Deformation quantization; Homological perturbation theory; Non-commutative Poisson bracket; Poisson orbifold; Mathematical Physics; Physics and Astronomy (all); Geometry and Topology; General Physics and Astronomy
Abstract :
[en] Whenever a given Poisson manifold is equipped with discrete symmetries the corresponding algebra of invariant functions or the algebra of functions twisted by the symmetry group can have new deformations, which are not captured by Kontsevich Formality. We consider the simplest example of this situation: R2 with the reflection symmetry Z2. The usual quantization leads to the Weyl algebra. While Weyl algebra is rigid, the algebra of even or twisted by Z2 functions has one more deformation, which was identified by Wigner and is related to Feigin's glλ and to fuzzy sphere. With the help of homological perturbation theory we obtain explicit formula for the deformed product, the first order of which can be extracted from Shoikhet–Tsygan–Kontsevich formality.
Research center :
AGIF - Algèbre, Géométrie et Interactions fondamentales
Disciplines :
Physics
Author, co-author :
Sharapov, Alexey; Physics Faculty, Tomsk State University, Tomsk, Russian Federation
Skvortsov, Evgeny ; Université de Mons - UMONS ; Lebedev Institute of Physics, Moscow, Russian Federation
Sukhanov, Arseny; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
Language :
English
Title :
Deformation quantization of the simplest Poisson orbifold
S827 - Physique de l'Univers, Champs et Gravitation
Research institute :
R150 - Institut de Recherche sur les Systèmes Complexes
Funders :
ERC - European Research Council F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
We would like to thank Xiang Tang for a very useful correspondence. The work of E.S. was partially supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 101002551 ) and by the Fonds De La Recherche Scientifique - FNRS under Grant No. F.4544.21 . The results of Appendix A on HPT for Poisson orbifolds were obtained under exclusive support of the Ministry of Science and Higher Education of the Russian Federation (project No. FSWM-2020-0033 ). A. Sh. gratefully acknowledges the financial support of the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” . The work of A.S. was supported by the Russian Science Foundation grant 18-72-10123 in association with the Lebedev Physical Institute.
Alev, J., Farinati, M., Lambre, T., Solotar, A., Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini. J. Algebra 232:2 (2000), 564–577.
Basile, T., Boulanger, N., Buisseret, F., Structure constants of shs[λ]: the deformed-oscillator point of view. J. Phys. A, 51(2), 2018, 025201 arXiv:1604.04510 [hep-th].
Bieliavsky, P., Detournay, S., Spindel, P., The deformation quantizations of the hyperbolic plane. Commun. Math. Phys. 289 (2009), 529–559 arXiv:0806.4741 [math-ph].
Boulware, D.G., Deser, S., ‘ambiguity’ of harmonic-oscillator commutation relations.Il Nuovo Cimento (1955-1965)., 30(1), Oct 1963, 230–234, 10.1007/BF02750763.
Brown, R., The twisted Eilenberg–Zilber theorem. Simposio di Topologia, Messina, 1964, 1965, Edizioni Oderisi, Gubbio.
Cattaneo, A.S., Felder, G., A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212 (2000), 591–611 arXiv:math/9902090.
Druehl, K., Haag, R., Roberts, J.E., On parastatistics. Commun. Math. Phys. 18 (1970), 204–226.
Feigin, B., The Lie algebras gl(l) and cohomologies of Lie algebras of differential operators. Russ. Math. Surv., 34, 1988, 169.
Feigin, B.L., Tsygan, B.L., Cohomologies of Lie algebras of generalized Jacobi matrices. Funct. Anal. Appl. 17:2 (Apr 1983), 153–155, 10.1007/BF01083148.
Feigin, B.L., Tsygan, B.L., Riemann-Roch theorem and Lie algebra cohomology. Proceedings of the Winter School “Geometry and Physics”, 1989, Circolo Matematico di Palermo, 15–52 http://eudml.org/doc/221319.
Gerasimenko, P., Sharapov, A., Skvortsov, E., Slightly broken higher spin symmetry: general structure of correlators. J. High Energy Phys., 01, 2022, 097 arXiv:2108.05441 [hep-th].
Gordon, I., Symplectic reflection algebras. arXiv:0712.1568 [math.RT], Dec. 2007.
