 4045–4050. [CrossRef]
Lausterer, G.K.; Ray, W.H.; Martens, H.R. Real time distributed parameter state estimation applied to a two dimensional heated ingot. Automatica 1978, 14, 335–344. [CrossRef]
Benosman, M.; Borggaard, J. Data-driven robust state estimation for reduced-order models of 2D boussinesq equations with parametric uncertainties. Comput. Fluids 2021, 214, 104773. [CrossRef]
Cristiani, E.; Piccoli, B.; Tosin, A. Multiscale Modeling of Pedestrian Dynamics; MS&A Volume 12; Springer International Publishing: Cham, Switzerland, 2014.
Helbing, D. Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 2001, 73, 1067. [CrossRef]
Yu, H.; Bayen, A.M.; Krstic, M. Boundary observer for congested freeway traffic state estimation via Aw-Rascle-Zhang model. IFAC-PapersOnLine 2019, 52, 183–188. [CrossRef]
Meurer, T. Control of Higher–Dimensional PDEs: Flatness and Backstepping Designs; Springer: Berlin/Heidelberg, Germany, 2013.
Demetriou, M.A. Adaptation and optimization of synchronization gains in the regulation control of networked distributed parameter systems. IEEE Trans. Autom. Control 2014, 60, 2219–2224. [CrossRef]
Alamir, M.; Corriou, J.P. Nonlinear receding-horizon state estimation for dispersive adsorption columns with nonlinear isotherm. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002; Volume 2, pp. 2334–2339.
Vande Wouwer, A.; Renotte, C.; Queinnec, I.; Bogaerts, P. Transient analysis of a wastewater treatment biofilter–distributed parameter modelling and state estimation. Math. Comput. Model. Dyn. Syst. 2006, 12, 423–440. [CrossRef]