[en] This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter.
Disciplines :
Physics
Author, co-author :
Abdul Khalek, R.; Vrije Universiteit Amsterdam, Amsterdam, Netherlands ; Nikhef Theory Group, Amsterdam, Netherlands
Accardi, A.; Hampton University, Hampton, United States ; Thomas Jefferson National Accelerator Facility, Newport News, United States
Adam, J.; Brookhaven National Laboratory, Upton, United States
Adamiak, D.; Ohio State University, Columbus, United States
Akers, W.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Albaladejo, M.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Al-bataineh, A.; Imam Abdulrahman Bin Faisal Univ., Dammam, Saudi Arabia
Alexeev, M.G.; Università di Torino, Torino, Italy ; INFN - Sezione di Torino, Torino, Italy
Ameli, F.; INFN - Sezione di Roma, Roma, Italy
Antonioli, P.; INFN - Sezione di Bologna, Bologna, Italy
Armesto, N.; Universidade de Santiago de Compostela, Santiago de Compostela, Spain
Armstrong, W.R.; Argonne National Laboratory, Lemont, United States
Arratia, M.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; University of California at Riverside, Riverside, United States
Arrington, J.; Lawrence Berkeley National Laboratory, Berkeley, United States
Asaturyan, A.; A. Alikhanian National Science Laboratory, Armenia
Asai, M.; SLAC National Accelerator Laboratory, Menlo Park, United States
Aschenauer, E.C.; Brookhaven National Laboratory, Upton, United States
Aune, S.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Avagyan, H.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Ayerbe Gayoso, C.; Mississippi State University, Starkville, United States
Azmoun, B.; Brookhaven National Laboratory, Upton, United States
Bacchetta, A.; Università di Pavia, Pavia, Italy ; INFN - Sezione di Pavia, Pavia, Italy
Baker, M.D.; Brookhaven National Laboratory, Upton, United States
Barbosa, F.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Barion, L.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; INFN - Sezione di Ferrara, Ferrara, Italy
Barish, K.N.; University of California at Riverside, Riverside, United States
Barry, P.C.; North Carolina State University, Raleigh, United States
Battaglieri, M.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; INFN - Sezione di Genova, Genova, Italy
Bazilevsky, A.; Brookhaven National Laboratory, Upton, United States
Behera, N.K.; Central University of Tamil Nadu, Tamil Nadu, India
Benmokhtar, F.; Duquesne University, Pittsburgh, United States
Berdnikov, V.V.; The Catholic University of America, Washington, United States
Bernauer, J.C.; Stony Brook University, Stony Brook, United States ; RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, United States ; CFNS, Stony Brook, United States
Bertone, V.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Bhattacharya, S.; Temple University, Philadelphia, United States
Bissolotti, C.; Università di Pavia, Pavia, Italy ; INFN - Sezione di Pavia, Pavia, Italy
Boer, D.; University of Groningen, Groningen, Netherlands
Boglione, M.; Università di Torino, Torino, Italy ; INFN - Sezione di Torino, Torino, Italy
Bondì, M.; INFN - Sezione di Genova, Genova, Italy
Boora, P.; MNIT Jaipur, Jaipur, India
Borsa, I.; Universidad de Buenos Aires, CABA, Argentina
Bossù, F.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Bozzi, G.; Università di Pavia, Pavia, Italy ; INFN - Sezione di Pavia, Pavia, Italy
Brandenburg, J.D.; Brookhaven National Laboratory, Upton, United States ; CFNS, Stony Brook, United States
Brei, N.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Bressan, A.; Università di Trieste, Trieste, Italy ; INFN - Sezione di Trieste, Trieste, Italy
Brooks, W.K.; Universidad Técnica Federico Santa María, Valparaiso, Chile
Bufalino, S.; INFN - Sezione di Torino, Torino, Italy ; Politecnico di Torino, Torino, Italy
Bukhari, M.H.S.; Jazan University, Jazan, Saudi Arabia
Burkert, V.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Cisbani, E.; INFN - Sezione di Roma, Roma, Italy ; Istituto Superiore di Sanità, Roma, Italy
Cloet, I.C.; Argonne National Laboratory, Lemont, United States
Cocuzza, C.; Temple University, Philadelphia, United States
Cole, P.L.; Lamar University, Beaumont, United States
Colella, D.; INFN - Sezione di Bari, Bari, Italy ; Politecnico di Bari, Bari, Italy
Collins, J.L.; Florida Institute of Technology, Melbourne, United States
Constantinou, M.; Temple University, Philadelphia, United States
Contalbrigo, M.; INFN - Sezione di Ferrara, Ferrara, Italy
Contin, G.; Università di Trieste, Trieste, Italy ; INFN - Sezione di Trieste, Trieste, Italy
Corliss, R.; Stony Brook University, Stony Brook, United States ; CFNS, Stony Brook, United States
Cosyn, W.; Florida International University, Miami, United States
Courtoy, A.; Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Crafts, J.; The Catholic University of America, Washington, United States
Cruz-Torres, R.; Lawrence Berkeley National Laboratory, Berkeley, United States
Cuevas, R.C.; Thomas Jefferson National Accelerator Facility, Newport News, United States
D'Alesio, U.; Università di Cagliari, Monserrato (Cagliari), Italy ; INFN - Sezione di Cagliari, Monserrato (Cagliari), Italy
Dalla Torre, S.; INFN - Sezione di Trieste, Trieste, Italy
Das, D.; Saha Institute of Nuclear Physics, Kolkata, India
Dasgupta, S.S.; INFN - Sezione di Trieste, Trieste, Italy
Da Silva, C.; Los Alamos National Laboratory, Los Alamos, United States
Deconinck, W.; University of Manitoba, Winnipeg, Canada
Defurne, M.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
DeGraw, W.; University of California Berkeley, Berkeley, United States
Dehmelt, K.; Stony Brook University, Stony Brook, United States ; CFNS, Stony Brook, United States
Del Dotto, A.; INFN - LNF, Frascati (Roma), Italy
Delcarro, F.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Deshpande, A.; Brookhaven National Laboratory, Upton, United States ; Stony Brook University, Stony Brook, United States ; CFNS, Stony Brook, United States
Detmold, W.; Massachusetts Institute of Technology, Cambridge, United States
De Vita, R.; INFN - Sezione di Genova, Genova, Italy
Diefenthaler, M.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Dilks, C.; Duke University, Durham, United States
Dixit, D.U.; University of California Berkeley, Berkeley, United States
Dulat, S.; Xinjiang University, Urumqi, China
Dumitru, A.; Baruch College, The City University of New York, New York City, United States
Dupré, R.; Université Paris-Saclay, CNRS - IJCLab, Orsay, France
Durham, J.M.; Los Alamos National Laboratory, Los Alamos, United States
Echevarria, M.G.; Universidad de Alcalá, Alcalá de Henares, Spain
El Fassi, L.; Mississippi State University, Starkville, United States
Elia, D.; INFN - Sezione di Bari, Bari, Italy
Ent, R.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Esha, R.; Stony Brook University, Stony Brook, United States ; CFNS, Stony Brook, United States
Ethier, J.J.; Nikhef Theory Group, Amsterdam, Netherlands
Evdokimov, O.; University of Illinois at Chicago, Chicago, United States
Eyser, K.O.; Brookhaven National Laboratory, Upton, United States
Fanelli, C.; Massachusetts Institute of Technology, Cambridge, United States
Fatemi, R.; University of Kentucky, Lexington, United States
Fazio, S.; Brookhaven National Laboratory, Upton, United States ; CFNS, Stony Brook, United States
Fernandez-Ramirez, C.; Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Finger, M.; Charles University, Prague 1, Czech Republic ; Charles University, Prague 1, Czech Republic
Fitzgerald, D.; University of Michigan, Ann Arbor, United States
Flore, C.; Université Paris-Saclay, CNRS - IJCLab, Orsay, France
Frederico, T.; Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil
Friščić, I.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; Massachusetts Institute of Technology, Cambridge, United States
Fucini, S.; Università di Perugia, Perugia, Italy ; INFN - Sezione di Perugia, Perugia, Italy
Furletov, S.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Furletova, Y.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Gal, C.; Stony Brook University, Stony Brook, United States ; CFNS, Stony Brook, United States
Gamberg, L.; Penn State Univ.-Berks, Reading, United States
Gao, H.; Duke University, Durham, United States
Garg, P.; CFNS, Stony Brook, United States
Gaskell, D.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Gates, K.; University of Glasgow, Glasgow, United Kingdom
Gay Ducati, M.B.; Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Gericke, M.; University of Manitoba, Winnipeg, Canada
Gil Da Silveira, G.; Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Girod, F.-X.; University of Connecticut, Storrs, United States ; The George Washington University, Washington, United States
Glazier, D.I.; University of Glasgow, Glasgow, United Kingdom
Gnanvo, K.; University of Virginia, Charlottesville, United States
Goncalves, V.P.; Universidade Federal de Pelotas, Pelotas, Brazil
Gonella, L.; University of Birmingham, Birmingham, United Kingdom
Gonzalez Hernandez, J.O.; Università di Torino, Torino, Italy ; INFN - Sezione di Torino, Torino, Italy
Goto, Y.; RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
Grancagnolo, F.; INFN - Sezione di Lecce, Lecce, Italy
Greiner, L.C.; Lawrence Berkeley National Laboratory, Berkeley, United States
Guryn, W.; Brookhaven National Laboratory, Upton, United States
Guzey, V.; Petersburg Nuclear Physics Institute, Gatchina, Russian Federation
Hatta, Y.; Brookhaven National Laboratory, Upton, United States
Hattawy, M.; Old Dominion University, Norfolk, United States
Hauenstein, F.; Massachusetts Institute of Technology, Cambridge, United States ; Old Dominion University, Norfolk, United States
He, X.; Georgia State University, Atlanta, United States
Hemmick, T.K.; Stony Brook University, Stony Brook, United States ; CFNS, Stony Brook, United States
Hen, O.; Massachusetts Institute of Technology, Cambridge, United States
Heyes, G.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Higinbotham, D.W.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Hiller Blin, A.N.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Hobbs, T.J.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; Southern Methodist University, Dallas, United States ; Illinois Institute of Technology, Chicago, United States
Hohlmann, M.; Florida Institute of Technology, Melbourne, United States
Horn, T.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; The Catholic University of America, Washington, United States
Hou, T.-J.; Northeastern University, Shenyang, China
Huang, J.; Brookhaven National Laboratory, Upton, United States
Huang, Q.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Huber, G.M.; University of Regina, Regina, Canada
Hyde, C.E.; Old Dominion University, Norfolk, United States
Iakovidis, G.; Brookhaven National Laboratory, Upton, United States
Ilieva, Y.; University of South Carolina, Columbia, United States
Jacak, B.V.; Lawrence Berkeley National Laboratory, Berkeley, United States ; University of California Berkeley, Berkeley, United States
Jacobs, P.M.; Lawrence Berkeley National Laboratory, Berkeley, United States
Jadhav, M.; Argonne National Laboratory, Lemont, United States
Lucero, G.; Universidad de Buenos Aires, CABA, Argentina
Lukow, N.S.; Temple University, Philadelphia, United States
Lunghi, E.; Indiana University, Bloomington, United States
Majka, R.; Yale University, New Haven, United States
Makris, Y.; INFN - Sezione di Pavia, Pavia, Italy
Mandjavidze, I.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Mantry, S.; University of North Georgia, Dahlonega, United States
Mäntysaari, H.; University of Jyväskylä, Jyväskylä, Finland ; Helsinki Institute of Physics, Helsinki, Finland
Marhauser, F.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Markowitz, P.; Florida International University, Miami, United States
Marsicano, L.; INFN - Sezione di Genova, Genova, Italy
Mastroserio, A.; INFN - Sezione di Bari, Bari, Italy ; Università di Foggia, Foggia, Italy
Mathieu, Vincent ; Université de Mons - UMONS > Faculté des Sciences > Service de Physique nucléaire et subnucléaire ; Universidad Complutense de Madrid, Madrid, Spain
Mehtar-Tani, Y.; RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, United States
Melnitchouk, W.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Mendez, L.; Oak Ridge National Laboratory, Oak Ridge, United States
Metz, A.; Temple University, Philadelphia, United States
Meziani, Z.-E.; Argonne National Laboratory, Lemont, United States
Mezrag, C.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Mihovilovič, M.; Jožef Stefan Institute, Ljubljana, Slovenia
Milner, R.; Massachusetts Institute of Technology, Cambridge, United States
Mirazita, M.; INFN - LNF, Frascati (Roma), Italy
Mkrtchyan, H.; A. Alikhanian National Science Laboratory, Armenia
Mkrtchyan, A.; A. Alikhanian National Science Laboratory, Armenia
Mochalov, V.; NRC “Kurchatov Institute” - IHEP, Protvino, Russian Federation ; National Research Nuclear University MEPhI, Moscow, Russian Federation
Pisano, C.; Università di Cagliari, Monserrato (Cagliari), Italy ; INFN - Sezione di Cagliari, Monserrato (Cagliari), Italy
Pitonyak, D.; Lebanon Valley College, Annville, United States
Poblaguev, A.A.; Brookhaven National Laboratory, Upton, United States
Polakovic, T.; Argonne National Laboratory, Lemont, United States
Posik, M.; Temple University, Philadelphia, United States
Potekhin, M.; Brookhaven National Laboratory, Upton, United States
Preghenella, R.; INFN - Sezione di Bologna, Bologna, Italy
Preins, S.; University of California at Riverside, Riverside, United States
Prokudin, A.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; Penn State Univ.-Berks, Reading, United States
Pujahari, P.; IIT Madras, Chennai, India
Purschke, M.L.; Brookhaven National Laboratory, Upton, United States
Pybus, J.R.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; Massachusetts Institute of Technology, Cambridge, United States
Radici, M.; INFN - Sezione di Pavia, Pavia, Italy
Rajput-Ghoshal, R.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Reimer, P.E.; Argonne National Laboratory, Lemont, United States
Rinaldi, M.; Università di Perugia, Perugia, Italy ; INFN - Sezione di Perugia, Perugia, Italy
Ringer, F.; Lawrence Berkeley National Laboratory, Berkeley, United States
Roberts, C.D.; Nanjing University, Nanjing, China
Rodini, S.; Università di Pavia, Pavia, Italy ; INFN - Sezione di Pavia, Pavia, Italy
Romanov, D.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Rossi, P.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; INFN - LNF, Frascati (Roma), Italy
Santopinto, E.; INFN - Sezione di Genova, Genova, Italy
Sarsour, M.; Georgia State University, Atlanta, United States
Sassot, R.; Universidad de Buenos Aires, CABA, Argentina
Sato, N.; Thomas Jefferson National Accelerator Facility, Newport News, United States
Schenke, B.; Brookhaven National Laboratory, Upton, United States
Schmidke, W.B.; Brookhaven National Laboratory, Upton, United States
Schmidt, I.; Universidad Técnica Federico Santa María, Valparaiso, Chile
Schmidt, A.; The George Washington University, Washington, United States
Schmookler, B.; Stony Brook University, Stony Brook, United States ; CFNS, Stony Brook, United States
Schnell, G.; University of the Basque Country UPV/EHU, Bilbao, Spain ; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
Schweitzer, P.; University of Connecticut, Storrs, United States
Schwiening, J.; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
Scimemi, I.; Universidad Complutense de Madrid, Madrid, Spain
Scopetta, S.; Università di Perugia, Perugia, Italy ; INFN - Sezione di Perugia, Perugia, Italy
Segovia, J.; Universidad Pablo de Olavide, Sevilla, Spain
Seidl, R.; RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, United States ; RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
Sekula, S.; Southern Methodist University, Dallas, United States
Semenov-Tian-Shanskiy, K.; Petersburg Nuclear Physics Institute, Gatchina, Russian Federation
Shao, D.Y.; Fudan University, Shanghai, China
Sherrill, N.; Indiana University, Bloomington, United States
Sichtermann, E.; Lawrence Berkeley National Laboratory, Berkeley, United States
Siddikov, M.; Universidad Técnica Federico Santa María, Valparaiso, Chile
Signori, A.; Thomas Jefferson National Accelerator Facility, Newport News, United States ; Università di Pavia, Pavia, Italy ; INFN - Sezione di Pavia, Pavia, Italy
Singh, B.K.; Banaras Hindu University, Varanasi, India
Širca, S.; Jožef Stefan Institute, Ljubljana, Slovenia ; University of Ljubljana, Ljubljana, Slovenia
Slifer, K.; University of New Hampshire, Durham, United States
23. Guangdong Major Project of Basic and Applied Basic Research (Guangdong - China)The generic R&D program was and is a vital part of the overall EIC efforts with over 280 participants from 75 institutions. Despite moderate funding, many groups are making excellent progress on many vital technologies needed for an EIC detector. The generic R&D program was not the only source of support for R&D relevant for an EIC detector. Several National Laboratories, among them BNL, JLab, ANL, and LANL, supported EIC detector R&D through Laboratory Directed Research & Development Programs (LDRDs) and many university groups in and outside of the US, active in the many R&D projects received support from their respective department and/or funding agencies. The EIC also benefited substantially from R&D conducted for many HEP and NP experiments such as ALICE and LHCb at CERN, Panda at GSI and Belle-II at KEK.6. German Research Foundation (DFG - Germany)15. Natural Sciences and Engineering Research Council of Canada (NSERC - Canada)We acknowledge support from the following institutions/agencies:24. National Natural Science Foundation of China (NSFC - China)
National Academies of Sciences, Engineering, and Medicine, An Assessment of U.S.-Based Electron-Ion Collider Science. 2018, The National Academies Press, Washington, DC, 10.17226/25171.
Accardi, A., et al. Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all. Eur. Phys. J. A, 52, 2016, 268, 10.1140/epja/i2016-16268-9 arXiv:1212.1701.
Aprahamian, A., et al. Reaching for the horizon: The 2015 long range plan for nuclear science., 2015, DOE/NSF Nuclear Science Advisory Panel Report http://www.osti.gov/biblio/1296778.
Jaffe, R.L., Manohar, A., The G(1) problem: fact and fantasy on the spin of the proton. Nucl. Phys. B 337 (1990), 509–546, 10.1016/0550-3213(90)90506-9.
Aschenauer, E.-C., et al. The RHIC SPIN Program: Achievements and Future Opportunities. arXiv:1501.01220, 2015.
Aschenauer, E.C., Sassot, R., Stratmann, M., Unveiling the proton spin decomposition at a future Electron-Ion Collider. Phys. Rev. D, 92, 2015, 094030, 10.1103/PhysRevD.92.094030 arXiv:1509.06489.
Aschenauer, E.C., Fazio, S., Lee, J.H., Mantysaari, H., Page, B.S., Schenke, B., Ullrich, T., Venugopalan, R., Zurita, P., The Electron-Ion Collider: Assessing the energy dependence of key measurements. Rept. Prog. Phys., 82, 2019, 024301, 10.1088/1361-6633/aaf216 arXiv:1708.01527.
Ji, X.-D., A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74 (1995), 1071–1074, 10.1103/PhysRevLett.74.1071 arXiv:hep-ph/9410274.
Lorcé, C., On the hadron mass decomposition. Eur. Phys. J. C, 78(2), 2018, 120, 10.1140/epjc/s10052-018-5561-2 arXiv:1706.05853.
Hatta, Y., Rajan, A., Tanaka, K., Quark and gluon contributions to the QCD trace anomaly. JHEP, 12, 2018, 008, 10.1007/JHEP12(2018)008 arXiv:1810.05116.
Metz, A., Pasquini, B., Rodini, S., Revisiting the proton mass decomposition. Phys. Rev. D, 102(11), 2021, 114042, 10.1103/PhysRevD.102.114042 arXiv:2006.11171.
Aguilar, A.C., et al. Pion and Kaon Structure at the Electron-Ion Collider. Eur. Phys. J. A, 55(10), 2019, 190, 10.1140/epja/i2019-12885-0 arXiv:1907.08218.
Boer, D., Mulders, P.J., Time reversal odd distribution functions in leptoproduction. Phys. Rev. D 57 (1998), 5780–5786, 10.1103/PhysRevD.57.5780 arXiv:hep-ph/9711485.
Sivers, D.W., Single Spin Production Asymmetries from the Hard Scattering of Point-Like Constituents. Phys. Rev. D, 41, 1990, 83, 10.1103/PhysRevD.41.83.
Sivers, D.W., Hard scattering scaling laws for single spin production asymmetries. Phys. Rev. D 43 (1991), 261–263, 10.1103/PhysRevD.43.261.
Zheng, L., Aschenauer, E.C., Lee, J.H., Xiao, B.-W., Yin, Z.-B., Accessing the gluon Sivers function at a future electron-ion collider. Phys. Rev. D, 98(3), 2018, 034011, 10.1103/PhysRevD.98.034011 arXiv:1805.05290.
Müller, D., Robaschik, D., Geyer, B., Dittes, F.M., Hořejši, J., Wave functions, evolution equations and evolution kernels from light ray operators of QCD. Fortsch. Phys. 42 (1994), 101–141, 10.1002/prop.2190420202 arXiv:hep-ph/9812448.
Radyushkin, A.V., Scaling limit of deeply virtual Compton scattering. Phys. Lett. B 380 (1996), 417–425, 10.1016/0370-2693(96)00528-X arXiv:hep-ph/9604317.
Ji, X.-D., Deeply virtual Compton scattering. Phys. Rev. D 55 (1997), 7114–7125, 10.1103/PhysRevD.55.7114 arXiv:hep-ph/9609381.
Burkardt, M., Impact parameter space interpretation for generalized parton distributions. Int. J. Mod. Phys. A 18 (2003), 173–208, 10.1142/S0217751X03012370 arXiv:hep-ph/0207047.
Ji, X.-D., Gauge invariant decomposition of nucleon spin. Phys. Rev. Lett. 78 (1997), 610–613, 10.1103/PhysRevLett.78.610 arXiv:hep-ph/9603249.
Polyakov, M., Generalized parton distributions and strong forces inside nucleons and nuclei. Phys. Lett. B 555 (2003), 57–62, 10.1016/S0370-2693(03)00036-4 arXiv:hep-ph/0210165.
Aschenauer, E.-C., Fazio, S., Kumericki, K., Mueller, D., Deeply Virtual Compton Scattering at a Proposed High-Luminosity Electron-Ion Collider. JHEP, 09, 2013, 093, 10.1007/JHEP09(2013)093 arXiv:1304.0077.
Gelis, F., Iancu, E., Jalilian-Marian, J., Venugopalan, R., The Color Glass Condensate. Ann. Rev. Nucl. Part. Sci. 60 (2010), 463–489, 10.1146/annurev.nucl.010909.083629 arXiv:1002.0333.
Eskola, K.J., Paakkinen, P., Paukkunen, H., Salgado, C.A., EPPS16: Nuclear parton distributions with LHC data. Eur. Phys. J. C, 77, 2017, 163, 10.1140/epjc/s10052-017-4725-9 arXiv:1612.05741.
Chu, X., Aschenauer, E.-C., Lee, J.-H., Zheng, L., Photon structure studied at an Electron Ion Collider. Phys. Rev. D, 96(7), 2017, 074035, 10.1103/PhysRevD.96.074035 arXiv:1705.08831.
Arratia, M., Song, Y., Ringer, F., Jacak, B., Jets as precision probes in electron-nucleus collisions at the Electron-Ion Collider. Phys. Rev. C, 101(6), 2020, 065204, 10.1103/PhysRevC.101.065204 arXiv:1912.05931.
Liu, X., Ringer, F., Vogelsang, W., Yuan, F., Lepton-jet Correlations in Deep Inelastic Scattering at the Electron-Ion Collider. Phys. Rev. Lett., 122(19), 2019, 192003, 10.1103/PhysRevLett.122.192003 arXiv:1812.08077.
Blumlein, J., The Theory of Deeply Inelastic Scattering. Prog. Part. Nucl. Phys. 69 (2013), 28–84, 10.1016/j.ppnp.2012.09.006 arXiv:1208.6087.
Ashman, J., et al. A Measurement of the Spin Asymmetry and Determination of the Structure Function g(1) in Deep Inelastic Muon-Proton Scattering. Phys. Lett. B, 206, 1988, 364, 10.1016/0370-2693(88)91523-7.
Aidala, C.A., Bass, S.D., Hasch, D., Mallot, G.K., The Spin Structure of the Nucleon. Rev. Mod. Phys. 85 (2013), 655–691, 10.1103/RevModPhys.85.655 arXiv:1209.2803.
Miller, G.A., Charge Density of the Neutron. Phys. Rev. Lett., 99, 2007, 112001, 10.1103/PhysRevLett.99.112001 arXiv:0705.2409.
Burkardt, M., Impact parameter dependent parton distributions and off forward parton distributions for zeta → 0. Phys. Rev. D, 62, 2000, 071503, 10.1103/PhysRevD.62.071503 Erratum Phys. Rev. D, 66, 2002, 119903 arXiv:hep-ph/0005108.
Mulders, P.J., Tangerman, R.D., The Complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction. Nucl. Phys. B 461 (1996), 197–237, 10.1016/0550-3213(95)00632-X Erratum Nucl. Phys. B 484 (1997), 538–540 arXiv:hep-ph/9510301.
Mulders, P.J., Rodrigues, J., Transverse momentum dependence in gluon distribution and fragmentation functions. Phys. Rev. D, 63, 2001, 094021, 10.1103/PhysRevD.63.094021 arXiv:hep-ph/0009343.
Meissner, S., Metz, A., Goeke, K., Relations between generalized and transverse momentum dependent parton distributions. Phys. Rev. D, 76, 2007, 034002, 10.1103/PhysRevD.76.034002 arXiv:hep-ph/0703176.
Collins, J.C., Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B 396 (1993), 161–182, 10.1016/0550-3213(93)90262-N arXiv:hep-ph/9208213.
Kowalski, H., Lappi, T., Venugopalan, R., Nuclear enhancement of universal dynamics of high parton densities. Phys. Rev. Lett., 100, 2008, 022303, 10.1103/PhysRevLett.100.022303 arXiv:0705.3047.
Kowalski, H., Teaney, D., An Impact parameter dipole saturation model. Phys. Rev. D, 68, 2003, 114005, 10.1103/PhysRevD.68.114005 arXiv:hep-ph/0304189.
Kowalski, H., Motyka, L., Watt, G., Exclusive diffractive processes at HERA within the dipole picture. Phys. Rev. D, 74, 2006, 074016, 10.1103/PhysRevD.74.074016 arXiv:hep-ph/0606272.
Collins, J.C., Soper, D.E., Sterman, G.F., Factorization of Hard Processes in QCD. Adv. Ser. Direct. High Energy Phys. 5 (1989), 1–91, 10.1142/9789814503266_0001 arXiv:hep-ph/0409313.
Arneodo, M., et al. The A dependence of the nuclear structure function ratios. Nucl. Phys. B 481 (1996), 3–22, 10.1016/S0550-3213(96)90117-0.
Geesaman, D.F., Saito, K., Thomas, A.W., The nuclear EMC effect. Ann. Rev. Nucl. Part. Sci. 45 (1995), 337–390, 10.1146/annurev.ns.45.120195.002005.
Gomez, J., et al. Measurement of the A-dependence of deep inelastic electron scattering. Phys. Rev. D 49 (1994), 4348–4372, 10.1103/PhysRevD.49.4348.
Paukkunen, H., Nuclear PDFs in the beginning of the LHC era. Nucl. Phys. A 926 (2014), 24–33, 10.1016/j.nuclphysa.2014.04.001 arXiv:1401.2345.
Peigne, S., Smilga, A.V., Energy losses in a hot plasma revisited. Phys. Usp. 52 (2009), 659–685, 10.3367/UFNe.0179.200907a.0697 arXiv:0810.5702.
Arleo, F., Naïm, C.-J., Platchkov, S., Initial-state energy loss in cold QCD matter and the Drell-Yan process. JHEP, 01, 2019, 129, 10.1007/JHEP01(2019)129 arXiv:1810.05120.
Gao, J., Harland-Lang, L., Rojo, J., The Structure of the Proton in the LHC Precision Era. Phys. Rept. 742 (2018), 1–121, 10.1016/j.physrep.2018.03.002 arXiv:1709.04922.
Ethier, J.J., Nocera, E.R., Parton Distributions in Nucleons and Nuclei. Ann. Rev. Nucl. Part. Sci. 70 (2020), 43–76, 10.1146/annurev-nucl-011720-042725 arXiv:2001.07722.
Rojo, J., et al. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II. J. Phys. G, 42, 2015, 103103, 10.1088/0954-3899/42/10/103103 arXiv:1507.00556.
Ball, R.D., et al. Parton distributions from high-precision collider data. Eur. Phys. J. C, 77(10), 2017, 663, 10.1140/epjc/s10052-017-5199-5 arXiv:1706.00428.
Bertone, V., Carrazza, S., Rojo, J., APFEL: A PDF Evolution Library with QED corrections. Comput. Phys. Commun. 185 (2014), 1647–1668, 10.1016/j.cpc.2014.03.007 arXiv:1310.1394.
Faura, F., Iranipour, S., Nocera, E.R., Rojo, J., Ubiali, M., The Strangest Proton?. Eur. Phys. J. C, 80(12), 2020, 1168, 10.1140/epjc/s10052-020-08749-3 arXiv:2009.00014.
Sato, N., Andres, C., Ethier, J.J., Melnitchouk, W., Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions. Phys. Rev. D, 101(7), 2020, 074020, 10.1103/PhysRevD.101.074020 arXiv:1905.03788.
Hobbs, T.J., Wang, B.-T., Nadolsky, P.M., Olness, F.I., Charting the coming synergy between lattice QCD and high-energy phenomenology. Phys. Rev. D, 100(9), 2019, 094040, 10.1103/PhysRevD.100.094040 arXiv:1904.00022.
Hobbs, T.J., Wang, B.-T., Nadolsky, P.M., Olness, F.I., Collinear PDFs in the era of HL-LHC, LHeC, and EIC. PoS, DIS2019, 2019, 247, 10.22323/1.352.0247 arXiv:1907.00988.
Hou, T.-J., et al. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D, 103(1), 2021, 014013, 10.1103/PhysRevD.103.014013 arXiv:1912.10053.
Accardi, A., Brady, L.T., Melnitchouk, W., Owens, J.F., Sato, N., Constraints on large-x parton distributions from new weak boson production and deep-inelastic scattering data. Phys. Rev. D, 93(11), 2016, 114017, 10.1103/PhysRevD.93.114017 arXiv:1602.03154.
C. Cocuzza, N. Sato, J. Ethier, W. Melnitchouk, A. Metz, Parton distributions functions from JLab to LHC, 2021.
Hobbs, T.J., Londergan, J.T., Murdock, D.P., Thomas, A.W., Testing Partonic Charge Symmetry at a High-Energy Electron Collider. Phys. Lett. B 698 (2011), 123–127, 10.1016/j.physletb.2011.02.040 arXiv:1101.3923.
Sargsian, M., Strikman, M., Model independent method for determination of the DIS structure of free neutron. Phys. Lett. B 639 (2006), 223–231, 10.1016/j.physletb.2006.05.091 arXiv:hep-ph/0511054.
Strikman, M., Weiss, C., Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x. Phys. Rev. C, 97(3), 2018, 035209, 10.1103/PhysRevC.97.035209 arXiv:1706.02244.
Weiss, C., et al. Physics potential of polarized light ions with EIC@JLab. https://www.jlab.org/theory/tag/, 2014 jefferson Lab FY14/15 LDRD Project.
Alekhin, S.I., Kulagin, S.A., Petti, R., Nuclear Effects in the Deuteron and Constraints on the d/u Ratio. Phys. Rev. D, 96(5), 2017, 054005, 10.1103/PhysRevD.96.054005 arXiv:1704.00204.
Tropiano, A.J., Ethier, J.J., Melnitchouk, W., Sato, N., Deep-inelastic and quasielastic electron scattering from A = 3 nuclei. Phys. Rev. C, 99(3), 2019, 035201, 10.1103/PhysRevC.99.035201 arXiv:1811.07668.
Griffioen, K.A., et al. Measurement of the EMC Effect in the Deuteron. Phys. Rev. C, 92(1), 2015, 015211, 10.1103/PhysRevC.92.015211 arXiv:1506.00871.
Malace, S., Gaskell, D., Higinbotham, D.W., Cloet, I., The Challenge of the EMC Effect: existing data and future directions. Int. J. Mod. Phys. E, 23(08), 2014, 1430013, 10.1142/S0218301314300136 arXiv:1405.1270.
Aschenauer, E.C., Borsa, I., Sassot, R., Van Hulse, C., Semi-inclusive Deep-Inelastic Scattering, Parton Distributions and Fragmentation Functions at a Future Electron-Ion Collider. Phys. Rev. D, 99(9), 2019, 094004, 10.1103/PhysRevD.99.094004 arXiv:1902.10663.
Ball, R.D., Bertone, V., Cerutti, F., Del Debbio, L., Forte, S., Guffanti, A., Latorre, J.I., Rojo, J., Ubiali, M., Reweighting NNPDFs: the W lepton asymmetry. Nucl. Phys. B 849 (2011), 112–143, 10.1016/j.nuclphysb.2011.03.017 Erratum Nucl. Phys. B 854 (2012), 926–927 Erratum Nucl. Phys. B 855 (2012), 927–928 arXiv:1012.0836.
Ball, R.D., Bertone, V., Cerutti, F., Del Debbio, L., Forte, S., Guffanti, A., Hartland, N.P., Latorre, J.I., Rojo, J., Ubiali, M., Reweighting and Unweighting of Parton Distributions and the LHC W lepton asymmetry data. Nucl. Phys. B 855 (2012), 608–638, 10.1016/j.nuclphysb.2011.10.018 arXiv:1108.1758.
Ball, R.D., et al. Parton distributions for the LHC Run II. JHEP, 04, 2015, 040, 10.1007/JHEP04(2015)040 arXiv:1410.8849.
Brodsky, S.J., Hoyer, P., Peterson, C., Sakai, N., The Intrinsic Charm of the Proton. Phys. Lett. B 93 (1980), 451–455, 10.1016/0370-2693(80)90364-0.
Jimenez-Delgado, P., Hobbs, T.J., Londergan, J.T., Melnitchouk, W., New limits on intrinsic charm in the nucleon from global analysis of parton distributions. Phys. Rev. Lett., 114(8), 2015, 082002, 10.1103/PhysRevLett.114.082002 arXiv:1408.1708.
Hou, T.-J., Dulat, S., Gao, J., Guzzi, M., Huston, J., Nadolsky, P., Schmidt, C., Winter, J., Xie, K., Yuan, C.P., CT14 Intrinsic Charm Parton Distribution Functions from CTEQ-TEA Global Analysis. JHEP, 02, 2018, 059, 10.1007/JHEP02(2018)059 arXiv:1707.00657.
