Article (Scientific journals)
Lower bounds and properties for the average number of colors in the non-equivalent colorings of a graph
Hertz, Alain; Mélot, Hadrien; Bonte, Sébastien et al.
2023In Discrete Applied Mathematics, 355, p. 69-81
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S0166218X22003213-main.pdf
Publisher postprint (426.94 kB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Average number of colors; Graph coloring; Graphical Bell numbers; Bell number; Graphical bell number; Discrete Mathematics and Combinatorics; Applied Mathematics
Abstract :
[en] A coloring of a graph is an assignment of colors to its vertices such that adjacent vertices have different colors. Two colorings are equivalent if they induce the same partition of the vertex set into color classes. We study the average number A(G) of colors in the non-equivalent colorings of a graph G. We conjecture several lower bounds on A(G), determine the value of this graph invariant for some classes of graphs and give general properties of A(G) which we will use for proving the validity of the conjectures for specific families of graphs, namely chordal graphs and graphs with maximum degree at most 2.
Disciplines :
Mathematics
Author, co-author :
Hertz, Alain ;  Department of Mathematics and Industrial Engineering, Polytechnique Montréal - Gerad, Montréal, Canada
Mélot, Hadrien  ;  Université de Mons - UMONS > Faculté des Sciences > Service Algorithmique
Bonte, Sébastien  ;  Université de Mons - UMONS > Faculté des Sciences > Service des Systèmes d'information
Devillez, Gauvain  ;  Université de Mons - UMONS > Faculté des Sciences > Service d'Informatique théorique
Language :
English
Title :
Lower bounds and properties for the average number of colors in the non-equivalent colorings of a graph
Publication date :
15 August 2023
Journal title :
Discrete Applied Mathematics
ISSN :
0166-218X
eISSN :
1872-6771
Publisher :
Elsevier B.V.
Volume :
355
Pages :
69-81
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S825 - Algorithmique
Research institute :
Infortech
Complexys
Funding text :
We thank the anonymous referees for their valuable comments which helped us to restructure the original version of this article.
Available on ORBi UMONS :
since 30 October 2022

Statistics


Number of views
16 (8 by UMONS)
Number of downloads
44 (2 by UMONS)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenCitations
 
1
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi UMONS