Gruber, B., O'Raifeartaigh, L., Uniqueness of the harmonic oscillator commutation relation. Proc. R. Ir. Acad., A Math. Phys. Sci. 63 (1963), 69–73.
Gugenheim, V.K., Lambe, L.A., Perturbation theory in differential homological algebra I. Ill. J. Math. 33:4 (1989), 566–582.
Gugenheim, V.K., Lambe, L.A., Stasheff, J.D., Perturbation theory in differential homological algebra II. Ill. J. Math. 35:3 (1991), 357–373.
Joung, E., Mkrtchyan, K., Notes on higher-spin algebras: minimal representations and structure constants. J. High Energy Phys., 05, 2014, 103 arXiv:1401.7977 [hep-th].
Kontsevich, M., Deformation quantization of Poisson manifolds. 1. Lett. Math. Phys. 66 (2003), 157–216 arXiv:q-alg/9709040 [q-alg].
Korybut, A.V., Covariant structure constants for a deformed oscillator algebra. Theor. Math. Phys. 193:1 (2017), 1409–1419 arXiv:1409.8634 [hep-th].
Korybut, A.V., Star product for deformed oscillator algebra Aq(2,ν). arXiv:2006.01622 [hep-th].
Luders, G., Vertauschungsrelationen zwischen verschiedenen Feldern. Z. Naturforsch. A, 13, 1958, 254.
Mukunda, N., Sudarshan, E.C.G., Sharma, J.K., Mehta, C.L., Representations and properties of para-Bose oscillator operators. I. Energy position and momentum eigenstates. J. Math. Phys. 21 (1980), 2386–2394.
Ohnuki, Y., Kamefuchi, S., Quantum Field Theory and Parastatistics. 1982, Springer, Germany.
Ohnuki, Y., Kamefuchi, S., Fermi-Bose similarity, supersymmetry and generalized numbers. 3. Klein transformations. Nuovo Cimento A, 83, 1984, 275.
Pinczon, G., On two theorems about symplectic reflection algebras. Lett. Math. Phys. 82 (2007), 237–253.
Pope, C.N., Romans, L.J., Shen, X., A new higher spin algebra and the lone star product. Phys. Lett. B 242 (1990), 401–406.
Schmutz, M., Simplified Bose description of para-Bose operators. J. Math. Phys. 21:7 (1980), 1665–1666.
Sharapov, A., Skvortsov, E., A∞ algebras from slightly broken higher spin symmetries. J. High Energy Phys., 09, 2019, 024 arXiv:1809.10027 [hep-th].
Sharapov, A., Skvortsov, E., Characteristic cohomology and observables in higher spin gravity. J. High Energy Phys., 12, 2020, 190 arXiv:2006.13986 [hep-th].
Sharapov, A., Skvortsov, E., Integrable models from non-commutative geometry with applications to 3D dualities. 21st Hellenic School and Workshops on Elementary Particle Physics and Gravity, vol. 4, 2022 arXiv:2204.08903 [hep-th].
Sharapov, A.A., Skvortsov, E.D., On deformations of A∞-algebras. J. Phys. A, 52(47), 2019, 475203 arXiv:1809.03386 [math-ph].
Sharapov, A.A., Skvortsov, E.D., A simple construction of associative deformations. Lett. Math. Phys., Jul. 2018 arXiv:1803.10957 [math-ph].
Shoikhet, B., A proof of the Tsygan formality conjecture for chains. Adv. Math. 179:1 (2003), 7–37.
Shoikhet, B., Felder, G., Feigin, B., Hochschild cohomology of the Weyl algebra and traces in deformation quantization. Duke Math. J. 127:3 (2005), 487–517.
Tsygan, B., Formality conjecture for chains. arXiv:math/9904132.
Vasiliev, M.A., Closed equations for interacting gauge fields of all spins. JETP Lett. 51 (1990), 503–507.
Vasiliev, M.A., Higher spin algebras and quantization on the sphere and hyperboloid. Int. J. Mod. Phys. A 6 (1991), 1115–1135.
Wigner, E.P., Do the equations of motion determine the quantum mechanical commutation relations?. Phys. Rev. 77 (Mar. 1950), 711–712.
Yang, L.M., A note on the quantum rule of the harmonic oscillator. Phys. Rev., 84(4), 1951, 788.