Aubert, J.J., et al. Production of charmed particles in 250-GeV μ+-iron interactions. Nucl. Phys. B 213 (1983), 31–64, 10.1016/0550-3213(83)90174-8.
Hobbs, T.J., Alberg, M., Miller, G.A., Bayesian analysis of light-front models and the nucleon's charmed sigma term. Phys. Rev. D, 96(7), 2017, 074023, 10.1103/PhysRevD.96.074023 arXiv:1707.06711.
Ball, R.D., Bertone, V., Bonvini, M., Carrazza, S., Forte, S., Guffanti, A., Hartland, N.P., Rojo, J., Rottoli, L., A Determination of the Charm Content of the Proton. Eur. Phys. J. C, 76(11), 2016, 647, 10.1140/epjc/s10052-016-4469-y arXiv:1605.06515.
Arratia, M., Furletova, Y., Hobbs, T.J., Olness, F., Sekula, S.J., Charm jets as a probe for strangeness at the future Electron-Ion Collider. arXiv:2006.12520, 2020.
Borsa, I., Lucero, G., Sassot, R., Aschenauer, E.C., Nunes, A.S., Revisiting helicity parton distributions at a future electron-ion collider. Phys. Rev. D, 102(9), 2020, 094018, 10.1103/PhysRevD.102.094018 arXiv:2007.08300.
De Florian, D., Lucero, G.A., Sassot, R., Stratmann, M., Vogelsang, W., Monte Carlo sampling variant of the DSSV14 set of helicity parton densities. Phys. Rev. D, 100(11), 2019, 114027, 10.1103/PhysRevD.100.114027 arXiv:1902.10548.
Y. Zhou, N. Sato, J. Ethier, W. Melnitchouk, Gluon polarization from a simultaneous analysis of unpolarized and polarized PDFs, 2021.
Ethier, J.J., Sato, N., Melnitchouk, W., First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis. Phys. Rev. Lett., 119(13), 2017, 132001, 10.1103/PhysRevLett.119.132001 arXiv:1705.05889.
Adamiak, D., Kovchegov, Y.V., Melnitchouk, W., Pitonyak, D., Sato, N., Sievert, M.D., First analysis of world polarized DIS data with small-x helicity evolution. arXiv:2102.06159, 2021.
Kovchegov, Y.V., Pitonyak, D., Sievert, M.D., Helicity Evolution at Small x: Flavor Singlet and Non-Singlet Observables. Phys. Rev. D, 95(1), 2017, 014033, 10.1103/PhysRevD.95.014033 arXiv:1610.06197.
Kovchegov, Y.V., Pitonyak, D., Sievert, M.D., Small-x asymptotics of the quark helicity distribution. Phys. Rev. Lett., 118(5), 2017, 052001, 10.1103/PhysRevLett.118.052001 arXiv:1610.06188.
Sato, N., Melnitchouk, W., Kuhn, S.E., Ethier, J.J., Accardi, A., Iterative Monte Carlo analysis of spin-dependent parton distributions. Phys. Rev. D, 93(7), 2016, 074005, 10.1103/PhysRevD.93.074005 arXiv:1601.07782.
Anselmino, M., Efremov, A., Leader, E., The Theory and phenomenology of polarized deep inelastic scattering. Phys. Rept. 261 (1995), 1–124, 10.1016/0370-1573(95)00011-5 Erratum Phys. Rept. 281 (1997), 399–400 arXiv:hep-ph/9501369.
Kuhn, S.E., Chen, J.P., Leader, E., Spin Structure of the Nucleon – Status and Recent Results. Prog. Part. Nucl. Phys. 63 (2009), 1–50, 10.1016/j.ppnp.2009.02.001 arXiv:0812.3535.
Frankfurt, L.L., Strikman, M.I., Hard Nuclear Processes and Microscopic Nuclear Structure. Phys. Rept. 160 (1988), 235–427, 10.1016/0370-1573(88)90179-2.
Arneodo, M., Nuclear effects in structure functions. Phys. Rept. 240 (1994), 301–393, 10.1016/0370-1573(94)90048-5.
Ciofi degli Atti, C., Scopetta, S., Pace, E., Salme, G., Nuclear effects in deep inelastic scattering of polarized electrons off polarized He-3 and the neutron spin structure functions. Phys. Rev. C 48 (1993), 968–972, 10.1103/PhysRevC.48.R968 arXiv:nucl-th/9303016.
Melnitchouk, W., Piller, G., Thomas, A.W., Deep inelastic scattering from polarized deuterons. Phys. Lett. B 346 (1995), 165–171, 10.1016/0370-2693(94)01690-E arXiv:hep-ph/9501282.
Kulagin, S.A., Melnitchouk, W., Piller, G., Weise, W., Spin dependent nuclear structure functions: General approach with application to the deuteron. Phys. Rev. C 52 (1995), 932–946, 10.1103/PhysRevC.52.932 arXiv:hep-ph/9504377.
Piller, G., Melnitchouk, W., Thomas, A.W., Polarized deep inelastic scattering from nuclei: A Relativistic approach. Phys. Rev. C 54 (1996), 894–903, 10.1103/PhysRevC.54.894 arXiv:nucl-th/9605045.
Frankfurt, L., Guzey, V., Strikman, M., The Nuclear effects in (g1 He-3) and the Bjorken sum rule for A=3. Phys. Lett. B 381 (1996), 379–384, 10.1016/0370-2693(96)00625-9 arXiv:hep-ph/9602301.
Bissey, F.R.P., Guzey, V.A., Strikman, M., Thomas, A.W., Complete analysis of spin structure function g(1) of He-3. Phys. Rev. C, 65, 2002, 064317, 10.1103/PhysRevC.65.064317 arXiv:hep-ph/0109069.
Ethier, J.J., Melnitchouk, W., Comparative study of nuclear effects in polarized electron scattering from 3He. Phys. Rev. C, 88(5), 2013, 054001, 10.1103/PhysRevC.88.054001 arXiv:1308.3723.
Cosyn, W., Weiss, C., Neutron spin structure from polarized deuteron DIS with proton tagging. Phys. Lett. B, 799, 2019, 135035, 10.1016/j.physletb.2019.135035 arXiv:1906.11119.
Cosyn, W., Weiss, C., Polarized electron-deuteron deep-inelastic scattering with spectator nucleon tagging. Phys. Rev. C, 102, 2020, 065204, 10.1103/PhysRevC.102.065204 arXiv:2006.03033.
Ciofi degli Atti, C., Kopeliovich, B.Z., Final state interaction in semi-inclusive DIS off nuclei. Eur. Phys. J. A 17 (2003), 133–144, 10.1140/epja/i2002-10140-7 arXiv:nucl-th/0207001.
Ciofi degli Atti, C., Kaptari, L.P., Kopeliovich, B.Z., Final state interaction effects in semi-inclusive DIS off the deuteron. Eur. Phys. J. A 19 (2004), 145–151, 10.1140/epja/i2003-10117-0 arXiv:nucl-th/0307052.
Palli, V., Ciofi degli Atti, C., Kaptari, L.P., Mezzetti, C.B., Alvioli, M., Slow Proton Production in Semi-Inclusive Deep Inelastic Scattering off Deuteron and Complex Nuclei: Hadronization and Final State Interaction Effects. Phys. Rev. C, 80, 2009, 054610, 10.1103/PhysRevC.80.054610 arXiv:0911.1377.
Kaptari, L.P., Del Dotto, A., Pace, E., Salme', G., Scopetta, S., Distorted spin-dependent spectral function of an A=3 nucleus and semi-inclusive deep inelastic scattering processes. Phys. Rev. C, 89(3), 2014, 035206, 10.1103/PhysRevC.89.035206 arXiv:1307.2848.
Frankfurt, L.L., Strikman, M.I., High Momentum Transfer Processes with Polarized Deuterons. Nucl. Phys. A 405 (1983), 557–580, 10.1016/0375-9474(83)90518-3.
Frankfurt, L.L., Strikman, M.I., High-Energy Phenomena, Short Range Nuclear Structure and QCD. Phys. Rept. 76 (1981), 215–347, 10.1016/0370-1573(81)90129-0.
Diehl, M., Generalized parton distributions. Phys. Rept. 388 (2003), 41–277, 10.1016/j.physrep.2003.08.002 arXiv:hep-ph/0307382.
Leader, E., Lorcé, C., The angular momentum controversy: What's it all about and does it matter?. Phys. Rept. 541:3 (2014), 163–248, 10.1016/j.physrep.2014.02.010 arXiv:1309.4235.
de Florian, D., Sassot, R., Stratmann, M., Vogelsang, W., Extraction of Spin-Dependent Parton Densities and Their Uncertainties. Phys. Rev. D, 80, 2009, 034030, 10.1103/PhysRevD.80.034030 arXiv:0904.3821.
de Florian, D., Sassot, R., Stratmann, M., Vogelsang, W., Evidence for polarization of gluons in the proton. Phys. Rev. Lett., 113(1), 2014, 012001, 10.1103/PhysRevLett.113.012001 arXiv:1404.4293.
Airapetian, A., et al. Quark helicity distributions in the nucleon for up, down, and strange quarks from semi-inclusive deep-inelastic scattering. Phys. Rev. D, 71, 2005, 012003, 10.1103/PhysRevD.71.012003 arXiv:hep-ex/0407032.
Alekseev, M.G., et al. Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering. Phys. Lett. B 693 (2010), 227–235, 10.1016/j.physletb.2010.08.034 arXiv:1007.4061.
Nocera, E.R., Ball, R.D., Forte, S., Ridolfi, G., Rojo, J., A first unbiased global determination of polarized PDFs and their uncertainties. Nucl. Phys. B 887 (2014), 276–308, 10.1016/j.nuclphysb.2014.08.008 arXiv:1406.5539.
Nocera, E.R., Impact of Recent RHIC Data on Helicity-Dependent Parton Distribution Functions. arXiv:1702.05077, 2017.
Desai, J., Zhang, J., Kaon impact studies on Delta s. https://indico.bnl.gov/event/9261/contributions/40809/, 2020.
Page, B.S., Chu, X., Aschenauer, E.C., Experimental Aspects of Jet Physics at a Future EIC. Phys. Rev. D, 101(7), 2020, 072003, 10.1103/PhysRevD.101.072003 arXiv:1911.00657.
Arrington, J., et al. EIC Physics from An All-Silicon Tracking Detector. arXiv:2102.08337, 2021.
Hekhorn, F., Stratmann, M., Next-to-Leading Order QCD Corrections to Inclusive Heavy-Flavor Production in Polarized Deep-Inelastic Scattering. Phys. Rev. D, 98(1), 2018, 014018, 10.1103/PhysRevD.98.014018 arXiv:1805.09026.
Adolph, C., et al. Leading and Next-to-Leading Order Gluon Polarization in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muo-production. Phys. Rev. D, 87(5), 2013, 052018, 10.1103/PhysRevD.87.052018 arXiv:1211.6849.
Arrington, J., et al. Revealing the structure of light pseudoscalar mesons at the Electron-Ion Collider. arXiv:2102.11788, 2021.
Sullivan, J.D., One pion exchange and deep inelastic electron-nucleon scattering. Phys. Rev. D 5 (1972), 1732–1737, 10.1103/PhysRevD.5.1732.
Thomas, A.W., Melnitchouk, W., Steffens, F.M., Dynamical symmetry breaking in the sea of the nucleon. Phys. Rev. Lett. 85 (2000), 2892–2894, 10.1103/PhysRevLett.85.2892 arXiv:hep-ph/0005043.
Chen, J.-W., Ji, X.-d., Constructing parton convolution in effective field theory. Phys. Rev. Lett., 87, 2001, 152002, 10.1103/PhysRevLett.87.152002 Erratum Phys. Rev. Lett., 88, 2002, 249901 arXiv:hep-ph/0107158.
Detmold, W., Melnitchouk, W., Negele, J.W., Renner, D.B., Thomas, A.W., Chiral extrapolation of lattice moments of proton quark distributions. Phys. Rev. Lett., 87, 2001, 172001, 10.1103/PhysRevLett.87.172001 arXiv:hep-lat/0103006.
Adloff, C., et al. Measurement of leading proton and neutron production in deep inelastic scattering at HERA. Eur. Phys. J. C 6 (1999), 587–602, 10.1007/s100529901072 arXiv:hep-ex/9811013.
Kopeliovich, B., Povh, B., Potashnikova, I., Deep inelastic electroproduction of neutrons in the proton fragmentation region. Z. Phys. C 73 (1996), 125–131, 10.1007/s002880050301 arXiv:hep-ph/9601291.
Carvalho, F., Gonçalves, V.P., Navarra, F.S., Spiering, D., Leading neutron production at the EIC and LHeC: estimating the impact of the absorptive corrections. arXiv:2011.09515, 2020.
Golec-Biernat, K.J., Kwiecinski, J., Szczurek, A., Reggeon and pion contributions in semiexclusive diffractive processes at HERA. Phys. Rev. D 56 (1997), 3955–3960, 10.1103/PhysRevD.56.3955 arXiv:hep-ph/9701254.
Kazarinov, Y.M., Kopeliovich, B.Z., Lapidus, L.I., Potashnikova, I.K., Triple Regge Phenomenology in the Reaction p + p → p + x. Sov. Phys. JETP, 43, 1976, 598.
D'Alesio, U., Pirner, H.J., Target fragmentation in p p, e p and gamma p collisions at high-energies. Eur. Phys. J. A 7 (2000), 109–119, 10.1007/s100500050018 arXiv:hep-ph/9806321.
Stoks, V.G.J., Rijken, T.A., Soft core baryon baryon potentials for the complete baryon octet. Phys. Rev. C 59 (1999), 3009–3020, 10.1103/PhysRevC.59.3009 arXiv:nucl-th/9901028.
Conway, J.S., et al. Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten. Phys. Rev. D 39 (1989), 92–122, 10.1103/PhysRevD.39.92.
Drell, S.D., Yan, T.-M., Connection of Elastic Electromagnetic Nucleon Form-Factors at Large Q**2 and Deep Inelastic Structure Functions Near Threshold. Phys. Rev. Lett. 24 (1970), 181–185, 10.1103/PhysRevLett.24.181.
McKenney, J.R., Sato, N., Melnitchouk, W., Ji, C.-R., Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry. Phys. Rev. D, 93(5), 2016, 054011, 10.1103/PhysRevD.93.054011 arXiv:1512.04459.
Barry, P.C., Sato, N., Melnitchouk, W., Ji, C.-R., First Monte Carlo Global QCD Analysis of Pion Parton Distributions. Phys. Rev. Lett., 121(15), 2018, 152001, 10.1103/PhysRevLett.121.152001 arXiv:1804.01965.
Chekanov, S., et al. Leading neutron production in e+ p collisions at HERA. Nucl. Phys. B 637 (2002), 3–56, 10.1016/S0550-3213(02)00439-X arXiv:hep-ex/0205076.
Trotta, R., EIC Meson MC. https://github.com/JeffersonLab/EIC_mesonMC/tree/master, 2020.
P. Barry, C.-R. Ji, W. Melnitchouk, N. Sato, Threshold resummation effects on pion PDFs at large x, 2021.
N. Cao, P. Barry, N. Sato, W. Melnitchouk, Towards the 3-dimensional parton structure of the pion: integrating transverse momentum data into global QCD analysis, 2021.
Yang, Y.-B., Chen, Y., Draper, T., Gong, M., Liu, K.-F., Liu, Z., Ma, J.-P., Meson Mass Decomposition from Lattice QCD. Phys. Rev. D, 91(7), 2015, 074516, 10.1103/PhysRevD.91.074516 arXiv:1405.4440.
Aaron, F.D., et al. Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA. Eur. Phys. J. C 68 (2010), 381–399, 10.1140/epjc/s10052-010-1369-4 arXiv:1001.0532.
Adams, B., et al. Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER). arXiv:1808.00848, 2018.
Anderle, D.P., et al. Electron-Ion Collider in China, 2021 arXiv:2102.09222.
Cui, Z.-F., Ding, M., Gao, F., Raya, K., Binosi, D., Chang, L., Roberts, C.D., Rodríguez-Quintero, J., Schmidt, S.M., Higgs modulation of emergent mass as revealed in kaon and pion parton distributions. Eur. Phys. J. A, 57(1), 2021, 5, 10.1140/epja/s10050-020-00318-2 arXiv:2006.14075.
Hecht, M.B., Roberts, C.D., Schmidt, S.M., Valence quark distributions in the pion. Phys. Rev. C, 63, 2001, 025213, 10.1103/PhysRevC.63.025213 arXiv:nucl-th/0008049.
Sufian, R.S., Karpie, J., Egerer, C., Orginos, K., Qiu, J.-W., Richards, D.G., Pion Valence Quark Distribution from Matrix Element Calculated in Lattice QCD. Phys. Rev. D, 99(7), 2019, 074507, 10.1103/PhysRevD.99.074507 arXiv:1901.03921.
Aicher, M., Schafer, A., Vogelsang, W., Soft-gluon resummation and the valence parton distribution function of the pion. Phys. Rev. Lett., 105, 2010, 252003, 10.1103/PhysRevLett.105.252003 arXiv:1009.2481.
Lin, H.-W., Chen, J.-W., Fan, Z., Zhang, J.-H., Zhang, R., Valence-quark distribution of the kaon and pion from lattice QCD. Phys. Rev. D, 103(1), 2021, 014516, 10.1103/PhysRevD.103.014516 arXiv:2003.14128.
Badier, J., et al. Measurement of the K−/π− Structure Function Ratio Using the {Drell-Yan} Process. Phys. Lett. B 93 (1980), 354–356, 10.1016/0370-2693(80)90530-4.
Ezawa, Z.F., Wide-Angle Scattering in Softened Field Theory. Nuovo Cim. A 23 (1974), 271–290, 10.1007/BF02739483.
Farrar, G.R., Jackson, D.R., Pion and Nucleon Structure Functions Near x=1. Phys. Rev. Lett., 35, 1975, 1416, 10.1103/PhysRevLett.35.1416.
Berger, E.L., Brodsky, S.J., Quark Structure Functions of Mesons and the Drell-Yan Process. Phys. Rev. Lett. 42 (1979), 940–944, 10.1103/PhysRevLett.42.940.
Brodsky, S.J., Burkardt, M., Schmidt, I., Perturbative QCD constraints on the shape of polarized quark and gluon distributions. Nucl. Phys. B 441 (1995), 197–214, 10.1016/0550-3213(95)00009-H arXiv:hep-ph/9401328.
Yuan, F., Generalized parton distributions at x → 1. Phys. Rev. D, 69, 2004, 051501, 10.1103/PhysRevD.69.051501 arXiv:hep-ph/0311288.
Chang, L., Mezrag, C., Moutarde, H., Roberts, C.D., Rodríguez-Quintero, J., Tandy, P.C., Basic features of the pion valence-quark distribution function. Phys. Lett. B 737 (2014), 23–29, 10.1016/j.physletb.2014.08.009 arXiv:1406.5450.
Zhang, J.-H., Chen, J.-W., Jin, L., Lin, H.-W., Schäfer, A., Zhao, Y., First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function. Phys. Rev. D, 100(3), 2019, 034505, 10.1103/PhysRevD.100.034505 arXiv:1804.01483.
Shifman, M.A., Vainshtein, A.I., Zakharov, V.I., Remarks on Higgs Boson Interactions with Nucleons. Phys. Lett. B 78 (1978), 443–446, 10.1016/0370-2693(78)90481-1.
Kharzeev, D., Quarkonium interactions in QCD. Proc. Int. Sch. Phys. Fermi 130 (1996), 105–131, 10.3254/978-1-61499-215-8-105 arXiv:nucl-th/9601029.
Kharzeev, D., Satz, H., Syamtomov, A., Zinovjev, G., J / psi photoproduction and the gluon structure of the nucleon. Eur. Phys. J. C 9 (1999), 459–462, 10.1007/s100529900047 arXiv:hep-ph/9901375.
Tanaka, K., Three-loop formula for quark and gluon contributions to the QCD trace anomaly. JHEP, 01, 2019, 120, 10.1007/JHEP01(2019)120 arXiv:1811.07879.
Ji, X.-D., Breakup of hadron masses and energy-momentum tensor of QCD. Phys. Rev. D 52 (1995), 271–281, 10.1103/PhysRevD.52.271 arXiv:hep-ph/9502213.
Lorcé, C., Moutarde, H., Trawiński, A.P., Revisiting the mechanical properties of the nucleon. Eur. Phys. J. C, 79(1), 2019, 89, 10.1140/epjc/s10052-019-6572-3 arXiv:1810.09837.
Rodini, S., Metz, A., Pasquini, B., Mass sum rules of the electron in quantum electrodynamics. JHEP, 09, 2020, 067, 10.1007/JHEP09(2020)067 arXiv:2004.03704.
Collins, J.C., Duncan, A., Joglekar, S.D., Trace and Dilatation Anomalies in Gauge Theories. Phys. Rev. D 16 (1977), 438–449, 10.1103/PhysRevD.16.438.
Nielsen, N.K., The Energy Momentum Tensor in a Nonabelian Quark Gluon Theory. Nucl. Phys. B 120 (1977), 212–220, 10.1016/0550-3213(77)90040-2.
Cosyn, W., Cotogno, S., Freese, A., Lorcé, C., The energy-momentum tensor of spin-1 hadrons: formalism. Eur. Phys. J. C, 79(6), 2019, 476, 10.1140/epjc/s10052-019-6981-3 arXiv:1903.00408.
Cotogno, S., Lorcé, C., Lowdon, P., Morales, M., Covariant multipole expansion of local currents for massive states of any spin. Phys. Rev. D, 101(5), 2020, 056016, 10.1103/PhysRevD.101.056016 arXiv:1912.08749.
Alarcon, J.M., Camalich, J. Martin, Oller, J.A., The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term. Phys. Rev. D, 85, 2012, 051503, 10.1103/PhysRevD.85.051503 arXiv:1110.3797.
Alarcon, J.M., Geng, L.S., Camalich, J. Martin, Oller, J.A., The strangeness content of the nucleon from effective field theory and phenomenology. Phys. Lett. B 730 (2014), 342–346, 10.1016/j.physletb.2014.01.065 arXiv:1209.2870.
Hoferichter, M., Ruiz de Elvira, J., Kubis, B., Meißner, U.-G., Roy–Steiner-equation analysis of pion–nucleon scattering. Phys. Rept. 625 (2016), 1–88, 10.1016/j.physrep.2016.02.002 arXiv:1510.06039.
Hoferichter, M., Ruiz de Elvira, J., Kubis, B., Meißner, U.-G., High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations. Phys. Rev. Lett., 115, 2015, 092301, 10.1103/PhysRevLett.115.092301 arXiv:1506.04142.
Hatta, Y., Yang, D.-L., Holographic J/ψ production near threshold and the proton mass problem. Phys. Rev. D, 98(7), 2018, 074003, 10.1103/PhysRevD.98.074003 arXiv:1808.02163.
Boussarie, R., Hatta, Y., QCD analysis of near-threshold quarkonium leptoproduction at large photon virtualities. Phys. Rev. D, 101(11), 2020, 114004, 10.1103/PhysRevD.101.114004 arXiv:2004.12715.
Brodsky, S.J., Chudakov, E., Hoyer, P., Laget, J.M., Photoproduction of charm near threshold. Phys. Lett. B 498 (2001), 23–28, 10.1016/S0370-2693(00)01373-3 arXiv:hep-ph/0010343.
Gryniuk, O., Vanderhaeghen, M., Accessing the real part of the forward J/ψ-p scattering amplitude from J/ψ photoproduction on protons around threshold. Phys. Rev. D, 94(7), 2016, 074001, 10.1103/PhysRevD.94.074001 arXiv:1608.08205.
Du, M.-L., Baru, V., Guo, F.-K., Hanhart, C., Meißner, U.-G., Nefediev, A., Strakovsky, I., Deciphering the mechanism of near-threshold J/ψ photoproduction. Eur. Phys. J. C, 80(11), 2020, 1053, 10.1140/epjc/s10052-020-08620-5 arXiv:2009.08345.
Mamo, K.A., Zahed, I., Diffractive photoproduction of J/ψ and ϒ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D, 101(8), 2020, 086003, 10.1103/PhysRevD.101.086003 arXiv:1910.04707.
Ali, A., et al. First Measurement of Near-Threshold J/ψ Exclusive Photoproduction off the Proton. Phys. Rev. Lett., 123(7), 2019, 072001, 10.1103/PhysRevLett.123.072001 arXiv:1905.10811.
Wang, R., Evslin, J., Chen, X., The origin of proton mass from J/Ψ photo-production data. Eur. Phys. J. C, 80(6), 2020, 507, 10.1140/epjc/s10052-020-8057-9 arXiv:1912.12040.
Gryniuk, O., Joosten, S., Meziani, Z.-E., Vanderhaeghen, M., ϒ photoproduction on the proton at the Electron-Ion Collider. Phys. Rev. D, 102(1), 2020, 014016, 10.1103/PhysRevD.102.014016 arXiv:2005.09293.
Jaffe, R.L., Spin, twist and hadron structure in deep inelastic processes. Ettore Majorana International School of Nucleon Structure: 1st Course: The Spin Structure of the Nucleon, 1996, 42–129 arXiv:hep-ph/9602236.
Airapetian, A., et al. Observation of a single spin azimuthal asymmetry in semi-inclusive pion electro production. Phys. Rev. Lett. 84 (2000), 4047–4051, 10.1103/PhysRevLett.84.4047 arXiv:hep-ex/9910062.
Airapetian, A., et al. Single spin azimuthal asymmetries in electroproduction of neutral pions in semi-inclusive deep inelastic scattering. Phys. Rev. D, 64, 2001, 097101, 10.1103/PhysRevD.64.097101 arXiv:hep-ex/0104005.
Airapetian, A., et al. Measurement of single spin azimuthal asymmetries in semi-inclusive electroproduction of pions and kaons on a longitudinally polarized deuterium target. Phys. Lett. B 562 (2003), 182–192, 10.1016/S0370-2693(03)00566-5 arXiv:hep-ex/0212039.
Airapetian, A., et al. Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target. Phys. Lett. B 622 (2005), 14–22, 10.1016/j.physletb.2005.06.067 arXiv:hep-ex/0505042.
Airapetian, A., et al. Beam-Spin Asymmetries in the Azimuthal Distribution of Pion Electroproduction. Phys. Lett. B 648 (2007), 164–170, 10.1016/j.physletb.2007.03.015 arXiv:hep-ex/0612059.
Airapetian, A., et al. Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets. Phys. Lett. B, 797, 2019, 134886, 10.1016/j.physletb.2019.134886 arXiv:1903.08544.
Gohn, W., et al. Beam-spin asymmetries from semi-inclusive pion electroproduction. Phys. Rev. D, 89(7), 2014, 072011, 10.1103/PhysRevD.89.072011 arXiv:1402.4097.
Avakian, H., et al. Measurement of beam-spin asymmetries for pi + electroproduction above the baryon resonance region. Phys. Rev. D, 69, 2004, 112004, 10.1103/PhysRevD.69.112004 arXiv:hep-ex/0301005.
Aghasyan, M., et al. Precise measurements of beam spin asymmetries in semi-inclusive π0 production. Phys. Lett. B 704 (2011), 397–402, 10.1016/j.physletb.2011.09.044 arXiv:1106.2293.
Adams, D.L., et al. Comparison of spin asymmetries and cross-sections in pi0 production by 200-GeV polarized anti-protons and protons. Phys. Lett. B 261 (1991), 201–206, 10.1016/0370-2693(91)91351-U.
Krueger, K., et al. Large analyzing power in inclusive pi+- production at high x(F) with a 22-GeV/c polarized proton beam. Phys. Lett. B 459 (1999), 412–416, 10.1016/S0370-2693(99)00677-2.
Allgower, C.E., et al. Measurement of analyzing powers of pi+ and pi- produced on a hydrogen and a carbon target with a 22-GeV/c incident polarized proton beam. Phys. Rev. D, 65, 2002, 092008, 10.1103/PhysRevD.65.092008.
Adams, J., et al. Cross-sections and transverse single spin asymmetries in forward neutral pion production from proton collisions at s**(1/2) = 200-GeV. Phys. Rev. Lett., 92, 2004, 171801, 10.1103/PhysRevLett.92.171801 arXiv:hep-ex/0310058.
Adler, S.S., et al. Measurement of transverse single-spin asymmetries for mid-rapidity production of neutral pions and charged hadrons in polarized p+p collisions at s**(1/2) = 200-GeV. Phys. Rev. Lett., 95, 2005, 202001, 10.1103/PhysRevLett.95.202001 arXiv:hep-ex/0507073.
Lee, J.H., Videbaek, F., Single spin asymmetries of identified hadrons in polarized p + p at s**(1/2) = 62.4 and 200-GeV. AIP Conf. Proc. 915:1 (2007), 533–538, 10.1063/1.2750837.
Ji, X., Fundamental Properties of the Proton in Light-Front Zero Modes. Nucl. Phys. B, 2020, 115181, 10.1016/j.nuclphysb.2020.115181 arXiv:2003.04478.
Qiu, J.-w., Sterman, G.F., Single transverse spin asymmetries. Phys. Rev. Lett. 67 (1991), 2264–2267, 10.1103/PhysRevLett.67.2264.
Wandzura, S., Wilczek, F., Sum Rules for Spin Dependent Electroproduction: Test of Relativistic Constituent Quarks. Phys. Lett. B 72 (1977), 195–198, 10.1016/0370-2693(77)90700-6.
Burkardt, M., Transverse force on quarks in deep-inelastic scattering. Phys. Rev. D, 88, 2013, 114502, 10.1103/PhysRevD.88.114502 arXiv:0810.3589.
Gamberg, L.P., Hwang, D.S., Metz, A., Schlegel, M., Light-cone divergence in twist-3 correlation functions. Phys. Lett. B 639 (2006), 508–512, 10.1016/j.physletb.2006.07.005 arXiv:hep-ph/0604022.
Bacchetta, A., Bozzi, G., Echevarria, M.G., Pisano, C., Prokudin, A., Radici, M., Azimuthal asymmetries in unpolarized SIDIS and Drell-Yan processes: a case study towards TMD factorization at subleading twist. Phys. Lett. B, 797, 2019, 134850, 10.1016/j.physletb.2019.134850 arXiv:1906.07037.
Bacchetta, A., Diehl, M., Goeke, K., Metz, A., Mulders, P.J., Schlegel, M., Semi-inclusive deep inelastic scattering at small transverse momentum. JHEP, 02, 2007, 093, 10.1088/1126-6708/2007/02/093 arXiv:hep-ph/0611265.
Efremov, A.V., Goeke, K., Schweitzer, P., Azimuthal asymmetries at CLAS: extraction of e**a(x) and prediction of A(UL). Phys. Rev. D, 67, 2003, 114014, 10.1103/PhysRevD.67.114014 arXiv:hep-ph/0208124.
Courtoy, A., Insights into the higher-twist distribution e(x) at CLAS. arXiv:1405.7659, 2014.
Accardi, A., Bacchetta, A., Melnitchouk, W., Schlegel, M., What can break the Wandzura-Wilczek relation?. JHEP, 11, 2009, 093, 10.1088/1126-6708/2009/11/093 arXiv:0907.2942.
Bastami, S., et al. Semi-Inclusive Deep Inelastic Scattering in Wandzura-Wilczek-type approximation. JHEP, 06, 2019, 007, 10.1007/JHEP06(2019)007 arXiv:1807.10606.
Bacchetta, A., Mulders, P.J., Pijlman, F., New observables in longitudinal single-spin asymmetries in semi-inclusive DIS. Phys. Lett. B 595 (2004), 309–317, 10.1016/j.physletb.2004.06.052 arXiv:hep-ph/0405154.
Bianconi, A., Boffi, S., Jakob, R., Radici, M., Two hadron interference fragmentation functions. Part 1. General framework. Phys. Rev. D, 62, 2000, 034008, 10.1103/PhysRevD.62.034008 arXiv:hep-ph/9907475.
Bacchetta, A., Radici, M., Two hadron semi-inclusive production including subleading twist. Phys. Rev. D, 69, 2004, 074026, 10.1103/PhysRevD.69.074026 arXiv:hep-ph/0311173.
Bacchetta, A., Radici, M., Partial wave analysis of two hadron fragmentation functions. Phys. Rev. D, 67, 2003, 094002, 10.1103/PhysRevD.67.094002 arXiv:hep-ph/0212300.
Bacchetta, A., Radici, M., Modeling dihadron fragmentation functions. Phys. Rev. D, 74, 2006, 114007, 10.1103/PhysRevD.74.114007 arXiv:hep-ph/0608037.
Jaffe, R.L., Jin, X.-m., Tang, J., Interference fragmentation functions and the nucleon's transversity. Phys. Rev. Lett. 80 (1998), 1166–1169, 10.1103/PhysRevLett.80.1166 arXiv:hep-ph/9709322.
Radici, M., Jakob, R., Bianconi, A., Accessing transversity with interference fragmentation functions. Phys. Rev. D, 65, 2002, 074031, 10.1103/PhysRevD.65.074031 arXiv:hep-ph/0110252.
Ceccopieri, F.A., Radici, M., Bacchetta, A., Evolution equations for extended di-hadron fragmentation functions. Phys. Lett. B 650 (2007), 81–89, 10.1016/j.physletb.2007.04.065 arXiv:hep-ph/0703265.
Accardi, A., Signori, A., Quark fragmentation as a probe of dynamical mass generation. Phys. Lett. B, 798, 2019, 134993, 10.1016/j.physletb.2019.134993 arXiv:1903.04458.
Vogelsang, W., Yuan, F., Next-to-leading Order Calculation of the Single Transverse Spin Asymmetry in the Drell-Yan Process. Phys. Rev. D, 79, 2009, 094010, 10.1103/PhysRevD.79.094010 arXiv:0904.0410.
Kang, Z.-B., Qiu, J.-W., Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry. Phys. Rev. D, 79, 2009, 016003, 10.1103/PhysRevD.79.016003 arXiv:0811.3101.
Braun, V.M., Manashov, A.N., Pirnay, B., Scale dependence of twist-three contributions to single spin asymmetries. Phys. Rev. D, 80, 2009, 114002, 10.1103/PhysRevD.80.114002 Erratum Phys. Rev. D, 86, 2012, 119902 arXiv:0909.3410.
Eguchi, H., Koike, Y., Tanaka, K., Twist-3 Formalism for Single Transverse Spin Asymmetry Reexamined: Semi-Inclusive Deep Inelastic Scattering. Nucl. Phys. B 763 (2007), 198–227, 10.1016/j.nuclphysb.2006.11.016 arXiv:hep-ph/0610314.
Ji, X., Qiu, J.-W., Vogelsang, W., Yuan, F., A Unified picture for single transverse-spin asymmetries in hard processes. Phys. Rev. Lett., 97, 2006, 082002, 10.1103/PhysRevLett.97.082002 arXiv:hep-ph/0602239.
Koike, Y., Vogelsang, W., Yuan, F., On the Relation Between Mechanisms for Single-Transverse-Spin Asymmetries. Phys. Lett. B 659 (2008), 878–884, 10.1016/j.physletb.2007.11.096 arXiv:0711.0636.
Bacchetta, A., Boer, D., Diehl, M., Mulders, P.J., Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum. JHEP, 08, 2008, 023, 10.1088/1126-6708/2008/08/023 arXiv:0803.0227.
Cammarota, J., Gamberg, L., Kang, Z.-B., Miller, J.A., Pitonyak, D., Prokudin, A., Rogers, T.C., Sato, N., Origin of single transverse-spin asymmetries in high-energy collisions. Phys. Rev. D, 102(5), 2020, 054002, 10.1103/PhysRevD.102.054002 arXiv:2002.08384.
Gamberg, L., Kang, Z.-B., Metz, A., Pitonyak, D., Prokudin, A., Left-right spin asymmetry in ℓN↑ → hX. Phys. Rev. D, 90(7), 2014, 074012, 10.1103/PhysRevD.90.074012 arXiv:1407.5078.
Airapetian, A., et al. Transverse target single-spin asymmetry in inclusive electro-production of charged pions and kaons. Phys. Lett. B 728 (2014), 183–190, 10.1016/j.physletb.2013.11.021 arXiv:1310.5070.
Allada, K., et al. Single spin asymmetries of inclusive hadrons produced in electron scattering from a transversely polarized 3He target. Phys. Rev. C, 89(4), 2014, 042201, 10.1103/PhysRevC.89.042201 arXiv:1311.1866.
Qiu, J.-w., Sterman, G.F., Single transverse spin asymmetries in hadronic pion production. Phys. Rev. D, 59, 1999, 014004, 10.1103/PhysRevD.59.014004 arXiv:hep-ph/9806356.
Kouvaris, C., Qiu, J.-W., Vogelsang, W., Yuan, F., Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions. Phys. Rev. D, 74, 2006, 114013, 10.1103/PhysRevD.74.114013 arXiv:hep-ph/0609238.
Metz, A., Pitonyak, D., Fragmentation contribution to the transverse single-spin asymmetry in proton-proton collisions. Phys. Lett. B 723 (2013), 365–370, 10.1016/j.physletb.2013.05.043 Erratum Phys. Lett. B, 762, 2016, 549 arXiv:1212.5037.
Kanazawa, K., Koike, Y., Metz, A., Pitonyak, D., Towards an explanation of transverse single-spin asymmetries in proton-proton collisions: the role of fragmentation in collinear factorization. Phys. Rev. D, 89(11), 2014, 111501, 10.1103/PhysRevD.89.111501 arXiv:1404.1033.
Gamberg, L., Kang, Z.-B., Pitonyak, D., Prokudin, A., Phenomenological constraints on AN in p↑p → π X from Lorentz invariance relations. Phys. Lett. B 770 (2017), 242–251, 10.1016/j.physletb.2017.04.061 arXiv:1701.09170.
Pitonyak, D., Exploring the stucture of hadrons through spin asymmetries in hard scattering processes. Ph.d thesis, 2013, Temple University, 10.34944/dspace/2140.
Efremov, A.V., Schweitzer, P., The Chirally odd twist 3 distribution e(a)(x). JHEP, 08, 2003, 006, 10.1088/1126-6708/2003/08/006 arXiv:hep-ph/0212044.
Burkardt, M., Koike, Y., Violation of sum rules for twist three parton distributions in QCD. Nucl. Phys. B 632 (2002), 311–329, 10.1016/S0550-3213(02)00263-8 arXiv:hep-ph/0111343.
Aslan, F., Burkardt, M., Singularities in Twist-3 Quark Distributions. Phys. Rev. D, 101(1), 2020, 016010, 10.1103/PhysRevD.101.016010 arXiv:1811.00938.
Ma, J.P., Zhang, G.P., On the singular behavior of the chirality-odd twist-3 parton distribution e(x). Phys. Lett. B, 811, 2020, 135947, 10.1016/j.physletb.2020.135947 arXiv:2003.13920.
Hatta, Y., Zhao, Y., Parton distribution function for the gluon condensate. Phys. Rev. D, 102(3), 2020, 034004, 10.1103/PhysRevD.102.034004 arXiv:2006.02798.
Bhattacharya, S., Cichy, K., Constantinou, M., Metz, A., Scapellato, A., Steffens, F., The role of zero-mode contributions in the matching for the twist-3 PDFs e(x) and hL(x). Phys. Rev. D, 102, 2020, 114025, 10.1103/PhysRevD.102.114025 arXiv:2006.12347.
Jaffe, R.L., Ji, X.-D., Chiral odd parton distributions and Drell-Yan processes. Nucl. Phys. B 375 (1992), 527–560, 10.1016/0550-3213(92)90110-W.
Avakian, H., Efremov, A.V., Schweitzer, P., Yuan, F., The transverse momentum dependent distribution functions in the bag model. Phys. Rev. D, 81, 2010, 074035, 10.1103/PhysRevD.81.074035 arXiv:1001.5467.
Jakob, R., Mulders, P.J., Rodrigues, J., Modeling quark distribution and fragmentation functions. Nucl. Phys. A 626 (1997), 937–965, 10.1016/S0375-9474(97)00588-5 arXiv:hep-ph/9704335.
Schweitzer, P., The Chirally odd twist three distribution function e**alpha(x) in the chiral quark soliton model. Phys. Rev. D, 67, 2003, 114010, 10.1103/PhysRevD.67.114010 arXiv:hep-ph/0303011.
Wakamatsu, M., Ohnishi, Y., The Nonperturbative origin of delta function singularity in the chirally odd twist three distribution function e(x). Phys. Rev. D, 67, 2003, 114011, 10.1103/PhysRevD.67.114011 arXiv:hep-ph/0303007.
Ohnishi, Y., Wakamatsu, M., pi N sigma term and chiral odd twist three distribution function e(x) of the nucleon in the chiral quark soliton model. Phys. Rev. D, 69, 2004, 114002, 10.1103/PhysRevD.69.114002 arXiv:hep-ph/0312044.
Lorcé, C., Pasquini, B., Schweitzer, P., Unpolarized transverse momentum dependent parton distribution functions beyond leading twist in quark models. JHEP, 01, 2015, 103, 10.1007/JHEP01(2015)103 arXiv:1411.2550.
Pasquini, B., Rodini, S., The twist-three distribution eq(x, k ⊥) in a light-front model. Phys. Lett. B 788 (2019), 414–424, 10.1016/j.physletb.2018.11.033 arXiv:1806.10932.
Radici, M., Courtoy, A., Bacchetta, A., Guagnelli, M., Improved extraction of valence transversity distributions from inclusive dihadron production. JHEP, 05, 2015, 123, 10.1007/JHEP05(2015)123 arXiv:1503.03495.
Balitsky, I.I., Braun, V.M., Koike, Y., Tanaka, K., Q**2 evolution of chiral odd twist-three distributions h(L) (x, Q**2) and e (x, Q**2) in the large N(c) limit. Phys. Rev. Lett. 77 (1996), 3078–3081, 10.1103/PhysRevLett.77.3078 arXiv:hep-ph/9605439.
Belitsky, A.V., Mueller, D., Scale dependence of the chiral odd twist-three distributions h-L(x) and e(x). Nucl. Phys. B 503 (1997), 279–308, 10.1016/S0550-3213(97)00432-X arXiv:hep-ph/9702354.
Koike, Y., Nishiyama, N., Q**2 evolution of chiral odd twist-three distribution e (x, Q**2). Phys. Rev. D 55 (1997), 3068–3076, 10.1103/PhysRevD.55.3068 arXiv:hep-ph/9609207.
Martin, A.D., Stirling, W.J., Thorne, R.S., Watt, G., Parton distributions for the LHC. Eur. Phys. J. C 63 (2009), 189–285, 10.1140/epjc/s10052-009-1072-5 arXiv:0901.0002.
Adloff, C., et al. Inclusive measurement of diffractive deep inelastic ep scattering. Z. Phys. C 76 (1997), 613–629, 10.1007/s002880050584 arXiv:hep-ex/9708016.
Breitweg, J., et al. Measurement of the diffractive structure function F2(D(4)) at HERA. Eur. Phys. J. C 1 (1998), 81–96, 10.1007/s100520050063 arXiv:hep-ex/9709021.
Collins, J.C., Proof of factorization for diffractive hard scattering. Phys. Rev. D 57 (1998), 3051–3056 Erratum Phys. Rev. D, 61, 2000, 019902, 10.1103/PhysRevD.61.019902 arXiv:hep-ph/9709499.
Berera, A., Soper, D.E., Behavior of diffractive parton distribution functions. Phys. Rev. D 53 (1996), 6162–6179, 10.1103/PhysRevD.53.6162 arXiv:hep-ph/9509239.
Trentadue, L., Veneziano, G., Fracture functions: An Improved description of inclusive hard processes in QCD. Phys. Lett. B 323 (1994), 201–211, 10.1016/0370-2693(94)90292-5.
Aktas, A., et al. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA. Eur. Phys. J. C 48 (2006), 715–748, 10.1140/epjc/s10052-006-0035-3 arXiv:hep-ex/0606004.
Chekanov, S., et al. A QCD analysis of ZEUS diffractive data. Nucl. Phys. B 831 (2010), 1–25, 10.1016/j.nuclphysb.2010.01.014 arXiv:0911.4119.
Motyka, L., Sadzikowski, M., Słomiński, W., Wichmann, K., Evidence of quasi-partonic higher-twist effects in deep inelastic scattering at HERA at moderate Q2. Eur. Phys. J. C, 78(1), 2018, 80, 10.1140/epjc/s10052-018-5548-z arXiv:1707.05992.
Klasen, M., Kramer, G., Salesch, S.G., Photoproduction of jets at HERA: Comparison of next-to-leading order calculation with ZEUS data. Z. Phys. C 68 (1995), 113–120, 10.1007/BF01579810.
Aktas, A., et al. Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA. Eur. Phys. J. C 51 (2007), 549–568, 10.1140/epjc/s10052-007-0325-4 arXiv:hep-ex/0703022.
Chekanov, S., et al. Diffractive photoproduction of dijets in ep collisions at HERA. Eur. Phys. J. C 55 (2008), 177–191, 10.1140/epjc/s10052-008-0598-2 arXiv:0710.1498.
Guzey, V., Klasen, M., Diffractive dijet photoproduction at the EIC. JHEP, 05, 2020, 074, 10.1007/JHEP05(2020)074 arXiv:2004.06972.
Budnev, V.M., Ginzburg, I.F., Meledin, G.V., Serbo, V.G., The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rept. 15 (1975), 181–281, 10.1016/0370-1573(75)90009-5.
Frixione, S., Mangano, M.L., Nason, P., Ridolfi, G., Improving the Weizsacker-Williams approximation in electron-proton collisions. Phys. Lett. B 319 (1993), 339–345, 10.1016/0370-2693(93)90823-Z arXiv:hep-ph/9310350.
Frankfurt, L., Guzey, V., Strikman, M., Leading Twist Nuclear Shadowing Phenomena in Hard Processes with Nuclei. Phys. Rept. 512 (2012), 255–393, 10.1016/j.physrep.2011.12.002 arXiv:1106.2091.
Balitsky, I.I., Lipatov, L.N., The Pomeranchuk Singularity in Quantum Chromodynamics. Sov. J. Nucl. Phys. 28 (1978), 822–829.
Kuraev, E.A., Lipatov, L.N., Fadin, V.S., The Pomeranchuk Singularity in Non-abelian Gauge Theories. Sov. Phys. JETP 45 (1977), 199–204.
Deák, M., Staśto, A.M., Strikman, M., High |t| diffractive vector meson production at the EIC. Phys. Rev. D, 103(1), 2021, 014022, 10.1103/PhysRevD.103.014022 arXiv:2011.04711.
Dasgupta, M., Salam, G.P., Event shapes in e+ e- annihilation and deep inelastic scattering. J. Phys. G, 30, 2004, R143, 10.1088/0954-3899/30/5/R01 arXiv:hep-ph/0312283.
Brandt, S., Peyrou, C., Sosnowski, R., Wroblewski, A., The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes. Phys. Lett. 12 (1964), 57–61, 10.1016/0031-9163(64)91176-X.
Farhi, E., A QCD Test for Jets. Phys. Rev. Lett. 39 (1977), 1587–1588, 10.1103/PhysRevLett.39.1587.
Catani, S., Turnock, G., Webber, B.R., Jet broadening measures in e+e− annihilation. Phys. Lett. B 295 (1992), 269–276, 10.1016/0370-2693(92)91565-Q.
Ellis, R.K., Ross, D.A., Terrano, A.E., The Perturbative Calculation of Jet Structure in e+ e- Annihilation. Nucl. Phys. B 178 (1981), 421–456, 10.1016/0550-3213(81)90165-6.
Cacciari, M., Salam, G.P., Soyez, G., The anti-kt jet clustering algorithm. JHEP, 04, 2008, 063, 10.1088/1126-6708/2008/04/063 arXiv:0802.1189.
Catani, S., Trentadue, L., Turnock, G., Webber, B.R., Resummation of large logarithms in e+ e- event shape distributions. Nucl. Phys. B 407 (1993), 3–42, 10.1016/0550-3213(93)90271-P.
Dasgupta, M., Salam, G.P., Resummed event shape variables in DIS. JHEP, 08, 2002, 032, 10.1088/1126-6708/2002/08/032 arXiv:hep-ph/0208073.
Almeida, L.G., Ellis, S.D., Lee, C., Sterman, G., Sung, I., Walsh, J.R., Comparing and counting logs in direct and effective methods of QCD resummation. JHEP, 04, 2014, 174, 10.1007/JHEP04(2014)174 arXiv:1401.4460.
Bauer, C.W., Fleming, S., Luke, M.E., Summing Sudakov logarithms in B → X(s gamma) in effective field theory. Phys. Rev. D, 63, 2000, 014006, 10.1103/PhysRevD.63.014006 arXiv:hep-ph/0005275.
Bauer, C.W., Fleming, S., Pirjol, D., Stewart, I.W., An Effective field theory for collinear and soft gluons: Heavy to light decays. Phys. Rev. D, 63, 2001, 114020, 10.1103/PhysRevD.63.114020 arXiv:hep-ph/0011336.
Bauer, C.W., Stewart, I.W., Invariant operators in collinear effective theory. Phys. Lett. B 516 (2001), 134–142, 10.1016/S0370-2693(01)00902-9 arXiv:hep-ph/0107001.
Bauer, C.W., Pirjol, D., Stewart, I.W., Soft collinear factorization in effective field theory. Phys. Rev. D, 65, 2002, 054022, 10.1103/PhysRevD.65.054022 arXiv:hep-ph/0109045.
Bauer, C.W., Fleming, S., Pirjol, D., Rothstein, I.Z., Stewart, I.W., Hard scattering factorization from effective field theory. Phys. Rev. D, 66, 2002, 014017, 10.1103/PhysRevD.66.014017 arXiv:hep-ph/0202088.
Abbate, R., Fickinger, M., Hoang, A.H., Mateu, V., Stewart, I.W., Thrust at N3LL with Power Corrections and a Precision Global Fit for αs(mZ). Phys. Rev. D, 83, 2011, 074021, 10.1103/PhysRevD.83.074021 arXiv:1006.3080.
Hoang, A.H., Kolodrubetz, D.W., Mateu, V., Stewart, I.W., State-of-the-art predictions for C-parameter and a determination of αs. Nucl. Part. Phys. Proc. 273–275 (2016), 2015–2021, 10.1063/1.4938630 arXiv:1501.04753.
Kang, D., Lee, C., Stewart, I.W., DIS Event Shape at N3LL. PoS, DIS2015, 2015, 142, 10.22323/1.247.0142.
Stewart, I.W., Tackmann, F.J., Waalewijn, W.J., Factorization at the LHC: From PDFs to Initial State Jets. Phys. Rev. D, 81, 2010, 094035, 10.1103/PhysRevD.81.094035 arXiv:0910.0467.
Stewart, I.W., Tackmann, F.J., Waalewijn, W.J., The Beam Thrust Cross Section for Drell-Yan at NNLL Order. Phys. Rev. Lett., 106, 2011, 032001, 10.1103/PhysRevLett.106.032001 arXiv:1005.4060.
Stewart, I.W., Tackmann, F.J., Waalewijn, W.J., The Quark Beam Function at NNLL. JHEP, 09, 2010, 005, 10.1007/JHEP09(2010)005 arXiv:1002.2213.
Gaunt, J., Stahlhofen, M., Tackmann, F.J., The Gluon Beam Function at Two Loops. JHEP, 08, 2014, 020, 10.1007/JHEP08(2014)020 arXiv:1405.1044.
Gaunt, J.R., Stahlhofen, M., Tackmann, F.J., The Quark Beam Function at Two Loops. JHEP, 04, 2014, 113, 10.1007/JHEP04(2014)113 arXiv:1401.5478.
Gaunt, J.R., Stahlhofen, M., The Fully-Differential Quark Beam Function at NNLO. JHEP, 12, 2014, 146, 10.1007/JHEP12(2014)146 arXiv:1409.8281.
Korchemsky, G.P., Radyushkin, A.V., Renormalization of the Wilson Loops Beyond the Leading Order. Nucl. Phys. B 283 (1987), 342–364, 10.1016/0550-3213(87)90277-X.
Korchemskaya, I.A., Korchemsky, G.P., On lightlike Wilson loops. Phys. Lett. B 287 (1992), 169–175, 10.1016/0370-2693(92)91895-G.
Moch, S., Vermaseren, J.A.M., Vogt, A., The Three loop splitting functions in QCD: The Nonsinglet case. Nucl. Phys. B 688 (2004), 101–134, 10.1016/j.nuclphysb.2004.03.030 arXiv:hep-ph/0403192.
Henn, J.M., Korchemsky, G.P., Mistlberger, B., The full four-loop cusp anomalous dimension in N = 4 super Yang-Mills and QCD. JHEP, 04, 2020, 018, 10.1007/JHEP04(2020)018 arXiv:1911.10174.
Matsuura, T., van der Marck, S.C., van Neerven, W.L., The Order alpha(s)**2 Drell-Yan K factor. Nucl. Phys. B Proc. Suppl. 7 (1989), 80–89, 10.1016/0920-5632(89)90588-4.
Matsuura, T., van der Marck, S.C., van Neerven, W.L., The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section. Nucl. Phys. B 319 (1989), 570–622, 10.1016/0550-3213(89)90620-2.
Gehrmann, T., Huber, T., Maitre, D., Two-loop quark and gluon form-factors in dimensional regularisation. Phys. Lett. B 622 (2005), 295–302, 10.1016/j.physletb.2005.07.019 arXiv:hep-ph/0507061.
Moch, S., Vermaseren, J.A.M., Vogt, A., The Quark form-factor at higher orders. JHEP, 08, 2005, 049, 10.1088/1126-6708/2005/08/049 arXiv:hep-ph/0507039.
Baikov, P.A., Chetyrkin, K.G., Smirnov, A.V., Smirnov, V.A., Steinhauser, M., Quark and gluon form factors to three loops. Phys. Rev. Lett., 102, 2009, 212002, 10.1103/PhysRevLett.102.212002 arXiv:0902.3519.
Lee, R.N., Smirnov, A.V., Smirnov, V.A., Analytic Results for Massless Three-Loop Form Factors. JHEP, 04, 2010, 020, 10.1007/JHEP04(2010)020 arXiv:1001.2887.
Lunghi, E., Pirjol, D., Wyler, D., Factorization in leptonic radiative B → γeν decays. Nucl. Phys. B 649 (2003), 349–364, 10.1016/S0550-3213(02)01032-5 arXiv:hep-ph/0210091.
Bauer, C.W., Manohar, A.V., Shape function effects in B → X(s) gamma and B → X(u) l anti-nu decays. Phys. Rev. D, 70, 2004, 034024, 10.1103/PhysRevD.70.034024 arXiv:hep-ph/0312109.
Becher, T., Neubert, M., Toward a NNLO calculation of the anti-B → X(s) gamma decay rate with a cut on photon energy. II. Two-loop result for the jet function. Phys. Lett. B 637 (2006), 251–259, 10.1016/j.physletb.2006.04.046 arXiv:hep-ph/0603140.
Brüser, R., Liu, Z.L., Stahlhofen, M., Three-Loop Quark Jet Function. Phys. Rev. Lett., 121(7), 2018, 072003, 10.1103/PhysRevLett.121.072003 arXiv:1804.09722.
Kang, D., Labun, O.Z., Lee, C., Equality of hemisphere soft functions for e+e−, DIS and pp collisions at O(α2s). Phys. Lett. B 748 (2015), 45–54, 10.1016/j.physletb.2015.06.057 arXiv:1504.04006.
Monni, P.F., Gehrmann, T., Luisoni, G., Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region. JHEP, 08, 2011, 010, 10.1007/JHEP08(2011)010 arXiv:1105.4560.
Hornig, A., Lee, C., Stewart, I.W., Walsh, J.R., Zuberi, S., Non-global Structure of the O(α2s) Dijet Soft Function. JHEP, 08, 2011, 054, 10.1007/JHEP08(2011)054 Erratum JHEP, 10, 2017, 101 arXiv:1105.4628.
Kang, D., Lee, C., Stewart, I.W., Analytic calculation of 1-jettiness in DIS at O (αs). JHEP, 11, 2014, 132, 10.1007/JHEP11(2014)132 arXiv:1407.6706.
Korchemsky, G.P., Sterman, G.F., Power corrections to event shapes and factorization. Nucl. Phys. B 555 (1999), 335–351, 10.1016/S0550-3213(99)00308-9 arXiv:hep-ph/9902341.
Korchemsky, G.P., Tafat, S., On power corrections to the event shape distributions in QCD. JHEP, 10, 2000, 010, 10.1088/1126-6708/2000/10/010 arXiv:hep-ph/0007005.
Hoang, A.H., Stewart, I.W., Designing gapped soft functions for jet production. Phys. Lett. B 660 (2008), 483–493, 10.1016/j.physletb.2008.01.040 arXiv:0709.3519.
Korchemsky, G.P., Sterman, G.F., Nonperturbative corrections in resummed cross-sections. Nucl. Phys. B 437 (1995), 415–432, 10.1016/0550-3213(94)00006-Z arXiv:hep-ph/9411211.
Dokshitzer, Y.L., Webber, B.R., Calculation of power corrections to hadronic event shapes. Phys. Lett. B 352 (1995), 451–455, 10.1016/0370-2693(95)00548-Y arXiv:hep-ph/9504219.
Dokshitzer, Y.L., Marchesini, G., Webber, B.R., Dispersive approach to power behaved contributions in QCD hard processes. Nucl. Phys. B 469 (1996), 93–142, 10.1016/0550-3213(96)00155-1 arXiv:hep-ph/9512336.
Dokshitzer, Y.L., Webber, B.R., Power corrections to event shape distributions. Phys. Lett. B 404 (1997), 321–327, 10.1016/S0370-2693(97)00573-X arXiv:hep-ph/9704298.
Salam, G.P., Wicke, D., Hadron masses and power corrections to event shapes. JHEP, 05, 2001, 061, 10.1088/1126-6708/2001/05/061 arXiv:hep-ph/0102343.
Mateu, V., Stewart, I.W., Thaler, J., Power Corrections to Event Shapes with Mass-Dependent Operators. Phys. Rev. D, 87(1), 2013, 014025, 10.1103/PhysRevD.87.014025 arXiv:1209.3781.
Hoang, A.H., Kluth, S., Hemisphere Soft Function at O(alpha(s)**2) for Dijet Production in e+ e- Annihilation. arXiv:0806.3852, 2008.
Chang, H.-M., Procura, M., Thaler, J., Waalewijn, W.J., Calculating Track-Based Observables for the LHC. Phys. Rev. Lett., 111, 2013, 102002, 10.1103/PhysRevLett.111.102002 arXiv:1303.6637.
Aktas, A., et al. Measurement of event shape variables in deep-inelastic scattering at HERA. Eur. Phys. J. C 46 (2006), 343–356, 10.1140/epjc/s2006-02493-x arXiv:hep-ex/0512014.
Chekanov, S., et al. Event shapes in deep inelastic scattering at HERA. Nucl. Phys. B 767 (2007), 1–28, 10.1016/j.nuclphysb.2006.05.016 arXiv:hep-ex/0604032.
Harland-Lang, L.A., Martin, A.D., Motylinski, P., Thorne, R.S., Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C, 75(5), 2015, 204, 10.1140/epjc/s10052-015-3397-6 arXiv:1412.3989.
Zyla, P.A., et al. Review of Particle Physics. PTEP, 2020(8), 2020, 083C01, 10.1093/ptep/ptaa104.
Davison, R.A., Webber, B.R., Non-Perturbative Contribution to the Thrust Distribution in e+ e- Annihilation. Eur. Phys. J. C 59 (2009), 13–25, 10.1140/epjc/s10052-008-0836-7 arXiv:0809.3326.
Abbate, R., Fickinger, M., Hoang, A.H., Mateu, V., Stewart, I.W., Precision Thrust Cumulant Moments at N3LL. Phys. Rev. D, 86, 2012, 094002, 10.1103/PhysRevD.86.094002 arXiv:1204.5746.
Gehrmann, T., Luisoni, G., Monni, P.F., Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution. Eur. Phys. J. C, 73(1), 2013, 2265, 10.1140/epjc/s10052-012-2265-x arXiv:1210.6945.
Hoang, A.H., Kolodrubetz, D.W., Mateu, V., Stewart, I.W., Precise determination of αs from the C-parameter distribution. Phys. Rev. D, 91(9), 2015, 094018, 10.1103/PhysRevD.91.094018 arXiv:1501.04111.
Punjabi, V., et al. Proton elastic form-factor ratios to Q**2 = 3.5-GeV**2 by polarization transfer. Phys. Rev. C, 71, 2005, 055202, 10.1103/PhysRevC.71.055202 Erratum Phys. Rev. C, 71, 2005, 069902 arXiv:nucl-ex/0501018.
Pacetti, S., Baldini Ferroli, R., Tomasi-Gustafsson, E., Proton electromagnetic form factors: Basic notions, present achievements and future perspectives. Phys. Rept. 550–551 (2015), 1–103, 10.1016/j.physrep.2014.09.005.
Kelly, J.J., Simple parametrization of nucleon form factors. Phys. Rev. C, 70, 2004, 068202, 10.1103/PhysRevC.70.068202.
Puckett, A.J.R., et al. Polarization Transfer Observables in Elastic Electron Proton Scattering at Q2 = 2.5, 5.2, 6.8, and 8.5 GeV2. Phys. Rev. C, 96(5), 2017, 055203, 10.1103/PhysRevC.96.055203 Erratum Phys. Rev. C, 98, 2018, 019907 arXiv:1707.08587.
Accardi, A., et al. e+@JLab White Paper: An Experimental Program with Positron Beams at Jefferson Lab. arXiv:2007.15081, 2020.
Abbott, D., et al. Phenomenology of the deuteron electromagnetic form-factors. Eur. Phys. J. A 7 (2000), 421–427, 10.1007/PL00013629 arXiv:nucl-ex/0002003.
Abbott, D., et al. Measurement of tensor polarization in elastic electron deuteron scattering at large momentum transfer. Phys. Rev. Lett. 84 (2000), 5053–5057, 10.1103/PhysRevLett.84.5053 arXiv:nucl-ex/0001006.
Parker, A., Higinbotham, D.W., Deuteron form factor parameterization. https://doi.org/10.5281/zenodo.4074280, 2020.
Zhou, J., et al. Advanced extraction of the deuteron charge radius from electron-deuteron scattering data. Phys. Rev. C, 103(2), 2021, 024002, 10.1103/PhysRevC.103.024002 arXiv:2010.09003.
Bouwhuis, M., et al. Measurement of T(20) in elastic electron deuteron scattering. Phys. Rev. Lett. 82 (1999), 3755–3758, 10.1103/PhysRevLett.82.3755 arXiv:nucl-ex/9810004.
Nikolenko, D.M., et al. Measurement of the tensor analyzing powers T(20) and T(21) in elastic electron deuteron scattering. Phys. Rev. Lett., 90, 2003, 072501, 10.1103/PhysRevLett.90.072501.
Amendolia, S.R., et al. Measurement of the Pion Form-factor in the Timelike Region for q2 Values Between 1-{GeV}/c2 and 18-{GeV}/c2. Phys. Lett. B 138 (1984), 454–458, 10.1016/0370-2693(84)91938-5.
Huber, G.M., et al. Charged pion form-factor between Q**2 = 0.60-GeV**2 and 2.45-GeV**2. II. Determination of, and results for, the pion form-factor. Phys. Rev. C, 78, 2008, 045203, 10.1103/PhysRevC.78.045203 arXiv:0809.3052.
G.M. Huber, D. Gaskell, T. Horn, et al., Measurement of the Charged Pion Form Factor to High Q2 and Scaling Study of the L/T-Separated Pion Electroproduction Cross Section at 11 GeV, jefferson Lab 12 GeV Experiment E12-19-006, 2019.
Amendolia, S.R., et al. A Measurement of the Pion Charge Radius. Phys. Lett. B 146 (1984), 116–120, 10.1016/0370-2693(84)90655-5.
Amendolia, S.R., et al. A Measurement of the Space-Like Pion Electromagnetic Form-Factor. Nucl. Phys. B, 277, 1986, 168, 10.1016/0550-3213(86)90437-2.
Ackermann, H., Azemoon, T., Gabriel, W., Mertiens, H.D., Reich, H.D., Specht, G., Janata, F., Schmidt, D., Determination of the Longitudinal and the Transverse Part in pi+ Electroproduction. Nucl. Phys. B 137 (1978), 294–300, 10.1016/0550-3213(78)90523-0.
Brauel, P., Canzler, T., Cords, D., Felst, R., Grindhammer, G., Helm, M., Kollmann, W.D., Krehbiel, H., Schadlich, M., Electroproduction of π+n, π−p and K+Λ, K+Σ0 Final States Above the Resonance Region. Z. Phys. C, 3, 1979, 101, 10.1007/BF01443698.
Bakulev, A.P., Passek-Kumericki, K., Schroers, W., Stefanis, N.G., Pion form-factor in QCD: From nonlocal condensates to NLO analytic perturbation theory. Phys. Rev. D, 70, 2004, 033014, 10.1103/PhysRevD.70.033014 Erratum Phys. Rev. D, 70, 2004, 079906 arXiv:hep-ph/0405062.
Melnitchouk, W., Quark hadron duality in electron pion scattering. Eur. Phys. J. A 17 (2003), 223–234, 10.1140/epja/i2003-10006-6 arXiv:hep-ph/0208258.
Hutauruk, P.T.P., Cloet, I.C., Thomas, A.W., Flavor dependence of the pion and kaon form factors and parton distribution functions. Phys. Rev. C, 94(3), 2016, 035201, 10.1103/PhysRevC.94.035201 arXiv:1604.02853.
Nesterenko, V.A., Radyushkin, A.V., Sum Rules and Pion Form-Factor in QCD. Phys. Lett. B, 115, 1982, 410, 10.1016/0370-2693(82)90528-7.
Mello, C.S., de Melo, J.P.B.C., Frederico, T., Minkowski space pion model inspired by lattice QCD running quark mass. Phys. Lett. B 766 (2017), 86–93, 10.1016/j.physletb.2016.12.058.
T. Horn, G.M. Huber, P. Markowitz, et al., Studies of the L/T Separated Kaon Electroproduction Cross Sections from 5-11 GeV, jefferson Lab 12 GeV Experiment E12-09-011, 2009.
Belitsky, A.V., Radyushkin, A.V., Unraveling hadron structure with generalized parton distributions. Phys. Rept. 418 (2005), 1–387, 10.1016/j.physrep.2005.06.002 arXiv:hep-ph/0504030.
Goeke, K., Polyakov, M.V., Vanderhaeghen, M., Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47 (2001), 401–515, 10.1016/S0146-6410(01)00158-2 arXiv:hep-ph/0106012.
Ji, X., Generalized parton distributions. Ann. Rev. Nucl. Part. Sci. 54 (2004), 413–450, 10.1146/annurev.nucl.54.070103.181302.
Boffi, S., Pasquini, B., Generalized parton distributions and the structure of the nucleon. Riv. Nuovo Cim. 30:9 (2007), 387–448, 10.1393/ncr/i2007-10025-7 arXiv:0711.2625.
Guidal, M., Moutarde, H., Vanderhaeghen, M., Generalized Parton Distributions in the valence region from Deeply Virtual Compton Scattering. Rept. Prog. Phys., 76, 2013, 066202, 10.1088/0034-4885/76/6/066202 arXiv:1303.6600.
Chouika, N., Mezrag, C., Moutarde, H., Rodríguez-Quintero, J., Covariant Extension of the GPD overlap representation at low Fock states. Eur. Phys. J. C, 77(12), 2017, 906, 10.1140/epjc/s10052-017-5465-6 arXiv:1711.05108.
Kumericki, K., Liuti, S., Moutarde, H., GPD phenomenology and DVCS fitting: Entering the high-precision era. Eur. Phys. J. A, 52(6), 2016, 157, 10.1140/epja/i2016-16157-3 arXiv:1602.02763.
Favart, L., Guidal, M., Horn, T., Kroll, P., Deeply Virtual Meson Production on the nucleon. Eur. Phys. J. A, 52(6), 2016, 158, 10.1140/epja/i2016-16158-2 arXiv:1511.04535.
Kriesten, B., Liuti, S., Theory of Deeply Virtual Compton Scattering off the Unpolarized Proton. arXiv:2004.08890, 2020.
Belitsky, A.V., Mueller, D., Kirchner, A., Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B 629 (2002), 323–392, 10.1016/S0550-3213(02)00144-X arXiv:hep-ph/0112108.
Berger, E.R., Diehl, M., Pire, B., Time-like Compton scattering: Exclusive photoproduction of lepton pairs. Eur. Phys. J. C 23 (2002), 675–689, 10.1007/s100520200917 arXiv:hep-ph/0110062.
Boër, M., Guidal, M., Vanderhaeghen, M., Timelike Compton scattering off the proton and generalized parton distributions. Eur. Phys. J. A, 51(8), 2015, 103, 10.1140/epja/i2015-15103-3.
Boër, M., Guidal, M., Vanderhaeghen, M., Timelike Compton scattering off the neutron. Eur. Phys. J. A, 52, 2016, 33, 10.1140/epja/i2016-16033-2 arXiv:1510.02880.
Grocholski, O., Moutarde, H., Pire, B., Sznajder, P., Wagner, J., Data-driven study of timelike Compton scattering. Eur. Phys. J. C, 80(2), 2020, 171, 10.1140/epjc/s10052-020-7700-9 arXiv:1912.09853.
Mueller, D., Pire, B., Szymanowski, L., Wagner, J., On timelike and spacelike hard exclusive reactions. Phys. Rev. D, 86, 2012, 031502, 10.1103/PhysRevD.86.031502 arXiv:1203.4392.
Ivanov, D.Y., Pire, B., Szymanowski, L., Teryaev, O.V., Probing chiral odd GPD's in diffractive electroproduction of two vector mesons. Phys. Lett. B 550 (2002), 65–76, 10.1016/S0370-2693(02)02856-3 arXiv:hep-ph/0209300.
Cosyn, W., Pire, B., Szymanowski, L., Diffractive two-meson electroproduction with a nucleon and deuteron target. Phys. Rev. D, 102(5), 2020, 054003, 10.1103/PhysRevD.102.054003 arXiv:2007.01923.
Cepila, J., Contreras, J.G., Tapia Takaki, J.D., Energy dependence of dissociative J/ψ photoproduction as a signature of gluon saturation at the LHC. Phys. Lett. B 766 (2017), 186–191, 10.1016/j.physletb.2016.12.063 arXiv:1608.07559.
Boussarie, R., Pire, B., Szymanowski, L., Wallon, S., Exclusive photoproduction of a γ ρ pair with a large invariant mass. JHEP, 02, 2017, 054, 10.1007/JHEP02(2017)054 Erratum JHEP, 10, 2018, 029 arXiv:1609.03830.
Pedrak, A., Pire, B., Szymanowski, L., Wagner, J., Hard photoproduction of a diphoton with a large invariant mass. Phys. Rev. D, 96(7), 2017, 074008, 10.1103/PhysRevD.96.074008 Erratum Phys. Rev. D, 100, 2019, 039901 arXiv:1708.01043.
Duplančić, G., Passek-Kumerički, K., Pire, B., Szymanowski, L., Wallon, S., Probing axial quark generalized parton distributions through exclusive photoproduction of a γ π± pair with a large invariant mass. JHEP, 11, 2018, 179, 10.1007/JHEP11(2018)179 arXiv:1809.08104.
Pedrak, A., Pire, B., Szymanowski, L., Wagner, J., Electroproduction of a large invariant mass photon pair. Phys. Rev. D, 101(11), 2020, 114027, 10.1103/PhysRevD.101.114027 arXiv:2003.03263.
Siddikov, M., Schmidt, I., Generalized Parton Distributions from charged current meson production. Phys. Rev. D, 99(11), 2019, 116005, 10.1103/PhysRevD.99.116005 arXiv:1904.04252.
Dupre, R., Guidal, M., Vanderhaeghen, M., Tomographic image of the proton. Phys. Rev. D, 95(1), 2017, 011501, 10.1103/PhysRevD.95.011501 arXiv:1606.07821.
Dupré, R., Guidal, M., Niccolai, S., Vanderhaeghen, M., Analysis of Deeply Virtual Compton Scattering Data at Jefferson Lab and Proton Tomography. Eur. Phys. J. A, 53(8), 2017, 171, 10.1140/epja/i2017-12356-8 arXiv:1704.07330.
Moutarde, H., Sznajder, P., Wagner, J., Border and skewness functions from a leading order fit to DVCS data. Eur. Phys. J. C, 78(11), 2018, 890, 10.1140/epjc/s10052-018-6359-y arXiv:1807.07620.
Pasquini, B., Boffi, S., Nucleon spin densities in a light-front constituent quark model. Phys. Lett. B 653 (2007), 23–28, 10.1016/j.physletb.2007.07.037 arXiv:0705.4345.
Joosten, S., Meziani, Z.E., Heavy Quarkonium Production at Threshold: from JLab to EIC. PoS, QCDEV2017, 2018, 017, 10.22323/1.308.0017 arXiv:1802.02616.
Ji, X.-D., Off forward parton distributions. J. Phys. G 24 (1998), 1181–1205, 10.1088/0954-3899/24/7/002 arXiv:hep-ph/9807358.
Polyakov, M.V., Schweitzer, P., Forces inside hadrons: pressure, surface tension, mechanical radius, and all that. Int. J. Mod. Phys. A, 33(26), 2018, 1830025, 10.1142/S0217751X18300259 arXiv:1805.06596.
Lorcé, C., Mantovani, L., Pasquini, B., Spatial distribution of angular momentum inside the nucleon. Phys. Lett. B 776 (2018), 38–47, 10.1016/j.physletb.2017.11.018 arXiv:1704.08557.
Ji, X.-D., Melnitchouk, W., Song, X., A Study of off forward parton distributions. Phys. Rev. D 56 (1997), 5511–5523, 10.1103/PhysRevD.56.5511 arXiv:hep-ph/9702379.
Goeke, K., Grabis, J., Ossmann, J., Polyakov, M.V., Schweitzer, P., Silva, A., Urbano, D., Nucleon form-factors of the energy momentum tensor in the chiral quark-soliton model. Phys. Rev. D, 75, 2007, 094021, 10.1103/PhysRevD.75.094021 arXiv:hep-ph/0702030.
Cebulla, C., Goeke, K., Ossmann, J., Schweitzer, P., The Nucleon form-factors of the energy momentum tensor in the Skyrme model. Nucl. Phys. A 794 (2007), 87–114, 10.1016/j.nuclphysa.2007.08.004 arXiv:hep-ph/0703025.
Pasquini, B., Polyakov, M.V., Vanderhaeghen, M., Dispersive evaluation of the D-term form factor in deeply virtual Compton scattering. Phys. Lett. B 739 (2014), 133–138, 10.1016/j.physletb.2014.10.047 arXiv:1407.5960.
Hagler, P., et al. Nucleon Generalized Parton Distributions from Full Lattice QCD. Phys. Rev. D, 77, 2008, 094502, 10.1103/PhysRevD.77.094502 arXiv:0705.4295.
Shanahan, P.E., Detmold, W., Pressure Distribution and Shear Forces inside the Proton. Phys. Rev. Lett., 122(7), 2019, 072003, 10.1103/PhysRevLett.122.072003 arXiv:1810.07589.
Girod, F.X., et al. Measurement of Deeply virtual Compton scattering beam-spin asymmetries. Phys. Rev. Lett., 100, 2008, 162002, 10.1103/PhysRevLett.100.162002 arXiv:0711.4805.
Jo, H.S., et al. Cross sections for the exclusive photon electroproduction on the proton and Generalized Parton Distributions. Phys. Rev. Lett., 115(21), 2015, 212003, 10.1103/PhysRevLett.115.212003 arXiv:1504.02009.
Burkert, V.D., Elouadrhiri, L., Girod, F.X., The pressure distribution inside the proton. Nature 557:7705 (2018), 396–399, 10.1038/s41586-018-0060-z.
Kumerički, K., Measurability of pressure inside the proton. Nature 570:7759 (2019), E1–E2, 10.1038/s41586-019-1211-6.
Moutarde, H., Sznajder, P., Wagner, J., Unbiased determination of DVCS Compton Form Factors. Eur. Phys. J. C, 79(7), 2019, 614, 10.1140/epjc/s10052-019-7117-5 arXiv:1905.02089.
Dutrieux, H., Lorcé, C., Moutarde, H., Sznajder, P., Trawiński, A., Wagner, J., Phenomenological assessment of proton mechanical properties from deeply virtual Compton scattering. arXiv:2101.03855, 2021.
Pire, B., Szymanowski, L., Hadron annihilation into two photons and backward VCS in the scaling regime of QCD. Phys. Rev. D, 71, 2005, 111501, 10.1103/PhysRevD.71.111501 arXiv:hep-ph/0411387.
Lansberg, J.P., Pire, B., Szymanowski, L., Backward DVCS and Proton to Photon Transition Distribution Amplitudes. Nucl. Phys. A 782 (2007), 16–23, 10.1016/j.nuclphysa.2006.10.014 arXiv:hep-ph/0607130.
Pire, B., Szymanowski, L., QCD analysis of anti-p N → gamma* pi in the scaling limit. Phys. Lett. B 622 (2005), 83–92, 10.1016/j.physletb.2005.06.080 arXiv:hep-ph/0504255.
Lansberg, J.P., Pire, B., Semenov-Tian-Shansky, K., Szymanowski, L., A consistent model for πN transition distribution amplitudes and backward pion electroproduction. Phys. Rev. D, 85, 2012, 054021, 10.1103/PhysRevD.85.054021 arXiv:1112.3570.
Pasquini, B., Pincetti, M., Boffi, S., Parton content of the nucleon from distribution amplitudes and transition distribution amplitudes. Phys. Rev. D, 80, 2009, 014017, 10.1103/PhysRevD.80.014017 arXiv:0905.4018.
Pire, B., Semenov-Tian-Shansky, K., Szymanowski, L., Nucleon-to-meson transition distribution amplitudes in impact parameter space. PoS, LC2019, 2019, 012, 10.22323/1.374.0012 arXiv:1912.05165.
Close, F.E., Halzen, F., Scott, D.M., What Is the Transverse Momentum of Partons?. Phys. Lett. B 68 (1977), 447–450, 10.1016/0370-2693(77)90466-X.
Parisi, G., Petronzio, R., Small Transverse Momentum Distributions in Hard Processes. Nucl. Phys. B 154 (1979), 427–440, 10.1016/0550-3213(79)90040-3.
Diehl, M., Introduction to GPDs and TMDs. Eur. Phys. J. A, 52(6), 2016, 149, 10.1140/epja/i2016-16149-3 arXiv:1512.01328.
Bacchetta, A., Where do we stand with a 3-D picture of the proton?. Eur. Phys. J. A, 52(6), 2016, 163, 10.1140/epja/i2016-16163-5.
Aschenauer, E.C., D'Alesio, U., Murgia, F., TMDs and SSAs in hadronic interactions. Eur. Phys. J. A, 52(6), 2016, 156, 10.1140/epja/i2016-16156-4 arXiv:1512.05379.
Boglione, M., Prokudin, A., Phenomenology of transverse spin: past, present and future. Eur. Phys. J. A, 52(6), 2016, 154, 10.1140/epja/i2016-16154-6 arXiv:1511.06924.
Anselmino, M., Mukherjee, A., Vossen, A., Transverse spin effects in hard semi-inclusive collisions. Prog. Part. Nucl. Phys., 114, 2020, 103806, 10.1016/j.ppnp.2020.103806 arXiv:2001.05415.
Bacchetta, A., D'Alesio, U., Diehl, M., Miller, C.A., Single-spin asymmetries: The Trento conventions. Phys. Rev. D, 70, 2004, 117504, 10.1103/PhysRevD.70.117504 arXiv:hep-ph/0410050.
Ji, X.-d., Ma, J.-p., Yuan, F., QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum. Phys. Rev. D, 71, 2005, 034005, 10.1103/PhysRevD.71.034005 arXiv:hep-ph/0404183.
Collins, J.C., Metz, A., Universality of soft and collinear factors in hard-scattering factorization. Phys. Rev. Lett., 93, 2004, 252001, 10.1103/PhysRevLett.93.252001 arXiv:hep-ph/0408249.
Collins, J., Foundations of perturbative QCD. vol. 32, 2013, Cambridge University Press.
Echevarria, M.G., Idilbi, A., Scimemi, I., Factorization Theorem For Drell-Yan At Low qT And Transverse Momentum Distributions On-The-Light-Cone. JHEP, 07, 2012, 002, 10.1007/JHEP07(2012)002 arXiv:1111.4996.
Metz, A., Vossen, A., Parton Fragmentation Functions. Prog. Part. Nucl. Phys. 91 (2016), 136–202, 10.1016/j.ppnp.2016.08.003 arXiv:1607.02521.
Scimemi, I., Vladimirov, A., Systematic analysis of double-scale evolution. JHEP, 08, 2018, 003, 10.1007/JHEP08(2018)003 arXiv:1803.11089.
Aybat, S.M., Rogers, T.C., TMD Parton Distribution and Fragmentation Functions with QCD Evolution. Phys. Rev. D, 83, 2011, 114042, 10.1103/PhysRevD.83.114042 arXiv:1101.5057.
Boer, D., Gamberg, L., Musch, B., Prokudin, A., Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering. JHEP, 10, 2011, 021, 10.1007/JHEP10(2011)021 arXiv:1107.5294.
Collins, J.C., Soper, D.E., Back-To-Back Jets: Fourier Transform from B to K-Transverse. Nucl. Phys. B 197 (1982), 446–476, 10.1016/0550-3213(82)90453-9.
Collins, J.C., Soper, D.E., Sterman, G.F., Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production. Nucl. Phys. B 250 (1985), 199–224, 10.1016/0550-3213(85)90479-1.
Balitsky, I., Tarasov, A., Higher-twist corrections to gluon TMD factorization. JHEP, 07, 2017, 095, 10.1007/JHEP07(2017)095 arXiv:1706.01415.
Balitsky, I., Tarasov, A., Power corrections to TMD factorization for Z-boson production. JHEP, 05, 2018, 150, 10.1007/JHEP05(2018)150 arXiv:1712.09389.
Boglione, M., Collins, J., Gamberg, L., Gonzalez-Hernandez, J.O., Rogers, T.C., Sato, N., Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering. Phys. Lett. B 766 (2017), 245–253, 10.1016/j.physletb.2017.01.021 arXiv:1611.10329.
Bacchetta, A., Delcarro, F., Pisano, C., Radici, M., Signori, A., Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production. JHEP, 06, 2017, 081, 10.1007/JHEP06(2017)081 Erratum JHEP, 06, 2019, 051 arXiv:1703.10157.
Scimemi, I., Vladimirov, A., Analysis of vector boson production within TMD factorization. Eur. Phys. J. C, 78(2), 2018, 89, 10.1140/epjc/s10052-018-5557-y arXiv:1706.01473.
Scimemi, I., Vladimirov, A., Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum. JHEP, 06, 2020, 137, 10.1007/JHEP06(2020)137 arXiv:1912.06532.
Bacchetta, A., Bertone, V., Bissolotti, C., Bozzi, G., Delcarro, F., Piacenza, F., Radici, M., Transverse-momentum-dependent parton distributions up to N3LL from Drell-Yan data. JHEP, 07, 2020, 117, 10.1007/JHEP07(2020)117 arXiv:1912.07550.
M. Boglione, S. Dolan, M. Diefenthaler, L. Gamberg, W. Melnitchouk, D. Pitonyak, A. Prokudin, T. Rogers, N. Sato, 2020.
Boglione, M., Dotson, A., Gamberg, L., Gordon, S., Gonzalez-Hernandez, J.O., Prokudin, A., Rogers, T.C., Sato, N., Mapping the Kinematical Regimes of semi-inclusive Deep Inelastic Scattering. JHEP, 10, 2019, 122, 10.1007/JHEP10(2019)122 arXiv:1904.12882.
Derrick, M., et al. Inclusive charged particle distributions in deep inelastic scattering events at HERA. Z. Phys. C 70 (1996), 1–16, 10.1007/s002880050075 arXiv:hep-ex/9511010.
Adloff, C., et al. Measurement of charged particle transverse momentum spectra in deep inelastic scattering. Nucl. Phys. B 485 (1997), 3–24, 10.1016/S0550-3213(96)00675-X arXiv:hep-ex/9610006.
Asaturyan, R., et al. Semi-Inclusive Charged-Pion Electroproduction off Protons and Deuterons: Cross Sections, Ratios and Access to the Quark-Parton Model at Low Energies. Phys. Rev. C, 85, 2012, 015202, 10.1103/PhysRevC.85.015202 arXiv:1103.1649.
Airapetian, A., et al. Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron. Phys. Rev. D, 87, 2013, 074029, 10.1103/PhysRevD.87.074029 arXiv:1212.5407.
Adolph, C., et al. Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/c. Eur. Phys. J. C, 73(8), 2013, 2531, 10.1140/epjc/s10052-013-2531-6 Erratum Eur. Phys. J. C, 75, 2015, 94 arXiv:1305.7317.
Aghasyan, M., et al. Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering. Phys. Rev. D, 97(3), 2018, 032006, 10.1103/PhysRevD.97.032006 arXiv:1709.07374.
Ito, A.S., et al. Measurement of the Continuum of Dimuons Produced in High-Energy Proton-Nucleus Collisions. Phys. Rev. D 23 (1981), 604–633, 10.1103/PhysRevD.23.604.
Moreno, G., et al. Dimuon production in proton-copper collisions at s=38.8-GeV. Phys. Rev. D 43 (1991), 2815–2836, 10.1103/PhysRevD.43.2815.
McGaughey, P.L., et al. Cross-sections for the production of high mass muon pairs from 800-GeV proton bombardment of H-2. Phys. Rev. D 50 (1994), 3038–3045, 10.1103/PhysRevD.50.3038 Erratum Phys. Rev. D, 60, 1999, 119903.
Aidala, C., et al. Measurements of μμ pairs from open heavy flavor and Drell-Yan in p + p collisions at s=200GeV. Phys. Rev. D, 99(7), 2019, 072003, 10.1103/PhysRevD.99.072003 arXiv:1805.02448.
Affolder, T., et al. The transverse momentum and total cross section of e+e− pairs in the Z boson region from pp‾ collisions at s=1.8TeV. Phys. Rev. Lett. 84 (2000), 845–850, 10.1103/PhysRevLett.84.845 arXiv:hep-ex/0001021.
Aaltonen, T., et al. Transverse momentum cross section of e+e− pairs in the Z-boson region from pp‾ collisions at s=1.96TeV. Phys. Rev. D, 86, 2012, 052010, 10.1103/PhysRevD.86.052010 arXiv:1207.7138.
Abbott, B., et al. Measurement of the inclusive differential cross section for Z bosons as a function of transverse momentum in p‾p collisions at s=1.8TeV. Phys. Rev. D, 61, 2000, 032004, 10.1103/PhysRevD.61.032004 arXiv:hep-ex/9907009.
Abazov, V.M., et al. Measurement of the shape of the boson transverse momentum distribution in pp‾→Z/γ⁎→e+e−+X events produced at s=1.96-TeV. Phys. Rev. Lett., 100, 2008, 102002, 10.1103/PhysRevLett.100.102002 arXiv:0712.0803.
Abazov, V.M., et al. Measurement of the Normalized Z/γ⁎→μ+μ− Transverse Momentum Distribution in pp‾ Collisions at s=1.96TeV. Phys. Lett. B 693 (2010), 522–530, 10.1016/j.physletb.2010.09.012 arXiv:1006.0618.
Aad, G., et al. Measurement of the Z/γ* boson transverse momentum distribution in pp collisions at s=7TeV with the ATLAS detector. JHEP, 09, 2014, 145, 10.1007/JHEP09(2014)145 arXiv:1406.3660.
Aad, G., et al. Measurement of the transverse momentum and ϕ*η distributions of Drell–Yan lepton pairs in proton–proton collisions at s=8TeV with the ATLAS detector. Eur. Phys. J. C, 76(5), 2016, 291, 10.1140/epjc/s10052-016-4070-4 arXiv:1512.02192.
Chatrchyan, S., et al. Measurement of the Rapidity and Transverse Momentum Distributions of Z Bosons in pp Collisions at s=7TeV. Phys. Rev. D, 85, 2012, 032002, 10.1103/PhysRevD.85.032002 arXiv:1110.4973.
Khachatryan, V., et al. Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at s=8TeV. JHEP, 02, 2017, 096, 10.1007/JHEP02(2017)096 arXiv:1606.05864.
Aaij, R., et al. Measurement of the forward Z boson production cross-section in pp collisions at s=7TeV. JHEP, 08, 2015, 039, 10.1007/JHEP08(2015)039 arXiv:1505.07024.
Aaij, R., et al. Measurement of forward W and Z boson production in pp collisions at s=8TeV. JHEP, 01, 2016, 155, 10.1007/JHEP01(2016)155 arXiv:1511.08039.
Aaij, R., et al. Measurement of the forward Z boson production cross-section in pp collisions at s=13TeV. JHEP, 09, 2016, 136, 10.1007/JHEP09(2016)136 arXiv:1607.06495.
Vladimirov, A.A., Self-contained definition of the Collins-Soper kernel. Phys. Rev. Lett., 125(19), 2020, 192002, 10.1103/PhysRevLett.125.192002 arXiv:2003.02288.
Signori, A., Bacchetta, A., Radici, M., Schnell, G., Investigations into the flavor dependence of partonic transverse momentum. JHEP, 11, 2013, 194, 10.1007/JHEP11(2013)194 arXiv:1309.3507.
Collins, J.C., Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering. Phys. Lett. B 536 (2002), 43–48, 10.1016/S0370-2693(02)01819-1 arXiv:hep-ph/0204004.
Efremov, A.V., Teryaev, O.V., The Transversal Polarization in Quantum Chromodynamics. Sov. J. Nucl. Phys., 39, 1984, 962.
Boer, D., Mulders, P.J., Pijlman, F., Universality of T odd effects in single spin and azimuthal asymmetries. Nucl. Phys. B 667 (2003), 201–241, 10.1016/S0550-3213(03)00527-3 arXiv:hep-ph/0303034.
Scimemi, I., Tarasov, A., Vladimirov, A., Collinear matching for Sivers function at next-to-leading order. JHEP, 05, 2019, 125, 10.1007/JHEP05(2019)125 arXiv:1901.04519.
Efremov, A.V., Goeke, K., Menzel, S., Metz, A., Schweitzer, P., Sivers effect in semi-inclusive DIS and in the Drell-Yan process. Phys. Lett. B 612 (2005), 233–244, 10.1016/j.physletb.2005.03.010 arXiv:hep-ph/0412353.
Anselmino, M., Boglione, M., D'Alesio, U., Kotzinian, A., Murgia, F., Prokudin, A., Extracting the Sivers function from polarized SIDIS data and making predictions. Phys. Rev. D, 72, 2005, 094007, 10.1103/PhysRevD.72.094007 Erratum Phys. Rev. D, 72, 2005, 099903 arXiv:hep-ph/0507181.
Collins, J.C., Efremov, A.V., Goeke, K., Menzel, S., Metz, A., Schweitzer, P., Sivers effect in semi-inclusive deeply inelastic scattering. Phys. Rev. D, 73, 2006, 014021, 10.1103/PhysRevD.73.014021 arXiv:hep-ph/0509076.
Vogelsang, W., Yuan, F., Single-transverse spin asymmetries: From DIS to hadronic collisions. Phys. Rev. D, 72, 2005, 054028, 10.1103/PhysRevD.72.054028 arXiv:hep-ph/0507266.
Anselmino, M., Boglione, M., D'Alesio, U., Kotzinian, A., Melis, S., Murgia, F., Prokudin, A., Turk, C., Sivers Effect for Pion and Kaon Production in Semi-Inclusive Deep Inelastic Scattering. Eur. Phys. J. A 39 (2009), 89–100, 10.1140/epja/i2008-10697-y arXiv:0805.2677.
Bacchetta, A., Radici, M., Constraining quark angular momentum through semi-inclusive measurements. Phys. Rev. Lett., 107, 2011, 212001, 10.1103/PhysRevLett.107.212001 arXiv:1107.5755.
Sun, P., Yuan, F., Transverse momentum dependent evolution: Matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production. Phys. Rev. D, 88(11), 2013, 114012, 10.1103/PhysRevD.88.114012 arXiv:1308.5003.
Echevarria, M.G., Idilbi, A., Kang, Z.-B., Vitev, I., QCD Evolution of the Sivers Asymmetry. Phys. Rev. D, 89, 2014, 074013, 10.1103/PhysRevD.89.074013 arXiv:1401.5078.
Boglione, M., D'Alesio, U., Flore, C., Gonzalez-Hernandez, J.O., Assessing signals of TMD physics in SIDIS azimuthal asymmetries and in the extraction of the Sivers function. JHEP, 07, 2018, 148, 10.1007/JHEP07(2018)148 arXiv:1806.10645.
Luo, X., Sun, H., Transverse single spin asymmetry AUTsin(ϕh−ϕS) for single hadron production in SIDIS. Phys. Rev. D, 101(7), 2020, 074016, 10.1103/PhysRevD.101.074016 arXiv:2004.03764.
Bacchetta, A., Delcarro, F., Pisano, C., Radici, M., The three-dimensional distribution of quarks in momentum space. arXiv:2004.14278, 2020.
Echevarria, M.G., Kang, Z.-B., Terry, J., Global analysis of the Sivers functions at NLO+NNLL in QCD. JHEP, 01, 2021, 126, 10.1007/JHEP01(2021)126 arXiv:2009.10710.
Bury, M., Prokudin, A., Vladimirov, A., N3LO extraction of the Sivers function from SIDIS, Drell-Yan, and W±/Z data. arXiv:2012.05135, 2020.
Airapetian, A., et al. Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons. arXiv:2007.07755, 2020.
Adolph, C., et al. Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons. Phys. Lett. B 744 (2015), 250–259, 10.1016/j.physletb.2015.03.056 arXiv:1408.4405.
Adolph, C., et al. Sivers asymmetry extracted in SIDIS at the hard scales of the Drell–Yan process at COMPASS. Phys. Lett. B 770 (2017), 138–145, 10.1016/j.physletb.2017.04.042 arXiv:1609.07374.
Alekseev, M., et al. Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS. Phys. Lett. B 673 (2009), 127–135, 10.1016/j.physletb.2009.01.060 arXiv:0802.2160.
Qian, X., et al. Single Spin Asymmetries in Charged Pion Production from semi-inclusive Deep Inelastic Scattering on a Transversely Polarized 3He Target. Phys. Rev. Lett., 107, 2011, 072003, 10.1103/PhysRevLett.107.072003 arXiv:1106.0363.
Aghasyan, M., et al. First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process. Phys. Rev. Lett., 119(11), 2017, 112002, 10.1103/PhysRevLett.119.112002 arXiv:1704.00488.
Adamczyk, L., et al. Measurement of the transverse single-spin asymmetry in p↑ + p → W±/Z0 at RHIC. Phys. Rev. Lett., 116(13), 2016, 132301, 10.1103/PhysRevLett.116.132301 arXiv:1511.06003.
Anselmino, M., Boglione, M., D'Alesio, U., Kotzinian, A., Murgia, F., Prokudin, A., Turk, C., Transversity and Collins functions from SIDIS and e+ e- data. Phys. Rev. D, 75, 2007, 054032, 10.1103/PhysRevD.75.054032 arXiv:hep-ph/0701006.
Anselmino, M., Boglione, M., D'Alesio, U., Melis, S., Murgia, F., Prokudin, A., Simultaneous extraction of transversity and Collins functions from new SIDIS and e+e- data. Phys. Rev. D, 87, 2013, 094019, 10.1103/PhysRevD.87.094019 arXiv:1303.3822.
Kang, Z.-B., Prokudin, A., Sun, P., Yuan, F., Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution. Phys. Rev. D, 93(1), 2016, 014009, 10.1103/PhysRevD.93.014009 arXiv:1505.05589.
Kang, Z.-B., Prokudin, A., Ringer, F., Yuan, F., Collins azimuthal asymmetries of hadron production inside jets. Phys. Lett. B 774 (2017), 635–642, 10.1016/j.physletb.2017.10.031 arXiv:1707.00913.
Airapetian, A., et al. Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target. Phys. Rev. Lett., 94, 2005, 012002, 10.1103/PhysRevLett.94.012002 arXiv:hep-ex/0408013.
Airapetian, A., et al. Effects of transversity in deep-inelastic scattering by polarized protons. Phys. Lett. B 693 (2010), 11–16, 10.1016/j.physletb.2010.08.012 arXiv:1006.4221.
Abe, K., et al. Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+ e- annihilation at Belle. Phys. Rev. Lett., 96, 2006, 232002, 10.1103/PhysRevLett.96.232002 arXiv:hep-ex/0507063.
Seidl, R., et al. Measurement of Azimuthal Asymmetries in Inclusive Production of Hadron Pairs in e+e- Annihilation at s**(1/2) = 10.58-GeV. Phys. Rev. D, 78, 2008, 032011, 10.1103/PhysRevD.78.032011 Erratum Phys. Rev. D, 86, 2012, 039905 arXiv:0805.2975.
Lees, J.P., et al. Measurement of Collins asymmetries in inclusive production of charged pion pairs in e+e− annihilation at BABAR. Phys. Rev. D, 90(5), 2014, 052003, 10.1103/PhysRevD.90.052003 arXiv:1309.5278.
Lees, J.P., et al. Collins asymmetries in inclusive charged KK and Kπ pairs produced in e+e− annihilation. Phys. Rev. D, 92(11), 2015, 111101, 10.1103/PhysRevD.92.111101 arXiv:1506.05864.
Ablikim, M., et al. Measurement of azimuthal asymmetries in inclusive charged dipion production in e+e− annihilations at s=3.65GeV. Phys. Rev. Lett., 116(4), 2016, 042001, 10.1103/PhysRevLett.116.042001 arXiv:1507.06824.
Li, H., et al. Azimuthal asymmetries of back-to-back π± −(π0, η, π±) pairs in e+e− annihilation. Phys. Rev. D, 100(9), 2019, 092008, 10.1103/PhysRevD.100.092008 arXiv:1909.01857.
Gamberg, L., Kang, Z.-B., Pitonyak, D., Prokudin, A., Sato, N., Seidl, R., Electron-Ion Collider impact study on the tensor charge of the nucleon. arXiv:2101.06200, 2021.
Gupta, R., Jang, Y.-C., Yoon, B., Lin, H.-W., Cirigliano, V., Bhattacharya, T., Isovector Charges of the Nucleon from 2+1+1-flavor Lattice QCD. Phys. Rev. D, 98, 2018, 034503, 10.1103/PhysRevD.98.034503 arXiv:1806.09006.
Alexandrou, C., Bacchio, S., Constantinou, M., Finkenrath, J., Hadjiyiannakou, K., Jansen, K., Koutsou, G., Vaquero Aviles-Casco, A., Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD. Phys. Rev. D, 102(5), 2020, 054517, 10.1103/PhysRevD.102.054517 arXiv:1909.00485.
Courtoy, A., Baeßler, S., González-Alonso, M., Liuti, S., Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology. Phys. Rev. Lett., 115, 2015, 162001, 10.1103/PhysRevLett.115.162001 arXiv:1503.06814.
Pisano, C., Boer, D., Brodsky, S.J., Buffing, M.G.A., Mulders, P.J., Linear polarization of gluons and photons in unpolarized collider experiments. JHEP, 10, 2013, 024, 10.1007/JHEP10(2013)024 arXiv:1307.3417.
Boer, D., Echevarria, M.G., Mulders, P., Zhou, J., Single spin asymmetries from a single Wilson loop. Phys. Rev. Lett., 116(12), 2016, 122001, 10.1103/PhysRevLett.116.122001 arXiv:1511.03485.
Bomhof, C.J., Mulders, P.J., Pijlman, F., The Construction of gauge-links in arbitrary hard processes. Eur. Phys. J. C 47 (2006), 147–162, 10.1140/epjc/s2006-02554-2 arXiv:hep-ph/0601171.
Dominguez, F., Marquet, C., Xiao, B.-W., Yuan, F., Universality of Unintegrated Gluon Distributions at small x. Phys. Rev. D, 83, 2011, 105005, 10.1103/PhysRevD.83.105005 arXiv:1101.0715.
Boer, D., Lorcé, C., Pisano, C., Zhou, J., The gluon Sivers distribution: status and future prospects. Adv. High Energy Phys., 2015, 2015, 371396, 10.1155/2015/371396 arXiv:1504.04332.
Boer, D., Cotogno, S., van Daal, T., Mulders, P.J., Signori, A., Zhou, Y.-J., Gluon and Wilson loop TMDs for hadrons of spin ≤ 1. JHEP, 10, 2016, 013, 10.1007/JHEP10(2016)013 arXiv:1607.01654.
Brodsky, S.J., Fleuret, F., Hadjidakis, C., Lansberg, J.P., Physics Opportunities of a Fixed-Target Experiment using the LHC Beams. Phys. Rept. 522 (2013), 239–255, 10.1016/j.physrep.2012.10.001 arXiv:1202.6585.
Kikoła, D., Echevarria, M.G., Hadjidakis, C., Lansberg, J.-P., Lorcé, C., Massacrier, L., Quintans, C.M., Signori, A., Trzeciak, B., Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC). Few Body Syst., 58(4), 2017, 139, 10.1007/s00601-017-1299-x arXiv:1702.01546.
Hadjidakis, C., et al. A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies. arXiv:1807.00603, 2018.
Boer, D., Mulders, P.J., Pisano, C., Zhou, J., Asymmetries in Heavy Quark Pair and Dijet Production at an EIC. JHEP, 08, 2016, 001, 10.1007/JHEP08(2016)001 arXiv:1605.07934.
Boer, D., et al. Gluons and the quark sea at high energies: Distributions, polarization, tomography. arXiv:1108.1713, 2011.
Burton, T., Gluon sivers and experimental considerations for TMDs. arXiv:1212.3590 https://doi.org/10.3204/DESY-PROC-2012-02/323, 2012.
Zheng, L., Aschenauer, E.C., Lee, J.H., Xiao, B.-W., Yin, Z.-B., Accessing the gluon Sivers function at a future electron-ion collider. Phys. Rev. D, 98(3), 2018, 034011, 10.1103/PhysRevD.98.034011 arXiv:1805.05290.
Kang, Z.-B., Reiten, J., Shao, D.Y., Terry, J., QCD evolution of the gluon Sivers function in heavy flavor dijet production at the Electron-Ion Collider. arXiv:2012.01756, 2020.
Boer, D., Pisano, C., Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER. Phys. Rev. D, 86, 2012, 094007, 10.1103/PhysRevD.86.094007 arXiv:1208.3642.
Ma, J.P., Wang, J.X., Zhao, S., Transverse momentum dependent factorization for quarkonium production at low transverse momentum. Phys. Rev. D, 88(1), 2013, 014027, 10.1103/PhysRevD.88.014027 arXiv:1211.7144.
Ma, J.P., Wang, C., QCD factorization for quarkonium production in hadron collisions at low transverse momentum. Phys. Rev. D, 93(1), 2016, 014025, 10.1103/PhysRevD.93.014025 arXiv:1509.04421.
Boer, D., Linearly polarized gluon effects in unpolarized collisions. PoS, QCDEV2015, 2015, 023, 10.22323/1.249.0023 arXiv:1510.05915.
Bain, R., Makris, Y., Mehen, T., Transverse Momentum Dependent Fragmenting Jet Functions with Applications to Quarkonium Production. JHEP, 11, 2016, 144, 10.1007/JHEP11(2016)144 arXiv:1610.06508.
Mukherjee, A., Rajesh, S., Probing Transverse Momentum Dependent Parton Distributions in Charmonium and Bottomonium Production. Phys. Rev. D, 93(5), 2016, 054018, 10.1103/PhysRevD.93.054018 arXiv:1511.04319.
Mukherjee, A., Rajesh, S., Linearly polarized gluons in charmonium and bottomonium production in color octet model. Phys. Rev. D, 95(3), 2017, 034039, 10.1103/PhysRevD.95.034039 arXiv:1611.05974.
Lansberg, J.-P., Pisano, C., Schlegel, M., Associated production of a dilepton and a ϒ(J/ψ) at the LHC as a probe of gluon transverse momentum dependent distributions. Nucl. Phys. B 920 (2017), 192–210, 10.1016/j.nuclphysb.2017.04.011 arXiv:1702.00305.
Lansberg, J.-P., Pisano, C., Scarpa, F., Schlegel, M., Pinning down the linearly-polarised gluons inside unpolarised protons using quarkonium-pair production at the LHC. Phys. Lett. B 784 (2018), 217–222, 10.1016/j.physletb.2018.08.004 Erratum Phys. Lett. B 791 (2019), 420–421 arXiv:1710.01684.
Bacchetta, A., Boer, D., Pisano, C., Taels, P., Gluon TMDs and NRQCD matrix elements in J/ψ production at an EIC. Eur. Phys. J. C, 80(1), 2020, 72, 10.1140/epjc/s10052-020-7620-8 arXiv:1809.02056.
D'Alesio, U., Murgia, F., Pisano, C., Taels, P., Azimuthal asymmetries in semi-inclusive J/ψ + jet production at an EIC. Phys. Rev. D, 100(9), 2019, 094016, 10.1103/PhysRevD.100.094016 arXiv:1908.00446.
Echevarria, M.G., Proper TMD factorization for quarkonia production: pp → ηc,b as a study case. JHEP, 10, 2019, 144, 10.1007/JHEP10(2019)144 arXiv:1907.06494.
Fleming, S., Makris, Y., Mehen, T., An effective field theory approach to quarkonium at small transverse momentum. JHEP, 04, 2020, 122, 10.1007/JHEP04(2020)122 arXiv:1910.03586.
Scarpa, F., Boer, D., Echevarria, M.G., Lansberg, J.-P., Pisano, C., Schlegel, M., Studies of gluon TMDs and their evolution using quarkonium-pair production at the LHC. Eur. Phys. J. C, 80(2), 2020, 87, 10.1140/epjc/s10052-020-7619-1 arXiv:1909.05769.
Grewal, M., Kang, Z.-B., Qiu, J.-W., Signori, A., Predictive power of transverse-momentum-dependent distributions. Phys. Rev. D, 101(11), 2020, 114023, 10.1103/PhysRevD.101.114023 arXiv:2003.07453.
Boer, D., D'Alesio, U., Murgia, F., Pisano, C., Taels, P., J/ψ meson production in SIDIS: matching high and low transverse momentum. JHEP, 09, 2020, 040, 10.1007/JHEP09(2020)040 arXiv:2004.06740.
Chao, K.-T., Ma, Y.-Q., Shao, H.-S., Wang, K., Zhang, Y.-J., J/ψ Polarization at Hadron Colliders in Nonrelativistic QCD. Phys. Rev. Lett., 108, 2012, 242004, 10.1103/PhysRevLett.108.242004 arXiv:1201.2675.
Sharma, R., Vitev, I., High transverse momentum quarkonium production and dissociation in heavy ion collisions. Phys. Rev. C, 87(4), 2013, 044905, 10.1103/PhysRevC.87.044905 arXiv:1203.0329.
del Castillo, R.F., Echevarria, M.G., Makris, Y., Scimemi, I., TMD factorization for dijet and heavy-meson pair in DIS. JHEP, 01, 2021, 088, 10.1007/JHEP01(2021)088 arXiv:2008.07531.
D'Alesio, U., Murgia, F., Pisano, C., Towards a first estimate of the gluon Sivers function from AN data in pp collisions at RHIC. JHEP, 09, 2015, 119, 10.1007/JHEP09(2015)119 arXiv:1506.03078.
Gliske, S., Bacchetta, A., Radici, M., Production of two hadrons in semi-inclusive deep inelastic scattering. Phys. Rev. D, 90(11), 2014, 114027, 10.1103/PhysRevD.90.114027 Erratum Phys. Rev. D, 91, 2015, 019902 arXiv:1408.5721.
Vossen, A., et al. Observation of transverse polarization asymmetries of charged pion pairs in e+e− annihilation near s=10.58GeV. Phys. Rev. Lett., 107, 2011, 072004, 10.1103/PhysRevLett.107.072004 arXiv:1104.2425.
Boer, D., Jakob, R., Radici, M., Interference fragmentation functions in electron positron annihilation. Phys. Rev. D, 67, 2003, 094003, 10.1103/PhysRevD.67.094003 Erratum Phys. Rev. D, 98, 2018, 039902 arXiv:hep-ph/0302232.
Bacchetta, A., Ceccopieri, F.A., Mukherjee, A., Radici, M., Asymmetries involving dihadron fragmentation functions: from DIS to e+e- annihilation. Phys. Rev. D, 79, 2009, 034029, 10.1103/PhysRevD.79.034029 arXiv:0812.0611.
Courtoy, A., Bacchetta, A., Radici, M., Bianconi, A., First extraction of Interference Fragmentation Functions from e+e− data. Phys. Rev. D, 85, 2012, 114023, 10.1103/PhysRevD.85.114023 arXiv:1202.0323.
Matevosyan, H.H., Bacchetta, A., Boer, D., Courtoy, A., Kotzinian, A., Radici, M., Thomas, A.W., Semi-inclusive production of two back-to-back hadron pairs in e+e− annihilation revisited. Phys. Rev. D, 97(7), 2018, 074019, 10.1103/PhysRevD.97.074019 arXiv:1802.01578.
Airapetian, A., et al. Evidence for a Transverse Single-Spin Asymmetry in Lepto-production of pi+pi- Pairs. JHEP, 06, 2008, 017, 10.1088/1126-6708/2008/06/017 arXiv:0803.2367.
Adolph, C., et al. Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering. Phys. Lett. B 713 (2012), 10–16, 10.1016/j.physletb.2012.05.015 arXiv:1202.6150.
Adolph, C., et al. A high-statistics measurement of transverse spin effects in dihadron production from muon–proton semi-inclusive deep-inelastic scattering. Phys. Lett. B 736 (2014), 124–131, 10.1016/j.physletb.2014.06.080 arXiv:1401.7873.
Braun, C., COMPASS results on the transverse spin asymmetry in hadron-pair production in SIDIS. EPJ Web Conf., 85, 2015, 02018, 10.1051/epjconf/20158502018.
Bacchetta, A., Courtoy, A., Radici, M., First glances at the transversity parton distribution through dihadron fragmentation functions. Phys. Rev. Lett., 107, 2011, 012001, 10.1103/PhysRevLett.107.012001 arXiv:1104.3855.
Bacchetta, A., Courtoy, A., Radici, M., First extraction of valence transversities in a collinear framework. JHEP, 03, 2013, 119, 10.1007/JHEP03(2013)119 arXiv:1212.3568.
Benel, J., Courtoy, A., Ferro-Hernandez, R., A constrained fit of the valence transversity distributions from dihadron production. Eur. Phys. J. C, 80(5), 2020, 465, 10.1140/epjc/s10052-020-8039-y arXiv:1912.03289.
Bacchetta, A., Radici, M., Dihadron interference fragmentation functions in proton-proton collisions. Phys. Rev. D, 70, 2004, 094032, 10.1103/PhysRevD.70.094032 arXiv:hep-ph/0409174.
Adamczyk, L., et al. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p↑ + p at s=200GeV. Phys. Rev. Lett., 115, 2015, 242501, 10.1103/PhysRevLett.115.242501 arXiv:1504.00415.
Radici, M., Bacchetta, A., First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data. Phys. Rev. Lett., 120(19), 2018, 192001, 10.1103/PhysRevLett.120.192001 arXiv:1802.05212.
Harris, T., von Hippel, G., Junnarkar, P., Meyer, H.B., Ottnad, K., Wilhelm, J., Wittig, H., Wrang, L., Nucleon isovector charges and twist-2 matrix elements with Nf = 2 + 1 dynamical Wilson quarks. Phys. Rev. D, 100(3), 2019, 034513, 10.1103/PhysRevD.100.034513 arXiv:1905.01291.
Hasan, N., Green, J., Meinel, S., Engelhardt, M., Krieg, S., Negele, J., Pochinsky, A., Syritsyn, S., Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass. Phys. Rev. D, 99(11), 2019, 114505, 10.1103/PhysRevD.99.114505 arXiv:1903.06487.
Alexandrou, C., et al. Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass. Phys. Rev. D, 95(11), 2017, 114514, 10.1103/PhysRevD.95.114514 Erratum Phys. Rev. D, 96, 2017, 099906 arXiv:1703.08788.
Bali, G.S., Collins, S., Glässle, B., Göckeler, M., Najjar, J., Rödl, R.H., Schäfer, A., Schiel, R.W., Söldner, W., Sternbeck, A., Nucleon isovector couplings from Nf = 2 lattice QCD. Phys. Rev. D, 91(5), 2015, 054501, 10.1103/PhysRevD.91.054501 arXiv:1412.7336.
Green, J.R., Negele, J.W., Pochinsky, A.V., Syritsyn, S.N., Engelhardt, M., Krieg, S., Nucleon Scalar and Tensor Charges from Lattice QCD with Light Wilson Quarks. Phys. Rev. D, 86, 2012, 114509, 10.1103/PhysRevD.86.114509 arXiv:1206.4527.
A. Bacchetta, M. Radici, A. Vossen, Study on the impact of EIC data on transversity extraction using di-hadrons, 2020.
Arratia, M., Makris, Y., Neill, D., Ringer, F., Sato, N., Asymmetric jet clustering in deep-inelastic scattering. arXiv:2006.10751, 2020.
Gutierrez-Reyes, D., Scimemi, I., Waalewijn, W.J., Zoppi, L., Transverse momentum dependent distributions with jets. Phys. Rev. Lett., 121(16), 2018, 162001, 10.1103/PhysRevLett.121.162001 arXiv:1807.07573.
Gutierrez-Reyes, D., Scimemi, I., Waalewijn, W.J., Zoppi, L., Transverse momentum dependent distributions in e+e− and semi-inclusive deep-inelastic scattering using jets. JHEP, 10, 2019, 031, 10.1007/JHEP10(2019)031 arXiv:1904.04259.
Gutierrez-Reyes, D., Makris, Y., Vaidya, V., Scimemi, I., Zoppi, L., Probing Transverse-Momentum Distributions With Groomed Jets. JHEP, 08, 2019, 161, 10.1007/JHEP08(2019)161 arXiv:1907.05896.
Kang, Z.-B., Liu, X., Mantry, S., Shao, D.Y., Jet Charge: A Flavor Prism for Spin Asymmetries at the EIC. Phys. Rev. Lett., 125, 2020, 242003, 10.1103/PhysRevLett.125.242003 arXiv:2008.00655.
Liu, X., Ringer, F., Vogelsang, W., Yuan, F., Lepton-jet Correlation in Deep Inelastic Scattering. Phys. Rev. D, 102(9), 2020, 094022, 10.1103/PhysRevD.102.094022 arXiv:2007.12866.
Arratia, M., Kang, Z.-B., Prokudin, A., Ringer, F., Jet-based measurements of Sivers and Collins asymmetries at the future electron-ion collider. Phys. Rev. D, 102(7), 2020, 074015, 10.1103/PhysRevD.102.074015 arXiv:2007.07281.
Kang, Z.-B., Lee, K., Zhao, F., Polarized jet fragmentation functions. Phys. Lett. B, 809, 2020, 135756, 10.1016/j.physletb.2020.135756 arXiv:2005.02398.
Yuan, F., Azimuthal asymmetric distribution of hadrons inside a jet at hadron collider. Phys. Rev. Lett., 100, 2008, 032003, 10.1103/PhysRevLett.100.032003 arXiv:0709.3272.
Neill, D., Scimemi, I., Waalewijn, W.J., Jet axes and universal transverse-momentum-dependent fragmentation. JHEP, 04, 2017, 020, 10.1007/JHEP04(2017)020 arXiv:1612.04817.
Kang, Z.-B., Liu, X., Ringer, F., Xing, H., The transverse momentum distribution of hadrons within jets. JHEP, 11, 2017, 068, 10.1007/JHEP11(2017)068 arXiv:1705.08443.
Kang, Z.-B., Ringer, F., Waalewijn, W.J., The Energy Distribution of Subjets and the Jet Shape. JHEP, 07, 2017, 064, 10.1007/JHEP07(2017)064 arXiv:1705.05375.
Makris, Y., Neill, D., Vaidya, V., Probing Transverse-Momentum Dependent Evolution With Groomed Jets. JHEP, 07, 2018, 167, 10.1007/JHEP07(2018)167 arXiv:1712.07653.
Neill, D., Papaefstathiou, A., Waalewijn, W.J., Zoppi, L., Phenomenology with a recoil-free jet axis: TMD fragmentation and the jet shape. JHEP, 01, 2019, 067, 10.1007/JHEP01(2019)067 arXiv:1810.12915.
Cal, P., Ringer, F., Waalewijn, W.J., The jet shape at NLL'. JHEP, 05, 2019, 143, 10.1007/JHEP05(2019)143 arXiv:1901.06389.
Cal, P., Neill, D., Ringer, F., Waalewijn, W.J., Calculating the angle between jet axes. JHEP, 04, 2020, 211, 10.1007/JHEP04(2020)211 arXiv:1911.06840.
Larkoski, A.J., Moult, I., Nachman, B., Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning. Phys. Rept. 841 (2020), 1–63, 10.1016/j.physrep.2019.11.001 arXiv:1709.04464.
Connors, M., Nattrass, C., Reed, R., Salur, S., Jet measurements in heavy ion physics. Rev. Mod. Phys., 90, 2018, 025005, 10.1103/RevModPhys.90.025005 arXiv:1705.01974.
Abelev, B.I., et al. Measurement of transverse single-spin asymmetries for di-jet production in proton-proton collisions at s**(1/2) = 200-GeV. Phys. Rev. Lett., 99, 2007, 142003, 10.1103/PhysRevLett.99.142003 arXiv:0705.4629.
Bland, L.C., et al. Cross Sections and Transverse Single-Spin Asymmetries in Forward Jet Production from Proton Collisions at s=500GeV. Phys. Lett. B 750 (2015), 660–665, 10.1016/j.physletb.2015.10.001 arXiv:1304.1454.
Adamczyk, L., et al. Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at s=500GeV. Phys. Rev. D, 97(3), 2018, 032004, 10.1103/PhysRevD.97.032004 arXiv:1708.07080.
Aschenauer, E.-C., et al. The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC. arXiv:1602.03922, 2016.
Krohn, D., Schwartz, M.D., Lin, T., Waalewijn, W.J., Jet Charge at the LHC. Phys. Rev. Lett., 110(21), 2013, 212001, 10.1103/PhysRevLett.110.212001 arXiv:1209.2421.
Neill, D., Ringer, F., Sato, N., Calculating the energy loss of leading jets. arXiv:2008.09532, 2020.
D'Alesio, U., Murgia, F., Pisano, C., Testing the universality of the Collins function in pion-jet production at RHIC. Phys. Lett. B 773 (2017), 300–306, 10.1016/j.physletb.2017.08.023 arXiv:1707.00914.
D'Alesio, U., Murgia, F., Pisano, C., Azimuthal asymmetries for hadron distributions inside a jet in hadronic collisions. Phys. Rev. D, 83, 2011, 034021, 10.1103/PhysRevD.83.034021 arXiv:1011.2692.
Bertolini, D., Chan, T., Thaler, J., Jet Observables Without Jet Algorithms. JHEP, 04, 2014, 013, 10.1007/JHEP04(2014)013 arXiv:1310.7584.
Dasgupta, M., Fregoso, A., Marzani, S., Salam, G.P., Towards an understanding of jet substructure. JHEP, 09, 2013, 029, 10.1007/JHEP09(2013)029 arXiv:1307.0007.
Gao, A., Li, H.T., Moult, I., Zhu, H.X., Precision QCD Event Shapes at Hadron Colliders: The Transverse Energy-Energy Correlator in the Back-to-Back Limit. Phys. Rev. Lett., 123(6), 2019, 062001, 10.1103/PhysRevLett.123.062001 arXiv:1901.04497.
Li, H.T., Vitev, I., Zhu, Y.J., Transverse-Energy-Energy Correlations in Deep Inelastic Scattering. JHEP, 11, 2020, 051, 10.1007/JHEP11(2020)051 arXiv:2006.02437.
Li, H.T., Makris, Y., Vitev, I., Energy-energy correlators in Deep Inelastic Scattering. arXiv:2102.05669, 2021.
Meissner, S., Metz, A., Schlegel, M., Generalized parton correlation functions for a spin-1/2 hadron. JHEP, 08, 2009, 056, 10.1088/1126-6708/2009/08/056 arXiv:0906.5323.
Meissner, S., Metz, A., Schlegel, M., Goeke, K., Generalized parton correlation functions for a spin-0 hadron. JHEP, 08, 2008, 038, 10.1088/1126-6708/2008/08/038 arXiv:0805.3165.
Lorce, C., Pasquini, B., Vanderhaeghen, M., Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon. JHEP, 05, 2011, 041, 10.1007/JHEP05(2011)041 arXiv:1102.4704.
Lorcé, C., Pasquini, B., Structure analysis of the generalized correlator of quark and gluon for a spin-1/2 target. JHEP, 09, 2013, 138, 10.1007/JHEP09(2013)138 arXiv:1307.4497.
Lorce, C., Pasquini, B., Quark Wigner Distributions and Orbital Angular Momentum. Phys. Rev. D, 84, 2011, 014015, 10.1103/PhysRevD.84.014015 arXiv:1106.0139.
Lorcé, C., Pasquini, B., Multipole decomposition of the nucleon transverse phase space. Phys. Rev. D, 93(3), 2016, 034040, 10.1103/PhysRevD.93.034040 arXiv:1512.06744.
Ji, X.-d., Viewing the proton through 'color' filters. Phys. Rev. Lett., 91, 2003, 062001, 10.1103/PhysRevLett.91.062001 arXiv:hep-ph/0304037.
Belitsky, A.V., Ji, X.-d., Yuan, F., Quark imaging in the proton via quantum phase space distributions. Phys. Rev. D, 69, 2004, 074014, 10.1103/PhysRevD.69.074014 arXiv:hep-ph/0307383.
Hatta, Y., Notes on the orbital angular momentum of quarks in the nucleon. Phys. Lett. B 708 (2012), 186–190, 10.1016/j.physletb.2012.01.024 arXiv:1111.3547.
Lorce, C., Pasquini, B., Xiong, X., Yuan, F., The quark orbital angular momentum from Wigner distributions and light-cone wave functions. Phys. Rev. D, 85, 2012, 114006, 10.1103/PhysRevD.85.114006 arXiv:1111.4827.
Ji, X., Xiong, X., Yuan, F., Proton Spin Structure from Measurable Parton Distributions. Phys. Rev. Lett., 109, 2012, 152005, 10.1103/PhysRevLett.109.152005 arXiv:1202.2843.
Lorce, C., Wilson lines and orbital angular momentum. Phys. Lett. B 719 (2013), 185–190, 10.1016/j.physletb.2013.01.007 arXiv:1210.2581.
Burkardt, M., Parton Orbital Angular Momentum and Final State Interactions. Phys. Rev. D, 88(1), 2013, 014014, 10.1103/PhysRevD.88.014014 arXiv:1205.2916.
Ji, X., Yuan, F., Zhao, Y., Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider. Phys. Rev. Lett., 118(19), 2017, 192004, 10.1103/PhysRevLett.118.192004 arXiv:1612.02438.
Rajan, A., Courtoy, A., Engelhardt, M., Liuti, S., Parton Transverse Momentum and Orbital Angular Momentum Distributions. Phys. Rev. D, 94(3), 2016, 034041, 10.1103/PhysRevD.94.034041 arXiv:1601.06117.
Bhattacharya, S., Metz, A., Zhou, J., Generalized TMDs and the exclusive double Drell–Yan process. Phys. Lett. B 771 (2017), 396–400, 10.1016/j.physletb.2017.05.081 Erratum Phys. Lett. B, 810, 2020, 135866 arXiv:1702.04387.
Bhattacharya, S., Metz, A., Ojha, V.K., Tsai, J.-Y., Zhou, J., Exclusive double quarkonium production and generalized TMDs of gluons. arXiv:1802.10550, 2018.
Heinz, U., Evdokimov, O., Jacobs, P., et al. Photo-nuclear dijet production in ultra-peripheral Pb+Pb collisions. Tech. rep., 2 2017, CERN.
collaboration, C., Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at sNN=5.02TeV. Tech. rep., 2020, CERN https://cds.cern.ch/record/2725347.
Hatta, Y., Xiao, B.-W., Yuan, F., Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering. Phys. Rev. Lett., 116(20), 2016, 202301, 10.1103/PhysRevLett.116.202301 arXiv:1601.01585.
Hagiwara, Y., Hatta, Y., Pasechnik, R., Tasevsky, M., Teryaev, O., Accessing the gluon Wigner distribution in ultraperipheral pA collisions. Phys. Rev. D, 96(3), 2017, 034009, 10.1103/PhysRevD.96.034009 arXiv:1706.01765.
Altinoluk, T., Armesto, N., Beuf, G., Rezaeian, A.H., Diffractive Dijet Production in Deep Inelastic Scattering and Photon-Hadron Collisions in the Color Glass Condensate. Phys. Lett. B 758 (2016), 373–383, 10.1016/j.physletb.2016.05.032 arXiv:1511.07452.
Mäntysaari, H., Mueller, N., Schenke, B., Diffractive Dijet Production and Wigner Distributions from the Color Glass Condensate. Phys. Rev. D, 99(7), 2019, 074004, 10.1103/PhysRevD.99.074004 arXiv:1902.05087.
Boussarie, R., Grabovsky, A.V., Szymanowski, L., Wallon, S., On the one loop γ(⁎)→qq¯ impact factor and the exclusive diffractive cross sections for the production of two or three jets. JHEP, 11, 2016, 149, 10.1007/JHEP11(2016)149 arXiv:1606.00419.
Boussarie, R., Grabovsky, A.V., Szymanowski, L., Wallon, S., Towards a complete next-to-logarithmic description of forward exclusive diffractive dijet electroproduction at HERA: real corrections. Phys. Rev. D, 100(7), 2019, 074020, 10.1103/PhysRevD.100.074020 arXiv:1905.07371.
Hatta, Y., Mueller, N., Ueda, T., Yuan, F., QCD Resummation in Hard Diffractive Dijet Production at the Electron-Ion Collider. Phys. Lett. B, 802, 2020, 135211, 10.1016/j.physletb.2020.135211 arXiv:1907.09491.
Mäntysaari, H., Mueller, N., Salazar, F., Schenke, B., Multigluon Correlations and Evidence of Saturation from Dijet Measurements at an Electron-Ion Collider. Phys. Rev. Lett., 124(11), 2020, 112301, 10.1103/PhysRevLett.124.112301 arXiv:1912.05586.
Boussarie, R., Hatta, Y., Szymanowski, L., Wallon, S., Probing the Gluon Sivers Function with an Unpolarized Target: GTMD Distributions and the Odderons. Phys. Rev. Lett., 124(17), 2020, 172501, 10.1103/PhysRevLett.124.172501 arXiv:1912.08182.
Zhou, J., Transverse single spin asymmetries at small x and the anomalous magnetic moment. Phys. Rev. D, 89(7), 2014, 074050, 10.1103/PhysRevD.89.074050 arXiv:1308.5912.
Adloff, C., et al. Search for odderon induced contributions to exclusive pi0 photoproduction at HERA. Phys. Lett. B 544 (2002), 35–43, 10.1016/S0370-2693(02)02479-6 arXiv:hep-ex/0206073.
Hattawy, M., et al. First Exclusive Measurement of Deeply Virtual Compton Scattering off 4He: Toward the 3D Tomography of Nuclei. Phys. Rev. Lett., 119(20), 2017, 202004, 10.1103/PhysRevLett.119.202004 arXiv:1707.03361.
Hattawy, M., et al. Exploring the Structure of the Bound Proton with Deeply Virtual Compton Scattering. Phys. Rev. Lett., 123(3), 2019, 032502, 10.1103/PhysRevLett.123.032502 arXiv:1812.07628.
Dupré, R., Scopetta, S., 3D Structure and Nuclear Targets. Eur. Phys. J. A, 52(6), 2016, 159, 10.1140/epja/i2016-16159-1 arXiv:1510.00794.
Berger, E.R., Cano, F., Diehl, M., Pire, B., Generalized parton distributions in the deuteron. Phys. Rev. Lett., 87, 2001, 142302, 10.1103/PhysRevLett.87.142302 arXiv:hep-ph/0106192.
Armstrong, W., et al. Partonic Structure of Light Nuclei. arXiv:1708.00888, 2017.
Goeke, K., Guzey, V., Siddikov, M., Leading twist nuclear shadowing, nuclear generalized parton distributions and nuclear DVCS at small x. Phys. Rev. C, 79, 2009, 035210, 10.1103/PhysRevC.79.035210 arXiv:0901.4711.
Rinaldi, M., Scopetta, S., Extracting generalized neutron parton distributions from 3He data. Phys. Rev. C, 87(3), 2013, 035208, 10.1103/PhysRevC.87.035208 arXiv:1208.2831.
Cano, F., Pire, B., Deep electroproduction of photons and mesons on the deuteron. Eur. Phys. J. A 19 (2004), 423–438, 10.1140/epja/i2003-10127-x arXiv:hep-ph/0307231.
Cosyn, W., Pire, B., Transversity generalized parton distributions for the deuteron. Phys. Rev. D, 98(7), 2018, 074020, 10.1103/PhysRevD.98.074020 arXiv:1806.01177.
Cosyn, W., Freese, A., Pire, B., Polynomiality sum rules for generalized parton distributions of spin-1 targets. Phys. Rev. D, 99(9), 2019, 094035, 10.1103/PhysRevD.99.094035 arXiv:1812.01511.
Taneja, S.K., Kathuria, K., Liuti, S., Goldstein, G.R., Angular momentum sum rule for spin one hadronic systems. Phys. Rev. D, 86, 2012, 036008, 10.1103/PhysRevD.86.036008 arXiv:1101.0581.
Scopetta, S., Generalized parton distributions of He-3. Phys. Rev. C, 70, 2004, 015205, 10.1103/PhysRevC.70.015205 arXiv:nucl-th/0404014.
Scopetta, S., Conventional nuclear effects on generalized parton distributions of trinucleons. Phys. Rev. C, 79, 2009, 025207, 10.1103/PhysRevC.79.025207 arXiv:0901.3058.
Rinaldi, M., Scopetta, S., Neutron orbital structure from generalized parton distributions of 3He. Phys. Rev. C, 85, 2012, 062201, 10.1103/PhysRevC.85.062201 arXiv:1204.0723.
Rinaldi, M., Scopetta, S., Theoretical description of deeply virtual Compton scattering off 3He. Few Body Syst. 55 (2014), 861–864, 10.1007/s00601-014-0803-9 arXiv:1401.1350.
Del Dotto, A., Pace, E., Salmè, G., Scopetta, S., Light-Front spin-dependent Spectral Function and Nucleon Momentum Distributions for a Three-Body System. Phys. Rev. C, 95(1), 2017, 014001, 10.1103/PhysRevC.95.014001 arXiv:1609.03804.
Liuti, S., Taneja, S.K., Generalized parton distributions and color transparency phenomena. Phys. Rev. D, 70, 2004, 074019, 10.1103/PhysRevD.70.074019 arXiv:hep-ph/0405014.
Guzey, V., Strikman, M., DVCS on spinless nuclear targets in impulse approximation. Phys. Rev. C, 68, 2003, 015204, 10.1103/PhysRevC.68.015204 arXiv:hep-ph/0301216.
Wiringa, R.B., Stoks, V.G.J., Schiavilla, R., An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51 (1995), 38–51, 10.1103/PhysRevC.51.38 arXiv:nucl-th/9408016.
Pudliner, B.S., Pandharipande, V.R., Carlson, J., Wiringa, R.B., Quantum Monte Carlo calculations of A ≤ 6 nuclei. Phys. Rev. Lett. 74 (1995), 4396–4399, 10.1103/PhysRevLett.74.4396 arXiv:nucl-th/9502031.
Fucini, S., Scopetta, S., Viviani, M., Catching a glimpse of the parton structure of the bound proton. Phys. Rev. D, 101(7), 2020, 071501, 10.1103/PhysRevD.101.071501 arXiv:1909.12261.
Hoodbhoy, P., Jaffe, R.L., Manohar, A., Novel Effects in Deep Inelastic Scattering from Spin 1 Hadrons. Nucl. Phys. B 312 (1989), 571–588, 10.1016/0550-3213(89)90572-5.
Efremov, A.V., Teryaev, O.V., On High p(t) Vector Mesons Spin Alignment. Sov. J. Nucl. Phys., 36, 1982, 557.
Jaffe, R.L., Manohar, A., Nuclear Gluonometry. Phys. Lett. B 223 (1989), 218–224, 10.1016/0370-2693(89)90242-6.
Close, F.E., Kumano, S., A sum rule for the spin dependent structure function b-1(x) for spin one hadrons. Phys. Rev. D 42 (1990), 2377–2379, 10.1103/PhysRevD.42.2377.
Kumano, S., Tensor-polarized quark and antiquark distribution functions in a spin-one hadron. Phys. Rev. D, 82, 2010, 017501, 10.1103/PhysRevD.82.017501 arXiv:1005.4524.
Miller, G.A., Pionic and Hidden-Color, Six-Quark Contributions to the Deuteron b1 Structure Function. Phys. Rev. C, 89(4), 2014, 045203, 10.1103/PhysRevC.89.045203 arXiv:1311.4561.
Passchier, I., et al. Spin momentum correlations in quasielastic electron scattering from deuterium. Phys. Rev. Lett., 88, 2002, 102302, 10.1103/PhysRevLett.88.102302 arXiv:nucl-ex/0109015.
DeGrush, A., et al. Measurement of the Vector and Tensor Asymmetries at Large Missing Momentum in Quasielastic (e→,e′p) Electron Scattering from Deuterium. Phys. Rev. Lett., 119(18), 2017, 182501, 10.1103/PhysRevLett.119.182501 arXiv:1707.03028.
Airapetian, A., et al. First measurement of the tensor structure function b(1) of the deuteron. Phys. Rev. Lett., 95, 2005, 242001, 10.1103/PhysRevLett.95.242001 arXiv:hep-ex/0506018.
K. Slifer, E. Long, D. Keller, O. Rondon, P. Solvignon, N. Kalantarians, et al., The Tensor Structure Function, b1, jefferson Lab 12GeV Experiment C12-13-011, 2013.
E. Long, D. Keller, K. Slifer, D. Day, P. Solvignon, D. Higinbotham, et al., Measurements of the Quasi-Elastic and Elastic Deuteron Tensor Asymmetries, jefferson Lab Experiment C12-15-005, 2016.
Gao, J.-H., Liang, Z.-t., Wang, X.-N., Nuclear dependence of azimuthal asymmetry in semi-inclusive deep inelastic scattering. Phys. Rev. C, 81, 2010, 065211, 10.1103/PhysRevC.81.065211 arXiv:1001.3146.
Song, Y.-k., Gao, J.-h., Liang, Z.-t., Wang, X.-N., Azimuthal asymmetries in semi-inclusive DIS with polarized beam and/or target and their nuclear dependences. Phys. Rev. D, 89(1), 2014, 014005, 10.1103/PhysRevD.89.014005 arXiv:1308.1159.
Adams, J., et al. Distributions of charged hadrons associated with high transverse momentum particles in pp and Au + Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 95, 2005, 152301, 10.1103/PhysRevLett.95.152301 arXiv:nucl-ex/0501016.
Khachatryan, V., et al. Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. JHEP, 09, 2010, 091, 10.1007/JHEP09(2010)091 arXiv:1009.4122.
Aad, G., et al. Observation of Long-Range Elliptic Azimuthal Anisotropies in s=13and2.76TeV pp Collisions with the ATLAS Detector. Phys. Rev. Lett., 116(17), 2016, 172301, 10.1103/PhysRevLett.116.172301 arXiv:1509.04776.
Khachatryan, V., et al. Measurement of long-range near-side two-particle angular correlations in pp collisions at s=13TeV. Phys. Rev. Lett., 116(17), 2016, 172302, 10.1103/PhysRevLett.116.172302 arXiv:1510.03068.
Khachatryan, V., et al. Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765 (2017), 193–220, 10.1016/j.physletb.2016.12.009 arXiv:1606.06198.
Abelev, B., et al. Long-range angular correlations on the near and away side in p-Pb collisions at sNN=5.02TeV. Phys. Lett. B 719 (2013), 29–41, 10.1016/j.physletb.2013.01.012 arXiv:1212.2001.
Chatrchyan, S., et al. Observation of Long-Range Near-Side Angular Correlations in Proton-Lead Collisions at the LHC. Phys. Lett. B 718 (2013), 795–814, 10.1016/j.physletb.2012.11.025 arXiv:1210.5482.
Aad, G., et al. Observation of Associated Near-Side and Away-Side Long-Range Correlations in sNN=5.02TeV Proton-Lead Collisions with the ATLAS Detector. Phys. Rev. Lett., 110(18), 2013, 182302, 10.1103/PhysRevLett.110.182302 arXiv:1212.5198.
Aad, G., et al. Measurement with the ATLAS detector of multi-particle azimuthal correlations in p+Pb collisions at sNN=5.02TeV. Phys. Lett. B 725 (2013), 60–78, 10.1016/j.physletb.2013.06.057 arXiv:1303.2084.
Abelev, B.B., et al. Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C, 90(5), 2014, 054901, 10.1103/PhysRevC.90.054901 arXiv:1406.2474.
Aad, G., et al. Measurement of long-range pseudorapidity correlations and azimuthal harmonics in sNN=5.02TeV proton-lead collisions with the ATLAS detector. Phys. Rev. C, 90(4), 2014, 044906, 10.1103/PhysRevC.90.044906 arXiv:1409.1792.
Khachatryan, V., et al. Evidence for Collective Multiparticle Correlations in p-Pb Collisions. Phys. Rev. Lett., 115(1), 2015, 012301, 10.1103/PhysRevLett.115.012301 arXiv:1502.05382.
Seymour, M.H., The Average number of subjets in a hadron collider jet. Nucl. Phys. B 421 (1994), 545–564, 10.1016/0550-3213(94)90516-9.
Kogler, R., et al. Jet Substructure at the Large Hadron Collider: Experimental Review. Rev. Mod. Phys., 91(4), 2019, 045003, 10.1103/RevModPhys.91.045003 arXiv:1803.06991.
Mueller, A.H., Qiu, J.-w., Gluon Recombination and Shadowing at Small Values of x. Nucl. Phys. B 268 (1986), 427–452, 10.1016/0550-3213(86)90164-1.
McLerran, L.D., Venugopalan, R., Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49 (1994), 2233–2241, 10.1103/PhysRevD.49.2233 arXiv:hep-ph/9309289.
Balitsky, I., Operator expansion for high-energy scattering. Nucl. Phys. B 463 (1996), 99–160, 10.1016/0550-3213(95)00638-9 arXiv:hep-ph/9509348.
Kovchegov, Y.V., Small x F(2) structure function of a nucleus including multiple pomeron exchanges. Phys. Rev. D, 60, 1999, 034008, 10.1103/PhysRevD.60.034008 arXiv:hep-ph/9901281.
Jalilian-Marian, J., Kovner, A., Leonidov, A., Weigert, H., The BFKL equation from the Wilson renormalization group. Nucl. Phys. B 504 (1997), 415–431, 10.1016/S0550-3213(97)00440-9 arXiv:hep-ph/9701284.
Jalilian-Marian, J., Kovner, A., Weigert, H., The Wilson renormalization group for low x physics: Gluon evolution at finite parton density. Phys. Rev. D, 59, 1998, 014015, 10.1103/PhysRevD.59.014015 arXiv:hep-ph/9709432.
Iancu, E., Leonidov, A., McLerran, L.D., Nonlinear gluon evolution in the color glass condensate. 1. Nucl. Phys. A 692 (2001), 583–645, 10.1016/S0375-9474(01)00642-X arXiv:hep-ph/0011241.
Ferreiro, E., Iancu, E., Leonidov, A., McLerran, L., Nonlinear gluon evolution in the color glass condensate. 2. Nucl. Phys. A 703 (2002), 489–538, 10.1016/S0375-9474(01)01329-X arXiv:hep-ph/0109115.
Dumitru, A., Miller, G.A., Venugopalan, R., Extracting many-body color charge correlators in the proton from exclusive DIS at large Bjorken x. Phys. Rev. D, 98(9), 2018, 094004, 10.1103/PhysRevD.98.094004 arXiv:1808.02501.
Dumitru, A., Skokov, V., Stebel, T., Subfemtometer scale color charge correlations in the proton. Phys. Rev. D, 101(5), 2020, 054004, 10.1103/PhysRevD.101.054004 arXiv:2001.04516.
Dumitru, A., Paatelainen, R., Sub-femtometer scale color charge fluctuations in a proton made of three quarks and a gluon. arXiv:2010.11245, 2020.
Stasto, A.M., Golec-Biernat, K.J., Kwiecinski, J., Geometric scaling for the total gamma* p cross-section in the low x region. Phys. Rev. Lett. 86 (2001), 596–599, 10.1103/PhysRevLett.86.596 arXiv:hep-ph/0007192.
Balitsky, I., Chirilli, G.A., Next-to-leading order evolution of color dipoles. Phys. Rev. D, 77, 2008, 014019, 10.1103/PhysRevD.77.014019 arXiv:0710.4330.
Balitsky, I., Chirilli, G.A., Rapidity evolution of Wilson lines at the next-to-leading order. Phys. Rev. D, 88, 2013, 111501, 10.1103/PhysRevD.88.111501 arXiv:1309.7644.
Kovner, A., Lublinsky, M., Mulian, Jalilian-Marian, Iancu, McLerran, Weigert Leonidov, Y., Kovner evolution at next to leading order. Phys. Rev. D, 89(6), 2014, 061704, 10.1103/PhysRevD.89.061704 arXiv:1310.0378.
Beuf, G., Improving the kinematics for low-x QCD evolution equations in coordinate space. Phys. Rev. D, 89(7), 2014, 074039, 10.1103/PhysRevD.89.074039 arXiv:1401.0313.
Iancu, E., Madrigal, J.D., Mueller, A.H., Soyez, G., Triantafyllopoulos, D.N., Resumming double logarithms in the QCD evolution of color dipoles. Phys. Lett. B 744 (2015), 293–302, 10.1016/j.physletb.2015.03.068 arXiv:1502.05642.
Ducloué, B., Iancu, E., Mueller, A.H., Soyez, G., Triantafyllopoulos, D.N., Non-linear evolution in QCD at high-energy beyond leading order. JHEP, 04, 2019, 081, 10.1007/JHEP04(2019)081 arXiv:1902.06637.
Balitsky, I., Chirilli, G.A., Photon impact factor and kT-factorization for DIS in the next-to-leading order. Phys. Rev. D, 87(1), 2013, 014013, 10.1103/PhysRevD.87.014013 arXiv:1207.3844.
Balitsky, I., Chirilli, G.A., Photon impact factor in the next-to-leading order. Phys. Rev. D, 83, 2011, 031502, 10.1103/PhysRevD.83.031502 arXiv:1009.4729.
Beuf, G., Dipole factorization for DIS at NLO: Loop correction to the γT,L⁎→qq¯ light-front wave functions. Phys. Rev. D, 94(5), 2016, 054016, 10.1103/PhysRevD.94.054016 arXiv:1606.00777.
Beuf, G., Dipole factorization for DIS at NLO: Combining the qq‾ and qq‾g contributions. Phys. Rev. D, 96(7), 2017, 074033, 10.1103/PhysRevD.96.074033 arXiv:1708.06557.
Hänninen, H., Lappi, T., Paatelainen, R., One-loop corrections to light cone wave functions: the dipole picture DIS cross section. Annals Phys. 393 (2018), 358–412, 10.1016/j.aop.2018.04.015 arXiv:1711.08207.
Ducloué, B., Iancu, E., Soyez, G., Triantafyllopoulos, D.N., HERA data and collinearly-improved BK dynamics. Phys. Lett. B, 803, 2020, 135305, 10.1016/j.physletb.2020.135305 arXiv:1912.09196.
Beuf, G., Hänninen, H., Lappi, T., Mäntysaari, H., Color Glass Condensate at next-to-leading order meets HERA data. Phys. Rev. D, 102, 2020, 074028, 10.1103/PhysRevD.102.074028 arXiv:2007.01645.
Lappi, T., Mäntysaari, H., Single inclusive particle production at high energy from HERA data to proton-nucleus collisions. Phys. Rev. D, 88, 2013, 114020, 10.1103/PhysRevD.88.114020 arXiv:1309.6963.
Mueller, A.H., Soft gluons in the infinite momentum wave function and the BFKL pomeron. Nucl. Phys. B 415 (1994), 373–385, 10.1016/0550-3213(94)90116-3.
Jalilian-Marian, J., Kovner, A., McLerran, L.D., Weigert, H., The Intrinsic glue distribution at very small x. Phys. Rev. D 55 (1997), 5414–5428, 10.1103/PhysRevD.55.5414 arXiv:hep-ph/9606337.
Kovchegov, Y.V., Mueller, A.H., Gluon production in current-nucleus and nucleon-nucleus collisions in a quasiclassical approximation. Nucl. Phys. B 529 (1998), 451–479, 10.1016/S0550-3213(98)00384-8 arXiv:hep-ph/9802440.
Dominguez, F., Mueller, A.H., Munier, S., Xiao, B.-W., On the small-x evolution of the color quadrupole and the Weizsäcker–Williams gluon distribution. Phys. Lett. B 705 (2011), 106–111, 10.1016/j.physletb.2011.09.104 arXiv:1108.1752.
Dumitru, A., Jalilian-Marian, J., Lappi, T., Schenke, B., Venugopalan, R., Renormalization group evolution of multi-gluon correlators in high energy QCD. Phys. Lett. B 706 (2011), 219–224, 10.1016/j.physletb.2011.11.002 arXiv:1108.4764.
Dominguez, F., Xiao, B.-W., Yuan, F., kt-factorization for Hard Processes in Nuclei. Phys. Rev. Lett., 106, 2011, 022301, 10.1103/PhysRevLett.106.022301 arXiv:1009.2141.
Kharzeev, D., Levin, E., McLerran, L., Jet azimuthal correlations and parton saturation in the color glass condensate. Nucl. Phys. A 748 (2005), 627–640, 10.1016/j.nuclphysa.2004.10.031 arXiv:hep-ph/0403271.
Zheng, L., Aschenauer, E.C., Lee, J.H., Xiao, B.-W., Probing Gluon Saturation through Dihadron Correlations at an Electron-Ion Collider. Phys. Rev. D, 89(7), 2014, 074037, 10.1103/PhysRevD.89.074037 arXiv:1403.2413.
Mueller, A.H., Xiao, B.-W., Yuan, F., Sudakov double logarithms resummation in hard processes in the small-x saturation formalism. Phys. Rev. D, 88(11), 2013, 114010, 10.1103/PhysRevD.88.114010 arXiv:1308.2993.
Stasto, A., Wei, S.-Y., Xiao, B.-W., Yuan, F., On the Dihadron Angular Correlations in Forward pA collisions. Phys. Lett. B 784 (2018), 301–306, 10.1016/j.physletb.2018.08.011 arXiv:1805.05712.
Boer, D., Brodsky, S.J., Mulders, P.J., Pisano, C., Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons. Phys. Rev. Lett., 106, 2011, 132001, 10.1103/PhysRevLett.106.132001 arXiv:1011.4225.
Metz, A., Zhou, J., Distribution of linearly polarized gluons inside a large nucleus. Phys. Rev. D, 84, 2011, 051503, 10.1103/PhysRevD.84.051503 arXiv:1105.1991.
Dominguez, F., Qiu, J.-W., Xiao, B.-W., Yuan, F., On the linearly polarized gluon distributions in the color dipole model. Phys. Rev. D, 85, 2012, 045003, 10.1103/PhysRevD.85.045003 arXiv:1109.6293.
Dumitru, A., Lappi, T., Skokov, V., Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy. Phys. Rev. Lett., 115(25), 2015, 252301, 10.1103/PhysRevLett.115.252301 arXiv:1508.04438.
Hatta, Y., Xiao, B.-W., Yuan, F., Zhou, J., Anisotropy in Dijet Production in Exclusive and Inclusive Processes. arXiv:2010.10774, 2020.
Dumitru, A., Skokov, V., Ullrich, T., Measuring the Weizsäcker-Williams distribution of linearly polarized gluons at an electron-ion collider through dijet azimuthal asymmetries. Phys. Rev. C, 99(1), 2019, 015204, 10.1103/PhysRevC.99.015204 arXiv:1809.02615.
Altinoluk, T., Boussarie, R., Kotko, P., Interplay of the CGC and TMD frameworks to all orders in kinematic twist. JHEP, 05, 2019, 156, 10.1007/JHEP05(2019)156 arXiv:1901.01175.
Boussarie, R., Mehtar-Tani, Y., On gauge invariance of transverse momentum dependent distributions at small x. arXiv:2001.06449, 2020.
Balitsky, I., Tarasov, A., Rapidity evolution of gluon TMD from low to moderate x. JHEP, 10, 2015, 017, 10.1007/JHEP10(2015)017 arXiv:1505.02151.
Balitsky, I., Tarasov, A., Gluon TMD in particle production from low to moderate x. JHEP, 06, 2016, 164, 10.1007/JHEP06(2016)164 arXiv:1603.06548.
Kotko, P., Kutak, K., Marquet, C., Petreska, E., Sapeta, S., van Hameren, A., Improved TMD factorization for forward dijet production in dilute-dense hadronic collisions. JHEP, 09, 2015, 106, 10.1007/JHEP09(2015)106 arXiv:1503.03421.
van Hameren, A., Kotko, P., Kutak, K., Marquet, C., Petreska, E., Sapeta, S., Forward dijet production in p+Pb collisions in the small-x improved TMD factorization framework. JHEP, 12, 2016, 034, 10.1007/JHEP12(2016)034 Erratum JHEP, 02, 2019, 158 arXiv:1607.03121.
Kotko, P., Kutak, K., Sapeta, S., Stasto, A.M., Strikman, M., Estimating nonlinear effects in forward dijet production in ultra-peripheral heavy ion collisions at the LHC. Eur. Phys. J. C, 77(5), 2017, 353, 10.1140/epjc/s10052-017-4906-6 arXiv:1702.03063.
Lappi, T., Mantysaari, H., Forward dihadron correlations in deuteron-gold collisions with the Gaussian approximation of JIMWLK. Nucl. Phys. A 908 (2013), 51–72, 10.1016/j.nuclphysa.2013.03.017 arXiv:1209.2853.
Roy, K., Venugopalan, R., Inclusive prompt photon production in electron-nucleus scattering at small x. JHEP, 05, 2018, 013, 10.1007/JHEP05(2018)013 arXiv:1802.09550.
Kolbé, I., Roy, K., Salazar, F., Schenke, B., Venugopalan, R., Inclusive prompt photon-jet correlations as a probe of gluon saturation in electron-nucleus scattering at small x. JHEP, 01, 2021, 052, 10.1007/JHEP01(2021)052 arXiv:2008.04372.
Roy, K., Venugopalan, R., NLO impact factor for inclusive photon+dijet production in e + A DIS at small x. Phys. Rev. D, 101(3), 2020, 034028, 10.1103/PhysRevD.101.034028 arXiv:1911.04530.
Roy, K., Venugopalan, R., Extracting many-body correlators of saturated gluons with precision from inclusive photon+dijet final states in deeply inelastic scattering. Phys. Rev. D, 101(7), 2020, 071505, 10.1103/PhysRevD.101.071505 arXiv:1911.04519.
Cougoulic, F., Kovchegov, Y.V., Helicity-dependent generalization of the JIMWLK evolution. Phys. Rev. D, 100(11), 2019, 114020, 10.1103/PhysRevD.100.114020 arXiv:1910.04268.
Bartels, J., Ermolaev, B.I., Ryskin, M.G., Flavor singlet contribution to the structure function G(1) at small x. Z. Phys. C 72 (1996), 627–635, 10.1007/BF02909194 arXiv:hep-ph/9603204.
Cougoulic, F., Kovchegov, Y.V., Helicity-dependent extension of the McLerran–Venugopalan model. Nucl. Phys. A, 1004, 2020, 122051, 10.1016/j.nuclphysa.2020.122051 arXiv:2005.14688.
Caldwell, A., Kowalski, H., Investigating the gluonic structure of nuclei via J/psi scattering. Phys. Rev. C, 81, 2010, 025203, 10.1103/PhysRevC.81.025203.
Mäntysaari, H., Review of proton and nuclear shape fluctuations at high energy. Rept. Prog. Phys., 83(8), 2020, 082201, 10.1088/1361-6633/aba347 arXiv:2001.10705.
Kowalski, H., Lappi, T., Marquet, C., Venugopalan, R., Nuclear enhancement and suppression of diffractive structure functions at high energies. Phys. Rev. C, 78, 2008, 045201, 10.1103/PhysRevC.78.045201 arXiv:0805.4071.
Deshpande, A., Milner, R., Venugopalan, R., Vogelsang, W., Study of the fundamental structure of matter with an electron-ion collider. Ann. Rev. Nucl. Part. Sci. 55 (2005), 165–228, 10.1146/annurev.nucl.54.070103.181218 arXiv:hep-ph/0506148.
Nikolaev, N.N., Zakharov, B.G., Zoller, V.R., Unusual effects of diffraction dissociation for multiproduction in deep inelastic scattering on nuclei. Z. Phys. A 351 (1995), 435–446, 10.1007/BF01291149.
Levin, E., Lublinsky, M., Diffractive dissociation from nonlinear evolution in DIS on nuclei. Nucl. Phys. A 712 (2002), 95–109, 10.1016/S0375-9474(02)01269-1 arXiv:hep-ph/0207374.
Bendova, D., Cepila, J., Contreras, J.G., Gonçalves, t.V.P., Matas, M., Diffractive deeply inelastic scattering in future electron-ion colliders. arXiv:2009.14002, 2020.
Frankfurt, L., Guzey, V., Strikman, M., Leading twist coherent diffraction on nuclei in deep inelastic scattering at small x and nuclear shadowing. Phys. Lett. B 586 (2004), 41–52, 10.1016/j.physletb.2004.02.019 arXiv:hep-ph/0308189.
Armesto, N., Newman, P.R., Słomiński, W., Staśto, A.M., Inclusive diffraction in future electron-proton and electron-ion colliders. Phys. Rev. D, 100(7), 2019, 074022, 10.1103/PhysRevD.100.074022 arXiv:1901.09076.
Gribov, V.N., Glauber corrections and the interaction between high-energy hadrons and nuclei. Sov. Phys. JETP 29 (1969), 483–487.
Gribov, V.N., Migdal, A.A., Properties of the pomeranchuk pole and the branch cuts related to it at low momentum transfer. Sov. J. Nucl. Phys. 8 (1969), 583–590.
Frankfurt, L.L., Miller, G.A., Strikman, M., The Geometrical color optics of coherent high-energy processes. Ann. Rev. Nucl. Part. Sci. 44 (1994), 501–560, 10.1146/annurev.ns.44.120194.002441 arXiv:hep-ph/9407274.
Armesto, N., Capella, A., Kaidalov, A.B., Lopez-Albacete, J., Salgado, C.A., Nuclear structure functions at small x from inelastic shadowing and diffraction. Eur. Phys. J. C 29 (2003), 531–540, 10.1140/epjc/s2003-01243-0 arXiv:hep-ph/0304119.
Boussarie, R., Grabovsky, A.V., Szymanowski, L., Wallon, S., Impact factor for high-energy two and three jets diffractive production. JHEP, 09, 2014, 026, 10.1007/JHEP09(2014)026 arXiv:1405.7676.
Altinoluk, T., Boussarie, R., Marquet, C., Taels, P., Photoproduction of three jets in the CGC: gluon TMDs and dilute limit. JHEP, 07, 2020, 143, 10.1007/JHEP07(2020)143 arXiv:2001.00765.
Armesto, N., Paukkunen, H., Salgado, C.A., Tywoniuk, K., Nuclear effects on the longitudinal structure function at small x. Phys. Lett. B 694 (2011), 38–43, 10.1016/j.physletb.2010.09.027 arXiv:1005.2035.
Cazaroto, E.R., Carvalho, F., Goncalves, V.P., Navarra, F.S., Constraining the nuclear gluon distribution in eA processes at RHIC. Phys. Lett. B 669 (2008), 331–336, 10.1016/j.physletb.2008.09.064 arXiv:0804.2507.
Kusina, A., et al. Impact of LHC vector boson production in heavy ion collisions on strange PDFs. Eur. Phys. J. C, 80(10), 2020, 968, 10.1140/epjc/s10052-020-08532-4 arXiv:2007.09100.
Abdul Khalek, R., Ethier, J.J., Rojo, J., van Weelden, G., nNNPDF2.0: quark flavor separation in nuclei from LHC data. JHEP, 09, 2020, 183, 10.1007/JHEP09(2020)183 arXiv:2006.14629.
Abelev, B., et al. Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at sNN=2.76TeV. Phys. Lett. B 718 (2013), 1273–1283, 10.1016/j.physletb.2012.11.059 arXiv:1209.3715.
Khachatryan, V., et al. Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at sNN=2.76TeV with the CMS experiment. Phys. Lett. B 772 (2017), 489–511, 10.1016/j.physletb.2017.07.001 arXiv:1605.06966.
Abbas, E., et al. Charmonium and e+e− pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at sNN=2.76TeV. Eur. Phys. J. C, 73(11), 2013, 2617, 10.1140/epjc/s10052-013-2617-1 arXiv:1305.1467.
Guzey, V., Kryshen, E., Strikman, M., Zhalov, M., Evidence for nuclear gluon shadowing from the ALICE measurements of PbPb ultraperipheral exclusive J/ψ production. Phys. Lett. B 726 (2013), 290–295, 10.1016/j.physletb.2013.08.043 arXiv:1305.1724.
Guzey, V., Kryshen, E., Strikman, M., Zhalov, M., Nuclear suppression from coherent J/ψ photoproduction at the Large Hadron Collider. arXiv:2008.10891, 2020.
Kusina, A., Lansberg, J.-P., Schienbein, I., Shao, H.-S., Gluon Shadowing in Heavy-Flavor Production at the LHC. Phys. Rev. Lett., 121(5), 2018, 052004, 10.1103/PhysRevLett.121.052004 arXiv:1712.07024.
Eskola, K.J., Helenius, I., Paakkinen, P., Paukkunen, H., A QCD analysis of LHCb D-meson data in p+Pb collisions. JHEP, 05, 2020, 037, 10.1007/JHEP05(2020)037 arXiv:1906.02512.
Eskola, K.J., Paakkinen, P., Paukkunen, H., Non-quadratic improved Hessian PDF reweighting and application to CMS dijet measurements at 5.02 TeV. Eur. Phys. J. C, 79(6), 2019, 511, 10.1140/epjc/s10052-019-6982-2 arXiv:1903.09832.
Accardi, A., et al. A Critical Appraisal and Evaluation of Modern PDFs. Eur. Phys. J. C, 76(8), 2016, 471, 10.1140/epjc/s10052-016-4285-4 arXiv:1603.08906.
Weiss, C., et al. Nuclear gluons with charm at EIC. https://wiki.jlab.or/nuclear_gluons/, 2017 jefferson Lab FY17 LDRD Project.
Furletova, Y., Sato, N., Weiss, C., Probing Nuclear Gluons with Heavy Flavor Production at EIC. Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider, 2020, 295–299, 10.1142/9789811214950_0056.
Abramowicz, H., et al. Measurement of charm fragmentation fractions in photoproduction at HERA. JHEP, 09, 2013, 058, 10.1007/JHEP09(2013)058 arXiv:1306.4862.
Baier, R., Dokshitzer, Y.L., Peigne, S., Schiff, D., Induced gluon radiation in a QCD medium. Phys. Lett. B 345 (1995), 277–286, 10.1016/0370-2693(94)01617-L arXiv:hep-ph/9411409.
Zakharov, B.G., Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma. JETP Lett. 65 (1997), 615–620, 10.1134/1.567389 arXiv:hep-ph/9704255.
Gyulassy, M., Levai, P., Vitev, I., Reaction operator approach to nonAbelian energy loss. Nucl. Phys. B 594 (2001), 371–419, 10.1016/S0550-3213(00)00652-0 arXiv:nucl-th/0006010.
Guo, X.-f., Wang, X.-N., Multiple scattering, parton energy loss and modified fragmentation functions in deeply inelastic e A scattering. Phys. Rev. Lett. 85 (2000), 3591–3594, 10.1103/PhysRevLett.85.3591 arXiv:hep-ph/0005044.
Arnold, P.B., Moore, G.D., Yaffe, L.G., Photon and gluon emission in relativistic plasmas. JHEP, 06, 2002, 030, 10.1088/1126-6708/2002/06/030 arXiv:hep-ph/0204343.
Guo, Y., Zhang, B.-W., Wang, E., Parton Energy Loss at Twist-Six in Deeply Inelastic e-A Scattering. Phys. Lett. B 641 (2006), 38–44, 10.1016/j.physletb.2006.08.034 arXiv:hep-ph/0606312.
Vitev, I., Non-Abelian energy loss in cold nuclear matter. Phys. Rev. C, 75, 2007, 064906, 10.1103/PhysRevC.75.064906 arXiv:hep-ph/0703002.
Arleo, F., Quenching of hadron spectra in DIS on nuclear targets. Eur. Phys. J. C 30 (2003), 213–221, 10.1140/epjc/s2003-01289-x arXiv:hep-ph/0306235.
Chang, N.-B., Deng, W.-T., Wang, X.-N., Initial conditions for the modified evolution of fragmentation functions in the nuclear medium. Phys. Rev. C, 89(3), 2014, 034911, 10.1103/PhysRevC.89.034911 arXiv:1401.5109.
Deng, W.-t., Wang, X.-N., Multiple Parton Scattering in Nuclei: Modified DGLAP Evolution for Fragmentation Functions. Phys. Rev. C, 81, 2010, 024902, 10.1103/PhysRevC.81.024902 arXiv:0910.3403.
Fickinger, M., Ovanesyan, G., Vitev, I., Angular distributions of higher order splitting functions in the vacuum and in dense QCD matter. JHEP, 07, 2013, 059, 10.1007/JHEP07(2013)059 arXiv:1304.3497.
Sievert, M.D., Vitev, I., Quark branching in QCD matter to any order in opacity beyond the soft gluon emission limit. Phys. Rev. D, 98(9), 2018, 094010, 10.1103/PhysRevD.98.094010 arXiv:1807.03799.
Sievert, M.D., Vitev, I., Yoon, B., A complete set of in-medium splitting functions to any order in opacity. Phys. Lett. B 795 (2019), 502–510, 10.1016/j.physletb.2019.06.019 arXiv:1903.06170.
Kang, Z.-B., Lashof-Regas, R., Ovanesyan, G., Saad, P., Vitev, I., Jet quenching phenomenology from soft-collinear effective theory with Glauber gluons. Phys. Rev. Lett., 114(9), 2015, 092002, 10.1103/PhysRevLett.114.092002 arXiv:1405.2612.
Li, H.T., Vitev, I., Inclusive heavy flavor jet production with semi-inclusive jet functions: from proton to heavy-ion collisions. JHEP, 07, 2019, 148, 10.1007/JHEP07(2019)148 arXiv:1811.07905.
Li, H.T., Vitev, I., Nuclear matter effects on jet production at electron-ion colliders. arXiv:2010.05912, 2020.
Airapetian, A., et al. Quark fragmentation to pi+-, pi0, K+-, p and anti-p in the nuclear environment. Phys. Lett. B 577 (2003), 37–46, 10.1016/j.physletb.2003.10.026 arXiv:hep-ex/0307023.
Airapetian, A., et al. Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780 (2007), 1–27, 10.1016/j.nuclphysb.2007.06.004 arXiv:0704.3270.
Accardi, A., Muccifora, V., Pirner, H.-J., Hadron production in deep inelastic lepton nucleus scattering. Nucl. Phys. A 720 (2003), 131–156, 10.1016/S0375-9474(03)00670-5 arXiv:nucl-th/0211011.
Kopeliovich, B.Z., Nemchik, J., Predazzi, E., Hayashigaki, A., Nuclear hadronization: Within or without?. Nucl. Phys. A 740 (2004), 211–245, 10.1016/j.nuclphysa.2004.04.110 arXiv:hep-ph/0311220.
Adil, A., Vitev, I., Collisional dissociation of heavy mesons in dense QCD matter. Phys. Lett. B 649 (2007), 139–146, 10.1016/j.physletb.2007.03.050 arXiv:hep-ph/0611109.
Kang, Z.-B., Ringer, F., Vitev, I., Inclusive production of small radius jets in heavy-ion collisions. Phys. Lett. B 769 (2017), 242–248, 10.1016/j.physletb.2017.03.067 arXiv:1701.05839.
Vitev, I., Wicks, S., Zhang, B.-W., A Theory of jet shapes and cross sections: From hadrons to nuclei. JHEP, 11, 2008, 093, 10.1088/1126-6708/2008/11/093 arXiv:0810.2807.
Collaboration, C., Measurement of Jet Nuclear Modification Factor in PbPb Collisions at sNN=5.02TeV with CMS. Tech. rep., 2019, CERN https://cds.cern.ch/record/2698506.
Adler, S.S., et al. Dense-Medium Modifications to Jet-Induced Hadron Pair Distributions in Au+Au Collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 97, 2006, 052301, 10.1103/PhysRevLett.97.052301 arXiv:nucl-ex/0507004.
Mäntysaari, H., Schenke, B., Shen, C., Tribedy, P., Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 772 (2017), 681–686, 10.1016/j.physletb.2017.07.038 arXiv:1705.03177.
Orjuela Koop, J.D., Adare, A., McGlinchey, D., Nagle, J.L., Azimuthal anisotropy relative to the participant plane from a multiphase transport model in central p + Au, d + Au, and 3He + Au collisions at sNN=200GeV. Phys. Rev. C, 92(5), 2015, 054903, 10.1103/PhysRevC.92.054903 arXiv:1501.06880.
Romatschke, P., Azimuthal Anisotropies at High Momentum from Purely Non-Hydrodynamic Transport. Eur. Phys. J. C, 78(8), 2018, 636, 10.1140/epjc/s10052-018-6112-6 arXiv:1802.06804.
Kurkela, A., Wiedemann, U.A., Wu, B., Opacity dependence of elliptic flow in kinetic theory. Eur. Phys. J. C, 79(9), 2019, 759, 10.1140/epjc/s10052-019-7262-x arXiv:1805.04081.
Aidala, C., et al. Creation of quark–gluon plasma droplets with three distinct geometries. Nature Phys. 15:3 (2019), 214–220, 10.1038/s41567-018-0360-0 arXiv:1805.02973.
Dumitru, A., Dusling, K., Gelis, F., Jalilian-Marian, J., Lappi, T., Venugopalan, R., The Ridge in proton-proton collisions at the LHC. Phys. Lett. B 697 (2011), 21–25, 10.1016/j.physletb.2011.01.024 arXiv:1009.5295.
Lappi, T., Schenke, B., Schlichting, S., Venugopalan, R., Tracing the origin of azimuthal gluon correlations in the color glass condensate. JHEP, 01, 2016, 061, 10.1007/JHEP01(2016)061 arXiv:1509.03499.
Dusling, K., Mace, M., Venugopalan, R., Multiparticle collectivity from initial state correlations in high energy proton-nucleus collisions. Phys. Rev. Lett., 120(4), 2018, 042002, 10.1103/PhysRevLett.120.042002 arXiv:1705.00745.
Dumitru, A., Gelis, F., McLerran, L., Venugopalan, R., Glasma flux tubes and the near side ridge phenomenon at RHIC. Nucl. Phys. A 810 (2008), 91–108, 10.1016/j.nuclphysa.2008.06.012 arXiv:0804.3858.
Kovner, A., Lublinsky, M., Angular Correlations in Gluon Production at High Energy. Phys. Rev. D, 83, 2011, 034017, 10.1103/PhysRevD.83.034017 arXiv:1012.3398.
Sirunyan, A.M., et al. Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at sNN=8.16TeV. Phys. Rev. Lett., 121(8), 2018, 082301, 10.1103/PhysRevLett.121.082301 arXiv:1804.09767.
Zhang, C., Marquet, C., Qin, G.-Y., Wei, S.-Y., Xiao, B.-W., Elliptic Flow of Heavy Quarkonia in pA Collisions. Phys. Rev. Lett., 122(17), 2019, 172302, 10.1103/PhysRevLett.122.172302 arXiv:1901.10320.
Perepelitsa, D.V., Connection between soft and hard probes of small collision systems at RHIC and LHC. EPJ Web Conf., 235, 2020, 04003, 10.1051/epjconf/202023504003 arXiv:2005.05981.
Collaboration, C., Search for elliptic azimuthal anisotropies in γp interactions within ultra-peripheral pPb collisions at sNN=8.16TeV. Tech. rep., 2020, CERN https://cds.cern.ch/record/2725477.
Abt, I., et al. Two-particle azimuthal correlations as a probe of collective behaviour in deep inelastic ep scattering at HERA. JHEP, 04, 2020, 070, 10.1007/JHEP04(2020)070 arXiv:1912.07431.
Shi, Y., Wang, L., Wei, S.-Y., Xiao, B.-W., Zheng, L., Exploring the Collective Phenomenon at the Electron-Ion Collider. arXiv:2008.03569, 2020.
Field, R.D., Feynman, R.P., A Parametrization of the Properties of Quark Jets. Nucl. Phys. B, 136, 1978, 1, 10.1016/0550-3213(78)90015-9.
Li, H.T., Vitev, I., Jet charge modification in dense QCD matter. Phys. Rev. D, 101, 2020, 076020, 10.1103/PhysRevD.101.076020 arXiv:1908.06979.
Chen, S.-Y., Zhang, B.-W., Wang, E.-K., Jet charge in high energy nuclear collisions. Chin. Phys. C, 44(2), 2020, 024103, 10.1088/1674-1137/44/2/024103 arXiv:1908.01518.
Sirunyan, A.M., et al. Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV. JHEP, 07, 2020, 115, 10.1007/JHEP07(2020)115 arXiv:2004.00602.
Aad, G., et al. Measurement of jet charge in dijet events from s=8TeV pp collisions with the ATLAS detector. Phys. Rev. D, 93(5), 2016, 052003, 10.1103/PhysRevD.93.052003 arXiv:1509.05190.
Li, X., Heavy flavor and jet studies for the future Electron-Ion Collider. arXiv:2007.14417, 2020.
Wong, C.-P., Li, X., Brooks, M., Durham, M.J., Liu, M.X., Morreale, A., da Silva, C., Sondheim, W.E., A Proposed Forward Silicon Tracker for the. Future Electron-Ion Collider and Associated Physics Studies, 2020 arXiv:2009.02888.
Schmookler, B., et al. Modified structure of protons and neutrons in correlated pairs. Nature 566:7744 (2019), 354–358, 10.1038/s41586-019-0925-9 arXiv:2004.12065.
Hen, O., Miller, G.A., Piasetzky, E., Weinstein, L.B., Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within. Rev. Mod. Phys., 89(4), 2017, 045002, 10.1103/RevModPhys.89.045002 arXiv:1611.09748.
Weinstein, L.B., Piasetzky, E., Higinbotham, D.W., Gomez, J., Hen, O., Shneor, R., Short Range Correlations and the EMC Effect. Phys. Rev. Lett., 106, 2011, 052301, 10.1103/PhysRevLett.106.052301 arXiv:1009.5666.
Higinbotham, D.W., New hints to the cause of the EMC effect. AIP Conf. Proc. 1441:1 (2012), 203–204, 10.1063/1.3700511.
Hen, O., Piasetzky, E., Weinstein, L.B., New data strengthen the connection between Short Range Correlations and the EMC effect. Phys. Rev. C, 85, 2012, 047301, 10.1103/PhysRevC.85.047301 arXiv:1202.3452.
Hen, O., Higinbotham, D.W., Miller, G.A., Piasetzky, E., Weinstein, L.B., The EMC Effect and High Momentum Nucleons in Nuclei. Int. J. Mod. Phys. E, 22, 2013, 1330017, 10.1142/S0218301313300178 arXiv:1304.2813.
Sterman, G., Fixed Angle Scattering and the Transverse Structure of Hadrons. 4th Workshop on Exclusive Reactions at High Momentum Transfer, 2011, 16–25, 10.1142/9789814329569_0002 arXiv:1008.4122.
Tu, Z., Jentsch, A., Baker, M., Zheng, L., Lee, J.-H., Venugopalan, R., Hen, O., Higinbotham, D., Aschenauer, E.-C., Ullrich, T., Probing short-range correlations in the deuteron via incoherent diffractive J/ψ production with spectator tagging at the EIC. Phys. Lett. B, 811, 2020, 135877, 10.1016/j.physletb.2020.135877 arXiv:2005.14706.
Alexa, C., et al. Elastic and Proton-Dissociative Photoproduction of J/psi Mesons at HERA. Eur. Phys. J. C, 73(6), 2013, 2466, 10.1140/epjc/s10052-013-2466-y arXiv:1304.5162.
Higinbotham, D., Miller, G.A., Hen, O., Rith, K., The EMC effect still puzzles after 30 years. CERN Cour., 53(4), 2013, 24 arXiv:1305.7143.
Cosyn, W., Sargsian, M., Nuclear final-state interactions in deep inelastic scattering off the lightest nuclei. Int. J. Mod. Phys. E, 26(09), 2017, 1730004, 10.1142/S0218301317300041 arXiv:1704.06117.
Baillie, N., et al. Measurement of the neutron F2 structure function via spectator tagging with CLAS. Phys. Rev. Lett., 108, 2012, 142001, 10.1103/PhysRevLett.108.142001 Erratum Phys. Rev. Lett., 108, 2012, 199902 arXiv:1110.2770.
Fenker, H.C., et al. BoNuS: Development and Use of a Radial TPC using Cylindrical GEMs. Nucl. Instrum. Meth. A 592 (2008), 273–286, 10.1016/j.nima.2008.04.047.
Mankiewicz, L., Schafer, A., Veltri, M., PEPSI: A Monte Carlo generator for polarized leptoproduction. Comput. Phys. Commun. 71 (1992), 305–318, 10.1016/0010-4655(92)90016-R.
Ciofi degli Atti, C., Kaptari, L.P., Calculations of the exclusive processes H-2(e, e- prime p)n, He-3(e, e-prime p)H-2 and He-3(e, e-prime p) (pn) within a generalized Glauber approach. Phys. Rev. C, 71, 2005, 024005, 10.1103/PhysRevC.71.024005 arXiv:nucl-th/0407024.
Pybus, J.R., Korover, I., Weiss, R., Schmidt, A., Barnea, N., Higinbotham, D.W., Piasetzky, E., Strikman, M., Weinstein, L.B., Hen, O., Generalized contact formalism analysis of the 4He(e, e'pN) reaction. Phys. Lett. B, 805, 2020, 135429, 10.1016/j.physletb.2020.135429 arXiv:2003.02318.
Del Dotto, A., Kaptari, L.P., Pace, E., Salmè, G., Scopetta, S., Final state interactions and the extraction of neutron single spin asymmetries from semi-inclusive deep-inelastic scattering by a transversely polarized 3He target. Phys. Rev. C, 96(6), 2017, 065203, 10.1103/PhysRevC.96.065203 arXiv:1704.06182.
Scopetta, S., Neutron single spin asymmetries from semi-inclusive deep inelastic scattering off transversely polarized He-3. Phys. Rev. D, 75, 2007, 054005, 10.1103/PhysRevD.75.054005 arXiv:hep-ph/0612354.
Klein, S., Steinberg, P., Photonuclear and Two-photon Interactions at High-Energy Nuclear Colliders. Ann. Rev. Nucl. Part. Sci. 70 (2020), 323–354, 10.1146/annurev-nucl-030320-033923 arXiv:2005.01872.
Crittenden, J.A., Experimental results on the diffractive production of light vector mesons. J. Phys. G 28 (2002), 1103–1112, 10.1088/0954-3899/28/5/330 arXiv:hep-ex/0110040.
Newman, P., Wing, M., The Hadronic Final State at HERA. Rev. Mod. Phys., 86(3), 2014, 1037, 10.1103/RevModPhys.86.1037 arXiv:1308.3368.
Baltz, A.J., The Physics of Ultraperipheral Collisions at the LHC. Phys. Rept. 458 (2008), 1–171, 10.1016/j.physrep.2007.12.001 arXiv:0706.3356.
Contreras, J.G., Tapia Takaki, J.D., Ultra-peripheral heavy-ion collisions at the LHC. Int. J. Mod. Phys. A, 30, 2015, 1542012, 10.1142/S0217751X15420129.
Abelev, B.B., et al. Exclusive J/ψ photoproduction off protons in ultra-peripheral p-Pb collisions at sNN=5.02TeV. Phys. Rev. Lett., 113(23), 2014, 232504, 10.1103/PhysRevLett.113.232504 arXiv:1406.7819.
Acharya, S., et al. Energy dependence of exclusive J/ψ photoproduction off protons in ultra-peripheral p–Pb collisions at sNN=5.02TeV. Eur. Phys. J. C, 79(5), 2019, 402, 10.1140/epjc/s10052-019-6816-2 arXiv:1809.03235.
Sirunyan, A.M., et al. Measurement of exclusive ρ(770)0 photoproduction in ultraperipheral pPb collisions at sNN=5.02TeV. Eur. Phys. J. C, 79(8), 2019, 702, 10.1140/epjc/s10052-019-7202-9 arXiv:1902.01339.
Sirunyan, A.M., et al. Measurement of exclusive ϒ photoproduction from protons in pPb collisions at sNN=5.02TeV. Eur. Phys. J. C, 79(3), 2019, 277, 10.1140/epjc/s10052-019-6774-8 arXiv:1809.11080.
Aaij, R., et al. Central exclusive production of J/ψ and ψ(2S) mesons in pp collisions at s=13TeV. JHEP, 10, 2018, 167, 10.1007/JHEP10(2018)167 arXiv:1806.04079.
Aaij, R., et al. Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at s=7TeV. J. Phys. G, 41, 2014, 055002, 10.1088/0954-3899/41/5/055002 arXiv:1401.3288.
Acharya, S., et al. Coherent J/ψ photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at sNN=5.02TeV. Phys. Lett. B, 798, 2019, 134926, 10.1016/j.physletb.2019.134926 arXiv:1904.06272.
Lomnitz, M., Klein, S., Exclusive vector meson production at an electron-ion collider. Phys. Rev. C, 99(1), 2019, 015203, 10.1103/PhysRevC.99.015203 arXiv:1803.06420.
Mäntysaari, H., Venugopalan, R., Systematics of strong nuclear amplification of gluon saturation from exclusive vector meson production in high energy electron–nucleus collisions. Phys. Lett. B 781 (2018), 664–671, 10.1016/j.physletb.2018.04.044 arXiv:1712.02508.
Sergeenko, M.N., Glueballs and the Pomeron. EPL, 89(1), 2010, 11001, 10.1209/0295-5075/89/11001 arXiv:1107.1671.
Jones, S.P., Martin, A.D., Ryskin, M.G., Teubner, T., Probes of the small x gluon via exclusive J/ψ and ϒ production at HERA and the LHC. JHEP, 11, 2013, 085, 10.1007/JHEP11(2013)085 arXiv:1307.7099.
Diehl, M., Laycock, P., Royon, C., Diffraction and Vector Mesons Working Group Summary. 17th International Workshop on Deep-Inelastic Scattering and Related Subjects, 2009, 231 arXiv:0908.1652.
Klein, S.R., Ultra-peripheral collisions and hadronic structure. Nucl. Phys. A 967 (2017), 249–256, 10.1016/j.nuclphysa.2017.05.098 arXiv:1704.04715.
Flett, C.A., Jones, S.P., Martin, A.D., Ryskin, M.G., Teubner, T., Exclusive production of heavy quarkonia as a probe of the low x and low scale gluon PDF. PoS, LC2019, 2020, 040, 10.22323/1.374.0040 arXiv:1912.09128.
Jones, S.P., Martin, A.D., Ryskin, M.G., Teubner, T., The exclusive J/ψ process at the LHC tamed to probe the low x gluon. Eur. Phys. J. C, 76(11), 2016, 633, 10.1140/epjc/s10052-016-4493-y arXiv:1610.02272.
Flett, C.A., Jones, S.P., Martin, A.D., Ryskin, M.G., Teubner, T., How to include exclusive J/ψ production data in global PDF analyses. Phys. Rev. D, 101(9), 2020, 094011, 10.1103/PhysRevD.101.094011 arXiv:1908.08398.
Acharya, S., et al. Coherent J/ψ and ψ′ photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at sNN=5.02TeV. arXiv:2101.04577, 2021.
Klein, S., Nystrand, J., Exclusive vector meson production in relativistic heavy ion collisions. Phys. Rev. C, 60, 1999, 014903, 10.1103/PhysRevC.60.014903 arXiv:hep-ph/9902259.
Armesto, N., Rezaeian, A.H., Exclusive vector meson production at high energies and gluon saturation. Phys. Rev. D, 90(5), 2014, 054003, 10.1103/PhysRevD.90.054003 arXiv:1402.4831.
Klein, S.R., Dipion photoproduction and the Q2 evolution of the shape of the gold nucleus. PoS, DIS2018, 2018, 047, 10.22323/1.316.0047 arXiv:1807.00455.
Adamczyk, L., et al. Coherent diffractive photoproduction of ρ0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider. Phys. Rev. C, 96(5), 2017, 054904, 10.1103/PhysRevC.96.054904 arXiv:1702.07705.
Emel'yanov, V., Khodinov, A., Klein, S.R., Vogt, R., The Effect of shadowing on initial conditions, transverse energy and hard probes in ultrarelativistic heavy ion collisions. Phys. Rev. C, 61, 2000, 044904, 10.1103/PhysRevC.61.044904 arXiv:hep-ph/9909427.
Goncalves, V.P., Martins, D.E., Sena, C.R., Exclusive vector meson production in electron-ion collisions at the EIC, LHeC and FCC-eh. Nucl. Phys. A, 1004, 2020, 122055, 10.1016/j.nuclphysa.2020.122055 arXiv:2008.03145.
Mäntysaari, H., Schenke, B., Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions. Phys. Lett. B 772 (2017), 832–838, 10.1016/j.physletb.2017.07.063 arXiv:1703.09256.
Klein, S.R., Heavy ion beam loss mechanisms at an electron-ion collider. Phys. Rev. ST Accel. Beams, 17(12), 2014, 121003, 10.1103/PhysRevSTAB.17.121003 arXiv:1409.5379.
Bertone, V., Carrazza, S., Hartland, N.P., Nocera, E.R., Rojo, J., A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties. Eur. Phys. J. C, 77(8), 2017, 516, 10.1140/epjc/s10052-017-5088-y arXiv:1706.07049.
Sato, N., Ethier, J.J., Melnitchouk, W., Hirai, M., Kumano, S., Accardi, A., First Monte Carlo analysis of fragmentation functions from single-inclusive e+e− annihilation. Phys. Rev. D, 94(11), 2016, 114004, 10.1103/PhysRevD.94.114004 arXiv:1609.00899.
Braunschweig, W., et al. Pion, Kaon and Proton Cross-sections in e+e− Annihilation at 34-{GeV} and 44-{GeV} Center-of-mass Energy. Z. Phys. C, 42, 1989, 189, 10.1007/BF01555856.
Abe, K., et al. Production of pi+, K+, K0, K*0, phi, p and Lambda0 in hadronic Z0 decays. Phys. Rev. D, 59, 1999, 052001, 10.1103/PhysRevD.59.052001 arXiv:hep-ex/9805029.
Akers, R., et al. Measurement of the production rates of charged hadrons in e+ e- annihilation at the Z0. Z. Phys. C 63 (1994), 181–196, 10.1007/BF01411010.
Abreu, P., et al. pi+-, K+-, p and anti-p production in Z0 → q anti-q, Z0 → b anti-b, Z0 → u anti-u, d anti-d, s anti-s. Eur. Phys. J. C 5 (1998), 585–620, 10.1007/s100529800989.
Buskulic, D., et al. Inclusive pi+-, K+- and (p, anti-p) differential cross-sections at the Z resonance. Z. Phys. C 66 (1995), 355–366, 10.1007/BF01556360.
Aihara, H., et al. Pion and kaon multiplicities in heavy quark jets from e+e− annihilation at 29-GeV. Phys. Lett. B 184 (1987), 299–304, 10.1016/0370-2693(87)90586-7.
Aihara, H., et al. Charged hadron inclusive cross-sections and fractions in e+e− annihiliation s=29GeV. Phys. Rev. Lett., 61, 1988, 1263, 10.1103/PhysRevLett.61.1263.
Abbiendi, G., et al. Leading particle production in light flavor jets. Eur. Phys. J. C 16 (2000), 407–421, 10.1007/s100520000406 arXiv:hep-ex/0001054.
Lees, J.P., et al. Production of charged pions, kaons, and protons in e+e− annihilations into hadrons at s=10.54GeV. Phys. Rev. D, 88, 2013, 032011, 10.1103/PhysRevD.88.032011 arXiv:1306.2895.
Leitgab, M., et al. Precision Measurement of Charged Pion and Kaon Differential Cross Sections in e+e- Annihilation at s=10.52 GeV. Phys. Rev. Lett., 111, 2013, 062002, 10.1103/PhysRevLett.111.062002 arXiv:1301.6183.
Adare, A., et al. Inclusive cross-section and double helicity asymmetry for π0 production in p + p collisions at s=200GeV: Implications for the polarized gluon distribution in the proton. Phys. Rev. D, 76, 2007, 051106, 10.1103/PhysRevD.76.051106 arXiv:0704.3599.
Abelev, B.I., et al. Strange particle production in p+p collisions at s**(1/2) = 200-GeV. Phys. Rev. C, 75, 2007, 064901, 10.1103/PhysRevC.75.064901 arXiv:nucl-ex/0607033.
Abelev, B.B., et al. Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at sNN=2.76TeV. Phys. Lett. B 736 (2014), 196–207, 10.1016/j.physletb.2014.07.011 arXiv:1401.1250.
Agakishiev, G., et al. Identified hadron compositions in p+p and Au+Au collisions at high transverse momenta at sNN=200GeV. Phys. Rev. Lett., 108, 2012, 072302, 10.1103/PhysRevLett.108.072302 arXiv:1110.0579.
Arsene, I., et al. Production of mesons and baryons at high rapidity and high P(T) in proton-proton collisions at s**(1/2) = 200-GeV. Phys. Rev. Lett., 98, 2007, 252001, 10.1103/PhysRevLett.98.252001 arXiv:hep-ex/0701041.
Adamczyk, L., et al. Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at s=200GeV. Phys. Rev. D, 89(1), 2014, 012001, 10.1103/PhysRevD.89.012001 arXiv:1309.1800.
Adolph, C., et al. Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target. Phys. Lett. B 767 (2017), 133–141, 10.1016/j.physletb.2017.01.053 arXiv:1608.06760.
Hernández-Pinto, R.J., Epele, M., de Florian, D., Sassot, R., Stratmann, M., Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD. J. Phys. Conf. Ser., 761(1), 2016, 012037, 10.1088/1742-6596/761/1/012037 arXiv:1609.02455.
Hernández-Pinto, R.J., Epele, M., de Florian, D., Sassot, R., Stratmann, M., Global extraction of the parton-to-kaon fragmentation functions at NLO in QCD. J. Phys. Conf. Ser., 912(1), 2017, 012043, 10.1088/1742-6596/912/1/012043 arXiv:1709.07415.
de Florian, D., Sassot, R., Stratmann, M., Global analysis of fragmentation functions for pions and kaons and their uncertainties. Phys. Rev. D, 75, 2007, 114010, 10.1103/PhysRevD.75.114010 arXiv:hep-ph/0703242.
Adams, M.R., et al. Lambda and anti-lambda polarization from deep inelastic muon scattering. Eur. Phys. J. C 17 (2000), 263–267, 10.1007/s100520000493 arXiv:hep-ex/9911004.
Astier, P., et al. Measurement of the Lambda polarization in nu/mu charged current interactions in the NOMAD experiment. Nucl. Phys. B 588 (2000), 3–36, 10.1016/S0550-3213(00)00503-4.
Airapetian, A., et al. Longitudinal Spin Transfer to the Lambda Hyperon in semi-inclusive Deep-Inelastic Scattering. Phys. Rev. D, 74, 2006, 072004, 10.1103/PhysRevD.74.072004 arXiv:hep-ex/0607004.
Alekseev, M., et al. Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS. Eur. Phys. J. C 64 (2009), 171–179, 10.1140/epjc/s10052-009-1143-7 arXiv:0907.0388.
Bravar, A., et al. Spin transfer in inclusive Lambda0 production by transversely polarized protons at 200-GeV/c. Phys. Rev. Lett. 78 (1997), 4003–4006, 10.1103/PhysRevLett.78.4003.
Abelev, B.I., et al. Longitudinal Spin Transfer to Lambda and anti-Lambda Hyperons in Polarized Proton-Proton Collisions at s**(1/2) = 200-GeV. Phys. Rev. D, 80, 2009, 111102, 10.1103/PhysRevD.80.111102 arXiv:0910.1428.
Adam, J., et al. Improved measurement of the longitudinal spin transfer to Λ and Λ‾ hyperons in polarized proton-proton collisions at s=200GeV. Phys. Rev. D, 98(11), 2018, 112009, 10.1103/PhysRevD.98.112009 arXiv:1808.07634.
Adam, J., et al. Transverse spin transfer to Λ and Λ‾ hyperons in polarized proton-proton collisions at s=200GeV. Phys. Rev. D, 98(9), 2018, 091103, 10.1103/PhysRevD.98.091103 arXiv:1808.08000.
de Florian, D., Stratmann, M., Vogelsang, W., QCD analysis of unpolarized and polarized Lambda baryon production in leading and next-to-leading order. Phys. Rev. D 57 (1998), 5811–5824, 10.1103/PhysRevD.57.5811 arXiv:hep-ph/9711387.
Lu, W., Ma, B.-Q., The Strange quark spin of the proton in semi-inclusive Lambda leptoproduction. Phys. Lett. B 357 (1995), 419–422, 10.1016/0370-2693(95)00927-D arXiv:hep-ph/9507403.
Anselmino, M., Boglione, M., Murgia, F., Lambda and anti-Lambda polarization in polarized DIS. Phys. Lett. B 481 (2000), 253–262, 10.1016/S0370-2693(00)00455-X arXiv:hep-ph/0001307.
Ma, B.-Q., Schmidt, I., Soffer, J., Yang, J.-J., Lambda, anti-Lambda polarization and spin transfer in lepton deep inelastic scattering. Eur. Phys. J. C 16 (2000), 657–664, 10.1007/s100520000447 arXiv:hep-ph/0001259.
Ma, B.-Q., Schmidt, I., Soffer, J., Yang, J.-J., Helicity and transversity distributions of nucleon and Lambda-hyperon from Lambda fragmentation. Phys. Rev. D, 64, 2001, 014017, 10.1103/PhysRevD.64.014017 Erratum Phys. Rev. D, 64, 2001, 099901 arXiv:hep-ph/0103136.
Ellis, J.R., Kotzinian, A., Naumov, D.V., Intrinsic polarized strangeness and Lambda0 polarization in deep inelastic production. Eur. Phys. J. C 25 (2002), 603–613, 10.1140/epjc/s2002-01025-2 arXiv:hep-ph/0204206.
Ellis, J.R., Kotzinian, A., Naumov, D., Sapozhnikov, M., Longitudinal Polarization of Lambda and anti-Lambda Hyperons in Lepton-Nucleon Deep-Inelastic Scattering. Eur. Phys. J. C 52 (2007), 283–294, 10.1140/epjc/s10052-007-0381-9 arXiv:hep-ph/0702222.
Zhou, S.-s., Chen, Y., Liang, Z.-t., Xu, Q.-h., Longitudinal polarization of hyperon and anti-hyperon in semi-inclusive deep-inelastic scattering. Phys. Rev. D, 79, 2009, 094018, 10.1103/PhysRevD.79.094018 arXiv:0902.1883.
Z. Kang, J. Terry, A. Vossen, Q. Xu, J. Zhang, Study on the impact of EIC data on polarizing fragmentation functions, 2021.
Bunce, G., et al. Lambda0 Hyperon Polarization in Inclusive Production by 300-GeV Protons on Beryllium. Phys. Rev. Lett. 36 (1976), 1113–1116, 10.1103/PhysRevLett.36.1113.
Schachinger, L., et al. A Precise Measurement of the Λ0 Magnetic Moment. Phys. Rev. Lett., 41, 1978, 1348, 10.1103/PhysRevLett.41.1348.
Heller, K.J., et al. Polarization of Xi0 and Lambda Hyperons Produced by 400-GeV/c Protons. Phys. Rev. Lett. 51 (1983), 2025–2028, 10.1103/PhysRevLett.51.2025.
Lundberg, B., et al. Polarization in Inclusive Λ and Λ‾ Production at Large pT. Phys. Rev. D 40 (1989), 3557–3567, 10.1103/PhysRevD.40.3557.
Yuldashev, B.S., et al. Neutral strange particle production in p Ne-20 and p N interactions at 300-GeV/c. Phys. Rev. D 43 (1991), 2792–2802, 10.1103/PhysRevD.43.2792.
Ramberg, E.J., et al. Polarization of Lambda and anti-Lambda produced by 800-GeV protons. Phys. Lett. B 338 (1994), 403–408, 10.1016/0370-2693(94)91397-8.
Fanti, V., et al. A Measurement of the transverse polarization of Lambda hyperons produced in inelastic p N reactions at 450-GeV proton energy. Eur. Phys. J. C 6 (1999), 265–269, 10.1007/s100520050337.
Abt, I., et al. Polarization of Lambda and anti-Lambda in 920-GeV fixed-target proton-nucleus collisions. Phys. Lett. B 638 (2006), 415–421, 10.1016/j.physletb.2006.05.040 arXiv:hep-ex/0603047.
Kane, G.L., Pumplin, J., Repko, W., Transverse Quark Polarization in Large p(T) Reactions, e+ e- Jets, and Leptoproduction: A Test of QCD. Phys. Rev. Lett., 41, 1978, 1689, 10.1103/PhysRevLett.41.1689.
Panagiotou, A.D., Λ0 Polarization in Hadron-Nucleon, Hadron-Nucleus and Nucleus-nucleus Interactions. Int. J. Mod. Phys. A, 5, 1990, 1197, 10.1142/S0217751X90000568.
Dharmaratna, W.G.D., Goldstein, G.R., Single quark polarization in quantum chromodynamics subprocesses. Phys. Rev. D 53 (1996), 1073–1086, 10.1103/PhysRevD.53.1073.
Anselmino, M., Boer, D., D'Alesio, U., Murgia, F., Lambda polarization from unpolarized quark fragmentation. Phys. Rev. D, 63, 2001, 054029, 10.1103/PhysRevD.63.054029 arXiv:hep-ph/0008186.
Anselmino, M., Boer, D., D'Alesio, U., Murgia, F., Transverse lambda polarization in semi-inclusive DIS. Phys. Rev. D, 65, 2002, 114014, 10.1103/PhysRevD.65.114014 arXiv:hep-ph/0109186.
Boer, D., Kang, Z.-B., Vogelsang, W., Yuan, F., Test of the Universality of Naive-time-reversal-odd Fragmentation Functions. Phys. Rev. Lett., 105, 2010, 202001, 10.1103/PhysRevLett.105.202001 arXiv:1008.3543.
Boer, D., Transverse Lambda polarization at high energy colliders. PoS, DIS2010, 2010, 215, 10.22323/1.106.0215 arXiv:1007.3145.
Gamberg, L., Kang, Z.-B., Pitonyak, D., Schlegel, M., Yoshida, S., Polarized hyperon production in single-inclusive electron-positron annihilation at next-to-leading order. JHEP, 01, 2019, 111, 10.1007/JHEP01(2019)111 arXiv:1810.08645.
Aad, G., et al. Measurement of the transverse polarization of Λ and Λ‾ hyperons produced in proton-proton collisions at s=7TeV using the ATLAS detector. Phys. Rev. D, 91(3), 2015, 032004, 10.1103/PhysRevD.91.032004 arXiv:1412.1692.
Ackerstaff, K., et al. Polarization and forward-backward asymmetry of Lambda baryons in hadronic Z0 decays. Eur. Phys. J. C 2 (1998), 49–59, 10.1007/s100520050123 arXiv:hep-ex/9708027.
Guan, Y., et al. Observation of Transverse Λ/Λ‾ Hyperon Polarization in e+e− Annihilation at Belle. Phys. Rev. Lett., 122(4), 2019, 042001, 10.1103/PhysRevLett.122.042001 arXiv:1808.05000.
Boer, D., Jakob, R., Mulders, P.J., Asymmetries in polarized hadron production in e+ e- annihilation up to order 1/Q. Nucl. Phys. B 504 (1997), 345–380, 10.1016/S0550-3213(97)00456-2 arXiv:hep-ph/9702281.
D'Alesio, U., Murgia, F., Zaccheddu, M., First extraction of the Λ polarizing fragmentation function from Belle e+e− data. Phys. Rev. D, 102(5), 2020, 054001, 10.1103/PhysRevD.102.054001 arXiv:2003.01128.
Schnell, G., Measurements of fragmentation functions and implications for semi-inclusive deep-inelastic scattering. PoS, QCDEV2017, 2018, 049, 10.22323/1.308.0049.
Dasgupta, M., Dreyer, F., Salam, G.P., Soyez, G., Small-radius jets to all orders in QCD. JHEP, 04, 2015, 039, 10.1007/JHEP04(2015)039 arXiv:1411.5182.
Scott, D.J., Waalewijn, W.J., The leading jet transverse momentum in inclusive jet production and with a loose jet veto. JHEP, 03, 2020, 159, 10.1007/JHEP03(2020)159 arXiv:1912.06673.
Almeida, L.G., Lee, S.J., Perez, G., Sterman, G.F., Sung, I., Virzi, J., Substructure of high-pT Jets at the LHC. Phys. Rev. D, 79, 2009, 074017, 10.1103/PhysRevD.79.074017 arXiv:0807.0234.
Ellis, S.D., Vermilion, C.K., Walsh, J.R., Hornig, A., Lee, C., Jet Shapes and Jet Algorithms in SCET. JHEP, 11, 2010, 101, 10.1007/JHEP11(2010)101 arXiv:1001.0014.
Hornig, A., Makris, Y., Mehen, T., Jet Shapes in Dijet Events at the LHC in SCET. JHEP, 04, 2016, 097, 10.1007/JHEP04(2016)097 arXiv:1601.01319.
Kang, Z.-B., Lee, K., Ringer, F., Jet angularity measurements for single inclusive jet production. JHEP, 04, 2018, 110, 10.1007/JHEP04(2018)110 arXiv:1801.00790.
Aschenauer, E.-C., Lee, K., Page, B.S., Ringer, F., Jet angularities in photoproduction at the Electron-Ion Collider. Phys. Rev. D, 101(5), 2020, 054028, 10.1103/PhysRevD.101.054028 arXiv:1910.11460.
Burke, K.M., et al. Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions. Phys. Rev. C, 90(1), 2014, 014909, 10.1103/PhysRevC.90.014909 arXiv:1312.5003.
Qin, G.-Y., Wang, X.-N., Jet quenching in high-energy heavy-ion collisions. Int. J. Mod. Phys. E, 24(11), 2015, 1530014, 10.1142/S0218301315300143 arXiv:1511.00790.
Blaizot, J.-P., Mehtar-Tani, Y., Jet Structure in Heavy Ion Collisions. Int. J. Mod. Phys. E, 24(11), 2015, 1530012, 10.1142/S021830131530012X arXiv:1503.05958.
Majumder, A., Van Leeuwen, M., The Theory and Phenomenology of Perturbative QCD Based Jet Quenching. Prog. Part. Nucl. Phys. 66 (2011), 41–92, 10.1016/j.ppnp.2010.09.001 arXiv:1002.2206.
Kunnawalkam Elayavalli, R., Zapp, K.C., Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions. JHEP, 07, 2017, 141, 10.1007/JHEP07(2017)141 arXiv:1707.01539.
He, Y., Cao, S., Chen, W., Luo, T., Pang, L.-G., Wang, X.-N., Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions. Phys. Rev. C, 99(5), 2019, 054911, 10.1103/PhysRevC.99.054911 arXiv:1809.02525.
Adams, J., et al. Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200GeV. Phys. Lett. B 616 (2005), 8–16, 10.1016/j.physletb.2005.04.041 arXiv:nucl-ex/0309012.
Adler, S.S., et al. Centrality dependence of pi0 and eta production at large transverse momentum in s(NN)**(1/2) = 200-GeV d+Au collisions. Phys. Rev. Lett., 98, 2007, 172302, 10.1103/PhysRevLett.98.172302 arXiv:nucl-ex/0610036.
Sassot, R., Stratmann, M., Zurita, P., Fragmentations Functions in Nuclear Media. Phys. Rev. D, 81, 2010, 054001, 10.1103/PhysRevD.81.054001 arXiv:0912.1311.
Zurita, P., Medium modified Fragmentation Functions with open source xFitter. arXiv:2101.01088, 2021.
Wang, E., Wang, X.-N., Jet tomography of dense and nuclear matter. Phys. Rev. Lett., 89, 2002, 162301, 10.1103/PhysRevLett.89.162301 arXiv:hep-ph/0202105.
Brooks, W.K., López, J.A., Estimating the Color Lifetime of Energetic Quarks. arXiv:2004.07236, 2020.
Falter, T., Cassing, W., Gallmeister, K., Mosel, U., Hadron attenuation in deep inelastic lepton-nucleus scattering. Phys. Rev. C, 70, 2004, 054609, 10.1103/PhysRevC.70.054609 arXiv:nucl-th/0406023.
Li, H.T., Liu, Z.L., Vitev, I., Heavy meson tomography of cold nuclear matter at the electron-ion collider. arXiv:2007.10994, 2020.
Vitev, I., Jet quenching at intermediate RHIC energies. Phys. Lett. B 606 (2005), 303–312, 10.1016/j.physletb.2004.12.013 arXiv:nucl-th/0404052.
Li, X., et al. A New Heavy Flavor Program for the Future Electron-Ion Collider. EPJ Web Conf., 235, 2020, 04002, 10.1051/epjconf/202023504002 arXiv:2002.05880.
Li, H.T., Vitev, I., Inverting the mass hierarchy of jet quenching effects with prompt b-jet substructure. Phys. Lett. B 793 (2019), 259–264, 10.1016/j.physletb.2019.04.052 arXiv:1801.00008.
Adam, J., et al. First measurement of Λc baryon production in Au+Au collisions at sNN=200GeV. Phys. Rev. Lett., 124(17), 2020, 172301, 10.1103/PhysRevLett.124.172301 arXiv:1910.14628.
Sirunyan, A.M., et al. Production of Λ+c baryons in proton-proton and lead-lead collisions at sNN=5.02TeV. Phys. Lett. B, 803, 2020, 135328, 10.1016/j.physletb.2020.135328 arXiv:1906.03322.
Fritzsch, H., Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics. Phys. Lett. B 67 (1977), 217–221, 10.1016/0370-2693(77)90108-3.
Halzen, F., Cvc for Gluons and Hadroproduction of Quark Flavors. Phys. Lett. B 69 (1977), 105–108, 10.1016/0370-2693(77)90144-7.
Chang, C.-H., Hadronic Production of J/ψ Associated With a Gluon. Nucl. Phys. B 172 (1980), 425–434, 10.1016/0550-3213(80)90175-3.
Bodwin, G.T., Braaten, E., Lepage, G.P., Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev. D 51 (1995), 1125–1171, 10.1103/PhysRevD.55.5853 Erratum Phys. Rev. D, 55, 1997, 5853 arXiv:hep-ph/9407339.
Lansberg, J.-P., New Observables in Inclusive Production of Quarkonia. Phys. Rept. 889 (2020), 1–106, 10.1016/j.physrep.2020.08.007 arXiv:1903.09185.
Chapon, E., et al. Perspectives for quarkonium studies at the high-luminosity LHC. arXiv:2012.14161, 2020.
Aid, S., et al. Elastic and inelastic photoproduction of J/ψ mesons at HERA. Nucl. Phys. B 472 (1996), 3–31, 10.1016/0550-3213(96)00274-X arXiv:hep-ex/9603005.
Breitweg, J., et al. Measurement of inelastic J/ψ photoproduction at HERA. Z. Phys. C 76 (1997), 599–612, 10.1007/s002880050583 arXiv:hep-ex/9708010.
Aaron, F.D., et al. Inelastic Production of J/psi Mesons in Photoproduction and Deep Inelastic Scattering at HERA. Eur. Phys. J. C 68 (2010), 401–420, 10.1140/epjc/s10052-010-1376-5 arXiv:1002.0234.
Chekanov, S., et al. Measurements of inelastic J/psi and psi-prime photoproduction at HERA. Eur. Phys. J. C 27 (2003), 173–188, 10.1140/epjc/s2002-01130-2 arXiv:hep-ex/0211011.
Adloff, C., et al. Inelastic photoproduction of J/ψ mesons at HERA. Eur. Phys. J. C 25 (2002), 25–39, 10.1007/s10052-002-1009-8 arXiv:hep-ex/0205064.
Abramowicz, H., et al. Measurement of inelastic J/ψ and ψ' photoproduction at HERA. JHEP, 02, 2013, 071, 10.1007/JHEP02(2013)071 arXiv:1211.6946.
Chekanov, S., et al. Measurement of J/psi helicity distributions in inelastic photoproduction at HERA. JHEP, 12, 2009, 007, 10.1088/1126-6708/2009/12/007 arXiv:0906.1424.
Adloff, C., et al. Charmonium production in deep inelastic scattering at HERA. Eur. Phys. J. C 10 (1999), 373–393, 10.1007/s100520050762 arXiv:hep-ex/9903008.
Adloff, C., et al. Inelastic leptoproduction of J/ψ mesons at HERA. Eur. Phys. J. C 25 (2002), 41–53, 10.1007/s10052-002-1014-y arXiv:hep-ex/0205065.
Chekanov, S., et al. Measurement of inelastic J/ψ production in deep inelastic scattering at HERA. Eur. Phys. J. C 44 (2005), 13–25, 10.1140/epjc/s2005-02346-2 arXiv:hep-ex/0505008.
Sun, Z., ϒ electroproduction at HERA, EIC, and LHeC within the nonrelativistic QCD framework. Phys. Rev. D, 102, 2020, 114031, 10.1103/PhysRevD.102.114031 arXiv:2010.01790.
Krämer, M., QCD corrections to inelastic J/psi photoproduction. Nucl. Phys. B 459 (1996), 3–50, 10.1016/0550-3213(95)00568-4 arXiv:hep-ph/9508409.
Butenschoen, M., Kniehl, B.A., Complete next-to-leading-order corrections to J/psi photoproduction in nonrelativistic quantum chromodynamics. Phys. Rev. Lett., 104, 2010, 072001, 10.1103/PhysRevLett.104.072001 arXiv:0909.2798.
Flore, C., Lansberg, J.-P., Shao, H.-S., Yedelkina, Y., Large-PT inclusive photoproduction of J/ψ in electron-proton collisions at HERA and the EIC. Phys. Lett. B, 811, 2020, 135926, 10.1016/j.physletb.2020.135926 arXiv:2009.08264.
Fleming, S., Leibovich, A.K., Mehen, T., Resummation of Large Endpoint Corrections to Color-Octet J/ψ Photoproduction. Phys. Rev. D, 74, 2006, 114004, 10.1103/PhysRevD.74.114004 arXiv:hep-ph/0607121.
Hatta, Y., Rajan, A., Yang, D.-L., Near threshold J/ψ and ϒ photoproduction at JLab and RHIC. Phys. Rev. D, 100(1), 2019, 014032, 10.1103/PhysRevD.100.014032 arXiv:1906.00894.
Gittelman, B., Hanson, K.M., Larson, D., Loh, E., Silverman, A., Theodosiou, G., Photoproduction of the psi (3100) Meson at 11-GeV. Phys. Rev. Lett., 35, 1975, 1616, 10.1103/PhysRevLett.35.1616.
Frankfurt, L., Strikman, M., Two gluon form-factor of the nucleon and J/psi photoproduction. Phys. Rev. D, 66, 2002, 031502, 10.1103/PhysRevD.66.031502 arXiv:hep-ph/0205223.
Kishore, R., Mukherjee, A., Rajesh, S., Sivers asymmetry in the photoproduction of a J/ψ and a jet at the EIC. Phys. Rev. D, 101(5), 2020, 054003, 10.1103/PhysRevD.101.054003 arXiv:1908.03698.
Echevarria, M.G., Makris, Y., Scimemi, I., Quarkonium TMD fragmentation functions in NRQCD. JHEP, 10, 2020, 164, 10.1007/JHEP10(2020)164 arXiv:2007.05547.
Beneke, M., Rothstein, I.Z., Wise, M.B., Kinematic enhancement of nonperturbative corrections to quarkonium production. Phys. Lett. B 408 (1997), 373–380, 10.1016/S0370-2693(97)00832-0 arXiv:hep-ph/9705286.
Fleming, S., Leibovich, A.K., The Resummed Photon Spectrum in Radiative Upsilon Decays. Phys. Rev. Lett., 90, 2003, 032001, 10.1103/PhysRevLett.90.032001 arXiv:hep-ph/0211303.
Fleming, S., Leibovich, A.K., Mehen, T., Resumming the color octet contribution to e+e− → J/ψ + X. Phys. Rev. D, 68, 2003, 094011, 10.1103/PhysRevD.68.094011 arXiv:hep-ph/0306139.
Leibovich, A.K., Liu, X., The Color-singlet contribution to e+e− → J/ψ + X at the endpoint. Phys. Rev. D, 76, 2007, 034005, 10.1103/PhysRevD.76.034005 arXiv:0705.3230.
Cui, Z.L., Hu, M.C., Ma, J.P., Gluon GPDs and exclusive photoproduction of quarkonium in forward region. Eur. Phys. J. C, 79(10), 2019, 812, 10.1140/epjc/s10052-019-7298-y arXiv:1804.05293.
Chen, Z.-Q., Qiao, C.-F., NLO QCD corrections to exclusive electroproduction of quarkonium. Phys. Lett. B, 797, 2019, 134816, 10.1016/j.physletb.2019.134816 Erratum Phys. Lett. B, 135759, 2020 arXiv:1903.00171.
Makris, Y., Vitev, I., An Effective Theory of Quarkonia in QCD Matter. JHEP, 10, 2019, 111, 10.1007/JHEP10(2019)111 arXiv:1906.04186.
Aronson, S., Borras, E., Odegard, B., Sharma, R., Vitev, I., Collisional and thermal dissociation of J/ψ and ϒ states at the LHC. Phys. Lett. B 778 (2018), 384–391, 10.1016/j.physletb.2018.01.038 arXiv:1709.02372.
Ovanesyan, G., Vitev, I., An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung. JHEP, 06, 2011, 080, 10.1007/JHEP06(2011)080 arXiv:1103.1074.
Chien, Y.-T., Vitev, I., Jet Shape Resummation Using Soft-Collinear Effective Theory. JHEP, 12, 2014, 061, 10.1007/JHEP12(2014)061 arXiv:1405.4293.
Akamatsu, Y., Heavy quark master equations in the Lindblad form at high temperatures. Phys. Rev. D, 91(5), 2015, 056002, 10.1103/PhysRevD.91.056002 arXiv:1403.5783.
Brambilla, N., Escobedo, M.A., Soto, J., Vairo, A., Heavy quarkonium suppression in a fireball. Phys. Rev. D, 97(7), 2018, 074009, 10.1103/PhysRevD.97.074009 arXiv:1711.04515.
Yao, X., Mehen, T., Quarkonium in-medium transport equation derived from first principles. Phys. Rev. D, 99(9), 2019, 096028, 10.1103/PhysRevD.99.096028 arXiv:1811.07027.
Akamatsu, Y., Quarkonium in Quark-Gluon Plasma: Open Quantum System Approaches Re-examined. arXiv:2009.10559, 2020.
Yao, X., Mehen, T., Quarkonium Semiclassical Transport in Quark-Gluon Plasma: Factorization and Quantum Correction. JHEP, 21, 2020, 062, 10.1007/JHEP02(2021)062 arXiv:2009.02408.
Das, D., Dutta, N., Anisotropic flow: A case for Bottomonia. Int. J. Mod. Phys. A, 33(16), 2018, 1850092, 10.1142/S0217751X18500926 arXiv:1802.00414.
Leitch, M.J., et al. Measurement of J/psi and psi-prime suppression in p-A collisions at 800-GeV/c. Phys. Rev. Lett. 84 (2000), 3256–3260, 10.1103/PhysRevLett.84.3256 arXiv:nucl-ex/9909007.
Alessandro, B., et al. J/psi and psi-prime production and their normal nuclear absorption in proton-nucleus collisions at 400-GeV. Eur. Phys. J. C, 48, 2006, 329, 10.1140/epjc/s10052-006-0079-4 arXiv:nucl-ex/0612012.
Olsen, S.L., Skwarnicki, T., Zieminska, D., Nonstandard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys., 90(1), 2018, 015003, 10.1103/RevModPhys.90.015003 arXiv:1708.04012.
Crittenden, J.A., Exclusive production of neutral vector mesons at the electron-proton collider HERA. arXiv:hep-ex/9704009, 1997.
Bartels, J., High-Energy Behavior in a Nonabelian Gauge Theory (II): First Corrections to Tn→m Beyond the Leading ln s Approximation. Nucl. Phys. B 175 (1980), 365–401, 10.1016/0550-3213(80)90019-X.
Jaroszewicz, T., Infrared Divergences and Regge Behavior in QCD. Acta Phys. Polon. B, 11, 1980, 965.
Kwiecinski, J., Praszalowicz, M., Three Gluon Integral Equation and Odd c Singlet Regge Singularities in QCD. Phys. Lett. B 94 (1980), 413–416, 10.1016/0370-2693(80)90909-0.
Czyzewski, J., Kwiecinski, J., Motyka, L., Sadzikowski, M., Exclusive eta(c) photoproduction and electroproduction at HERA as a possible probe of the odderon singularity in QCD. Phys. Lett. B 398 (1997), 400–406, 10.1016/S0370-2693(97)00249-9 Erratum Phys. Lett. B, 411, 1997, 402 arXiv:hep-ph/9611225.
Engel, R., Ivanov, D.Y., Kirschner, R., Szymanowski, L., Diffractive meson production from virtual photons with odd charge-parity exchange. Eur. Phys. J. C 4 (1998), 93–99, 10.1007/s100520050188 arXiv:hep-ph/9707362.
Dumitru, A., Stebel, T., Multiquark matrix elements in the proton and three gluon exchange for exclusive ηc production in photon-proton diffractive scattering. Phys. Rev. D, 99(9), 2019, 094038, 10.1103/PhysRevD.99.094038 arXiv:1903.07660.
Klein, S.R., Comment on “ηc production in photon-induced interactions at the LHC”. Phys. Rev. D, 98(11), 2018, 118501, 10.1103/PhysRevD.98.118501 arXiv:1808.08253.
Brodsky, S.J., Rathsman, J., Merino, C., Odderon-Pomeron interference. Phys. Lett. B 461 (1999), 114–122, 10.1016/S0370-2693(99)00807-2 arXiv:hep-ph/9904280.
Ginzburg, I.F., Ivanov, I.P., Nikolaev, N.N., Possible odderon discovery via observation of charge asymmetry in the diffractive pi+ pi- production at HERA. Eur. Phys. J. direct, 5(1), 2003, 002, 10.1140/epjcd/s2003-01-002-8 arXiv:hep-ph/0207345.
Ginzburg, I.F., Ivanov, I.P., How to measure the pomeron phase in diffractive dipion photoproduction. Eur. Phys. J. C 45 (2006), 193–200, 10.1140/epjc/s2005-02402-y arXiv:hep-ph/0401180.
Hägler, P., Pire, B., Szymanowski, L., Teryaev, O.V., Hunting the QCD-Odderon in hard diffractive electroproduction of two pions. Phys. Lett. B 535 (2002), 117–126, 10.1016/S0370-2693(02)01736-7 Erratum Phys. Lett. B 540 (2002), 324–325 arXiv:hep-ph/0202231.
Hagler, P., Pire, B., Szymanowski, L., Teryaev, O.V., Pomeron-odderon interference effects in electroproduction of two pions. Eur. Phys. J. C 26 (2002), 261–270, 10.1140/epjc/s2002-01054-9 arXiv:hep-ph/0207224.
Diehl, M., Gousset, T., Pire, B., Teryaev, O., Probing partonic structure in gamma* gamma → pi pi near threshold. Phys. Rev. Lett. 81 (1998), 1782–1785, 10.1103/PhysRevLett.81.1782 arXiv:hep-ph/9805380.
Polyakov, M.V., Weiss, C., Two pion light cone distribution amplitudes from the instanton vacuum. Phys. Rev. D, 59, 1999, 091502, 10.1103/PhysRevD.59.091502 arXiv:hep-ph/9806390.
Diehl, M., Gousset, T., Pire, B., Exclusive production of pion pairs in gamma* gamma collisions at large Q**2. Phys. Rev. D, 62, 2000, 073014, 10.1103/PhysRevD.62.073014 arXiv:hep-ph/0003233.
Yao, X., Hagiwara, Y., Hatta, Y., Computing the gluon Sivers function at small-x. Phys. Lett. B 790 (2019), 361–366, 10.1016/j.physletb.2019.01.029 arXiv:1812.03959.
Laget, J.M., Exclusive Meson Photo- and Electro-production, a Window on the Structure of Hadronic Matter. Prog. Part. Nucl. Phys., 111, 2020, 103737, 10.1016/j.ppnp.2019.103737 arXiv:1911.04825.
Derrick, M., et al. Measurement of elastic omega photoproduction at HERA. Z. Phys. C 73 (1996), 73–84, 10.1007/s002880050297 arXiv:hep-ex/9608010.
Park, K., et al. Hard exclusive pion electroproduction at backward angles with CLAS. Phys. Lett. B 780 (2018), 340–345, 10.1016/j.physletb.2018.03.026 arXiv:1711.08486.
Klein, S.R., Xie, Y.-P., Photoproduction of charged final states in ultraperipheral collisions and electroproduction at an electron-ion collider. Phys. Rev. C, 100(2), 2019, 024620, 10.1103/PhysRevC.100.024620 arXiv:1903.02680.
Adhikari, S., et al. The GLUEX beamline and detector. Nucl. Instrum. Meth. A, 987, 2021, 164807, 10.1016/j.nima.2020.164807 arXiv:2005.14272.
Burkert, V.D., et al. The CLAS12 Spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A, 959, 2020, 163419, 10.1016/j.nima.2020.163419.
Adloff, C., et al. Diffractive photoproduction of psi(2S) mesons at HERA. Phys. Lett. B 541 (2002), 251–264, 10.1016/S0370-2693(02)02275-X arXiv:hep-ex/0205107.
Adloff, C., et al. Elastic photoproduction of J/psi and Upsilon mesons at HERA. Phys. Lett. B 483 (2000), 23–35, 10.1016/S0370-2693(00)00530-X arXiv:hep-ex/0003020.
Chekanov, S., et al. Exclusive photoproduction of upsilon mesons at HERA. Phys. Lett. B 680 (2009), 4–12, 10.1016/j.physletb.2009.07.066 arXiv:0903.4205.
Aghasyan, M., et al. Search for muoproduction of X(3872) at COMPASS and indication of a new state X˜(3872). Phys. Lett. B 783 (2018), 334–340 arXiv:1707.01796.
Adolph, C., et al. Search for exclusive photoproduction of Z±c (3900) at COMPASS. Phys. Lett. B 742 (2015), 330–334, 10.1016/j.physletb.2015.01.042 arXiv:1407.6186.
Albaladejo, M., Blin, A.N.H., Pilloni, A., Winney, D., Fernández-Ramírez, C., Mathieu, V., Szczepaniak, A., XYZ spectroscopy at electron-hadron facilities: Exclusive processes. Phys. Rev. D, 102, 2020, 114010, 10.1103/PhysRevD.102.114010 arXiv:2008.01001.
Arneodo, M., et al. Transverse Momentum and Its Compensation in Current and Target Jets in Deep Inelastic Muon-Proton Scattering. Phys. Lett. B 149 (1984), 415–420, 10.1016/0370-2693(84)90436-2.
Arneodo, M., et al. Studies of Quark and Diquark Fragmentation Into Identified Hadrons in Deep Inelastic Muon-Proton Scattering. Phys. Lett. B, 150, 1985, 458, 10.1016/0370-2693(85)90466-6.
Arneodo, M., et al. Investigation of the w and q2 dependence of charged pion distributions in μp scattering. Z. Phys. C, 31, 1986, 1, 10.1007/BF01559586.
Adams, M.R., et al. Production of charged hadrons by positive muons on deuterium and xenon at 490-GeV. Z. Phys. C 61 (1994), 179–198, 10.1007/BF01413096.
Derrick, M., et al. Properties of the Hadronic System Resulting from anti-Muon-neutrino p Interactions. Phys. Rev. D, 17, 1978, 1, 10.1103/PhysRevD.17.1.
Allen, P., et al. Transverse Momentum Distributions of Hadrons in Deep Inelastic Neutrino-Proton Scattering. Nucl. Phys. B 188 (1981), 1–10, 10.1016/0550-3213(81)90101-2.
Allen, P., et al. An Investigation of Quark and Diquark Fragmentation in Neutrino p and Anti-neutrino p Charged Current Interactions in {BEBC}. Nucl. Phys. B, 214, 1983, 369, 10.1016/0550-3213(83)90239-0.
Chekanov, S., et al. Leading proton production in deep inelastic scattering at HERA. JHEP, 06, 2009, 074, 10.1088/1126-6708/2009/06/074 arXiv:0812.2416.
Andreev, V., et al. Measurement of Feynman-x Spectra of Photons and Neutrons in the Very Forward Direction in Deep-Inelastic Scattering at HERA. Eur. Phys. J. C, 74(6), 2014, 2915, 10.1140/epjc/s10052-014-2915-2 arXiv:1404.0201.
Alexa, C., et al. Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA. Eur. Phys. J. C, 73(4), 2013, 2406, 10.1140/epjc/s10052-013-2406-x arXiv:1302.1321.
Ceccopieri, F.A., QCD analysis of forward neutron production in DIS. Eur. Phys. J. C, 74(8), 2014, 3029, 10.1140/epjc/s10052-014-3029-6 arXiv:1406.0754.
Lee, J., Ruspa, M., Stasto, A., Strikman, M., Weiss, C., CFNS AdHoc Workshop on Target Fragmentation Physics with EIC. https://indico.bnl.gov/event/9287/, 2020.
Strikman, M.I., Frankfurt, L.L., Deep Inelastic Processes as a Tool to Study the Structure of Nucleons and Nuclei and the Nature of Nuclear Forces. Yad. Fiz. 25 (1977), 1177–1184.
Ceccopieri, F.A., Mancusi, D., QCD analysis of Lambda hyperon production in DIS target-fragmentation region. Eur. Phys. J. C, 73, 2013, 2435, 10.1140/epjc/s10052-013-2435-5 arXiv:1211.3333.
Schweitzer, P., Strikman, M., Weiss, C., Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking. JHEP, 01, 2013, 163, 10.1007/JHEP01(2013)163 arXiv:1210.1267.
Aschenauer, E.C., Burton, T., Martini, T., Spiesberger, H., Stratmann, M., Prospects for Charged Current Deep-Inelastic Scattering off Polarized Nucleons at a Future Electron-Ion Collider. Phys. Rev. D, 88, 2013, 114025, 10.1103/PhysRevD.88.114025 arXiv:1309.5327.
Zhao, Y.X., Deshpande, A., Huang, J., Kumar, K.S., Riordan, S., Neutral-Current Weak Interactions at an EIC. Eur. Phys. J. A, 53(3), 2017, 55, 10.1140/epja/i2017-12245-2 arXiv:1612.06927.
Wood, C.S., Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, C.E., Measurement of parity nonconservation and an anapole moment in cesium. Science 275 (1997), 1759–1763, 10.1126/science.275.5307.1759.
Androic, D., et al. First Determination of the Weak Charge of the Proton. Phys. Rev. Lett., 111(14), 2013, 141803, 10.1103/PhysRevLett.111.141803 arXiv:1307.5275.
Wang, D., et al. Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering. Phys. Rev. C, 91(4), 2015, 045506, 10.1103/PhysRevC.91.045506 arXiv:1411.3200.
Wang, D., et al. Measurement of parity violation in electron–quark scattering. Nature 506:7486 (2014), 67–70, 10.1038/nature12964.
Chen, J.P., Gao, H., Hemmick, T.K., Meziani, Z.E., Souder, P.A., A White Paper on SoLID (Solenoidal Large Intensity Device). arXiv:1409.7741, 2014.
Berman, S.M., Primack, J.R., Weak Neutral Currents in Electron and Muon Scattering. Phys. Rev. D, 9, 1974, 2171, 10.1103/PhysRevD.9.2171 Erratum Phys. Rev. D, 10, 1974, 3895.
Argento, A., et al. Electroweak Asymmetry in Deep Inelastic Muon-Nucleon Scattering. Phys. Lett. B, 120, 1983, 245, 10.1016/0370-2693(83)90665-2.
Furletova, Y., Mantry, S., Using polarized positrons to probe physics beyond the standard model. AIP Conf. Proc., 1970(1), 2018, 030005, 10.1063/1.5040210.
Buckley, M.R., Ramsey-Musolf, M.J., Precision probes of a leptophobic Z' boson. Phys. Lett. B 712 (2012), 261–265, 10.1016/j.physletb.2012.04.077 arXiv:1203.1102.
González-Alonso, M., Ramsey-Musolf, M.J., Leptophobic Z' Boson and Parity-Violating eD Scattering. Phys. Rev. D, 87(5), 2013, 055013, 10.1103/PhysRevD.87.055013 arXiv:1211.4581.
Czarnecki, A., Marciano, W.J., Electroweak radiative corrections to polarized Moller scattering asymmetries. Phys. Rev. D 53 (1996), 1066–1072, 10.1103/PhysRevD.53.1066 arXiv:hep-ph/9507420.
Czarnecki, A., Marciano, W.J., Parity violating asymmetries at future lepton colliders. Int. J. Mod. Phys. A 13 (1998), 2235–2244, 10.1142/S0217751X98001037 arXiv:hep-ph/9801394.
Czarnecki, A., Marciano, W.J., Polarized Moller scattering asymmetries. Int. J. Mod. Phys. A 15 (2000), 2365–2376, 10.1016/S0217-751X(00)00243-0 arXiv:hep-ph/0003049.
Ferroglia, A., Ossola, G., Sirlin, A., The Electroweak form-factor kappa-hat (q**2) and the running of sin**2 theta-hat (W). Eur. Phys. J. C 34 (2004), 165–171, 10.1140/epjc/s2004-01604-1 arXiv:hep-ph/0307200.
Kumar, K.S., Mantry, S., Marciano, W.J., Souder, P.A., Low Energy Measurements of the Weak Mixing Angle. Ann. Rev. Nucl. Part. Sci. 63 (2013), 237–267, 10.1146/annurev-nucl-102212-170556 arXiv:1302.6263.
Davoudiasl, H., Lee, H.-S., Marciano, W.J., ‘Dark’ Z implications for Parity Violation, Rare Meson Decays, and Higgs Physics. Phys. Rev. D, 85, 2012, 115019, 10.1103/PhysRevD.85.115019 arXiv:1203.2947.
Davoudiasl, H., Lee, H.-S., Marciano, W.J., Muon Anomaly and Dark Parity Violation. Phys. Rev. Lett., 109, 2012, 031802, 10.1103/PhysRevLett.109.031802 arXiv:1205.2709.
Jean, P., et al. Early SPI/INTEGRAL measurements of 511 keV line emission from the 4th quadrant of the Galaxy. Astron. Astrophys., 407, 2003, L55, 10.1051/0004-6361:20031056 arXiv:astro-ph/0309484.
Adriani, O., et al. An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. Nature 458 (2009), 607–609, 10.1038/nature07942 arXiv:0810.4995.
Barwick, S.W., et al. Measurements of the cosmic ray positron fraction from 1-GeV to 50-GeV. Astrophys. J. Lett. 482 (1997), L191–L194, 10.1086/310706 arXiv:astro-ph/9703192.
Beatty, J.J., et al. New measurement of the cosmic-ray positron fraction from 5 to 15-GeV. Phys. Rev. Lett., 93, 2004, 241102, 10.1103/PhysRevLett.93.241102 arXiv:astro-ph/0412230.
Aguilar, M., et al. Cosmic-ray positron fraction measurement from 1 to 30-GeV with AMS-01. Phys. Lett. B 646 (2007), 145–154, 10.1016/j.physletb.2007.01.024 arXiv:astro-ph/0703154.
Tanabashi, M., et al. Review of Particle Physics. Phys. Rev. D, 98(3), 2018, 030001, 10.1103/PhysRevD.98.030001.
Litchfield, R.P., Muon to electron conversion: The COMET and Mu2e experiments. arXiv:1412.1406, 2014.
Wiedner, D., Augustin, H., Bachmann, S., Berger, N., Kiehn, M., Perrevoort, A.K., Peric, I., A Novel Experiment Searching for the Lepton Flavor Violating Decay μ → eee. PoS, Vertex2012, 2013, 033, 10.22323/1.167.0033.
Wintz, P., Results of the SINDRUM-II experiment. Conf. Proc. C 980420 (1998), 534–546.
Lee, M., COMET Muon Conversion Experiment in J-PARC. Front. in Phys., 6, 2018, 10.3389/fphy.2018.00133.
Baldini, A.M., et al. The design of the MEG II experiment. Eur. Phys. J. C, 78(5), 2018, 380, 10.1140/epjc/s10052-018-5845-6 arXiv:1801.04688.
van der Schaaf, A., SINDRUM II. J. Phys. G 29 (2003), 1503–1506, 10.1088/0954-3899/29/8/306.
Aaron, F.D., et al. Search for Lepton Flavour Violation at HERA. Phys. Lett. B 701 (2011), 20–30, 10.1016/j.physletb.2011.05.023 arXiv:1103.4938.
Chekanov, S., et al. Search for lepton-flavor violation at HERA. Eur. Phys. J. C 44 (2005), 463–479, 10.1140/epjc/s2005-02399-1 arXiv:hep-ex/0501070.
Aktas, A., et al. Search for lepton flavour violation in ep collisions at HERA. Eur. Phys. J. C 52 (2007), 833–847, 10.1140/epjc/s10052-007-0440-2 arXiv:hep-ex/0703004.
Gonderinger, M., Ramsey-Musolf, M.J., Electron-to-Tau Lepton Flavor Violation at the Electron-Ion Collider. JHEP, 11, 2010, 045, 10.1007/JHEP11(2010)045 Erratum JHEP, 05, 2012, 047 arXiv:1006.5063.
Cirigliano, V., Fuyuto, K., Lee, C., Mereghetti, E., Yan, B., Charged Lepton Flavor Violation at the EIC. arXiv:2102.06176, 2021.
Taxil, P., Tugcu, E., Virey, J.M., Search and identification of scalar and vector leptoquarks at HERA with polarization. Eur. Phys. J. C 14 (2000), 165–178, 10.1007/s100520050743 arXiv:hep-ph/9912272.
Aktas, A., et al. First measurement of charged current cross sections at HERA with longitudinally polarised positrons. Phys. Lett. B 634 (2006), 173–179, 10.1016/j.physletb.2006.01.054 arXiv:hep-ex/0512060.
Filippi, A., De Napoli, M., Searching in the dark: the hunt for the dark photon. Rev. Phys., 5, 2020, 100042, 10.1016/j.revip.2020.100042 arXiv:2006.04640.
Fabbrichesi, M., Gabrielli, E., Lanfranchi, G., The Dark Photon. arXiv:2005.01515, 2020.
Collaboration, C., Search for a narrow resonance decaying to a pair of muons in proton-proton collisions at 13 TeV. Tech. rep., 2019, CERN.
Batell, B., Ghosh, T., Han, T., Keping, X., Bsm physics at the electron ion collider: Searching for heavy neutral leptons. https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF7_EF0-NF2_NF3-RF4_RF0_Brian_Batell-114.pdf, 2020 Letter of Interest submitted to the Snowmass 2021 Energy Frontier.
Minkowski, P., μ → eγ at a Rate of One Out of 109 Muon Decays?. Phys. Lett. B 67 (1977), 421–428, 10.1016/0370-2693(77)90435-X.
Yanagida, T., Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C 7902131 (1979), 95–99.
Gell-Mann, M., Ramond, P., Slansky, R., Complex Spinors and Unified Theories. Conf. Proc. C 790927 (1979), 315–321 arXiv:1306.4669.
Glashow, S.L., The Future of Elementary Particle Physics. NATO Sci. Ser. B, 61, 1980, 687, 10.1007/978-1-4684-7197-7_15.
Mohapatra, R.N., Senjanovic, G., Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett., 44, 1980, 912, 10.1103/PhysRevLett.44.912.
Schechter, J., Valle, J.W.F., Neutrino Masses in SU(2) x U(1) Theories. Phys. Rev. D, 22, 1980, 2227, 10.1103/PhysRevD.22.2227.
Asaka, T., Shaposhnikov, M., The νMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620 (2005), 17–26, 10.1016/j.physletb.2005.06.020 arXiv:hep-ph/0505013.
Akhmedov, E.K., Rubakov, V.A., Smirnov, A.Y., Baryogenesis via neutrino oscillations. Phys. Rev. Lett. 81 (1998), 1359–1362, 10.1103/PhysRevLett.81.1359 arXiv:hep-ph/9803255.
Beacham, J., et al. Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report. J. Phys. G, 47(1), 2020, 010501, 10.1088/1361-6471/ab4cd2 arXiv:1901.09966.
Boughezal, R., Petriello, F., Wiegand, D., Removing flat directions in standard model EFT fits: How polarized electron-ion collider data can complement the LHC. Phys. Rev. D, 101(11), 2020, 116002, 10.1103/PhysRevD.101.116002 arXiv:2004.00748.
Colladay, D., Kostelecky, V.A., Lorentz violating extension of the standard model. Phys. Rev. D, 58, 1998, 116002, 10.1103/PhysRevD.58.116002 arXiv:hep-ph/9809521.
Kostelecky, V.A., Gravity, Lorentz violation, and the standard model. Phys. Rev. D, 69, 2004, 105009, 10.1103/PhysRevD.69.105009 arXiv:hep-th/0312310.
Colladay, D., Kostelecky, V.A., CPT violation and the standard model. Phys. Rev. D 55 (1997), 6760–6774, 10.1103/PhysRevD.55.6760 arXiv:hep-ph/9703464.
Lunghi, E., Lorentz Violation in Deep Inelastic Electron-Proton Scattering. 7th Meeting on CPT and Lorentz Symmetry, 2017, 165–168, 10.1142/9789813148505_0042 arXiv:1610.09318.
Lunghi, E., Sherrill, N., Lorentz violation and the electron-ion collider. Phys. Rev. D, 98(11), 2018, 115018, 10.1103/PhysRevD.98.115018 arXiv:1805.11684.
Kostelecký, V.A., Lunghi, E., Sherrill, N., Vieira, A.R., Lorentz and CPT Violation in Partons. JHEP, 04, 2020, 143, 10.1007/JHEP04(2020)143 arXiv:1911.04002.
Alvarez-Ruso, L., et al. NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys. 100 (2018), 1–68, 10.1016/j.ppnp.2018.01.006 arXiv:1706.03621.
Abi, B., et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics. arXiv:2002.03005, 2020.
Abe, K., et al. Hyper-Kamiokande Design Report. arXiv:1805.04163, 2018.
Petti, R., Precision Measurements of Fundamental Interactions with (Anti)Neutrinos. arXiv:1910.05995, 2019.
Bernardini, P., et al. Enhancing the LBNF/DUNE Physics Program. https://indico.cern.ch/event/765096/contributions/3295805/, 2018 European Particle Physics Strategy Update 2018–2020, contribution # 131.
Adamov, G., et al. Precision measurements with (anti)neutrinos at LBNF. https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF5_NF6-EF6_EF4-RF1_RF6-122.pdf, 2020 Letter of Interest submitted to the Snowmass 2021 Neutrino Physics Frontier.
Petti, R., Precision (anti)neutrino scattering off nucleons and nuclei. https://indico.cern.ch/event/800930/contributions/3556598/, 2019 9th International Conference on Physics Opportunities at an ElecTron-Ion-Collider.
Winter, K., (eds.) Neutrino physics, 2nd Edition, vol. 14, 2000, Cambridge University Press.
Cooper-Sarkar, A., Mertsch, P., Sarkar, S., The high energy neutrino cross-section in the Standard Model and its uncertainty. JHEP, 08, 2011, 042, 10.1007/JHEP08(2011)042 arXiv:1106.3723.
Nakamura, S.X., et al. Towards a Unified Model of Neutrino-Nucleus Reactions for Neutrino Oscillation Experiments. Rept. Prog. Phys., 80(5), 2017, 056301, 10.1088/1361-6633/aa5e6c arXiv:1610.01464.
Kulagin, S.A., Petti, R., Neutrino inelastic scattering off nuclei. Phys. Rev. D, 76, 2007, 094023, 10.1103/PhysRevD.76.094023 arXiv:hep-ph/0703033.
Hirai, M., Kumano, S., Nagai, T.H., Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order. Phys. Rev. C, 76, 2007, 065207, 10.1103/PhysRevC.76.065207 arXiv:0709.3038.
Kovarik, K., et al. nCTEQ15 – Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework. Phys. Rev. D, 93(8), 2016, 085037, 10.1103/PhysRevD.93.085037 arXiv:1509.00792.
de Florian, D., Sassot, R., Zurita, P., Stratmann, M., Global Analysis of Nuclear Parton Distributions. Phys. Rev. D, 85, 2012, 074028, 10.1103/PhysRevD.85.074028 arXiv:1112.6324.
Khanpour, H., Atashbar Tehrani, S., Global Analysis of Nuclear Parton Distribution Functions and Their Uncertainties at Next-to-Next-to-Leading Order. Phys. Rev. D, 93(1), 2016, 014026, 10.1103/PhysRevD.93.014026 arXiv:1601.00939.
Kulagin, S.A., Petti, R., Nuclear parton distributions and the Drell-Yan process. Phys. Rev. C, 90(4), 2014, 045204, 10.1103/PhysRevC.90.045204 arXiv:1405.2529.
Duyang, H., Guo, B., Mishra, S.R., Petti, R., A Novel Approach to Neutrino-Hydrogen Measurements. arXiv:1809.08752, 2018.
Duyang, H., Guo, B., Mishra, S.R., Petti, R., A Precise Determination of (Anti)neutrino Fluxes with (Anti)neutrino-Hydrogen Interactions. Phys. Lett. B 795 (2019), 424–431, 10.1016/j.physletb.2019.06.003 arXiv:1902.09480.
Alvarez-Ruso, L., et al. Neutrino scattering measurements on hydrogen and deuterium. https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF6_NF3-TF11_TF5_LauraFields_RichardHill_TomJunk-165.pdf, 2020 Letter of Interest submitted to the Snowmass 2021 Neutrino Physics Frontier.
Samoylov, O., et al. A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment. Nucl. Phys. B 876 (2013), 339–375, 10.1016/j.nuclphysb.2013.08.021 arXiv:1308.4750.
Goncharov, M., et al. Precise Measurement of Dimuon Production Cross-Sections in νμ Fe and ν‾μ Fe Deep Inelastic Scattering at the Tevatron. Phys. Rev. D, 64, 2001, 112006, 10.1103/PhysRevD.64.112006 arXiv:hep-ex/0102049.
Alekhin, S., Blümlein, J., Kulagin, S., Moch, S.-O., Petti, R., Strange and non-strange distributions from the collider data. PoS, DIS2018, 2018, 008, 10.22323/1.316.0008 arXiv:1808.06871.
Alekhin, S., Blümlein, J., Moch, S., Strange sea determination from collider data. Phys. Lett. B 777 (2018), 134–140, 10.1016/j.physletb.2017.12.024 arXiv:1708.01067.
Alekhin, S., Blumlein, J., Caminadac, L., Lipka, K., Lohwasser, K., Moch, S., Petti, R., Placakyte, R., Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data. Phys. Rev. D, 91(9), 2015, 094002, 10.1103/PhysRevD.91.094002 arXiv:1404.6469.
Young, R.D., Roche, J., Carlini, R.D., Thomas, A.W., Extracting nucleon strange and anapole form factors from world data. Phys. Rev. Lett., 97, 2006, 102002, 10.1103/PhysRevLett.97.102002 arXiv:nucl-ex/0604010.
Ahrens, L.A., et al. Measurement of Neutrino-Proton and anti-neutrino-Proton Elastic Scattering. Phys. Rev. D, 35, 1987, 785, 10.1103/PhysRevD.35.785.
Garvey, G.T., Louis, W.C., White, D.H., Determination of proton strange form factors from neutrino p elastic scattering. Phys. Rev. C 48 (1993), 761–765, 10.1103/PhysRevC.48.761.
Alberico, W.M., Barbaro, M.B., Bilenky, S.M., Caballero, J.A., Giunti, C., Maieron, C., Moya de Guerra, E., Udias, J.M., Strange form-factors of the proton: A New analysis of the neutrino (anti-neutrino) data of the BNL-734 experiment. Nucl. Phys. A 651 (1999), 277–286, 10.1016/S0375-9474(99)00142-6 arXiv:hep-ph/9812388.
Aguilar-Arevalo, A.A., et al. Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section on Mineral Oil at Eν ∼ 1 GeV. Phys. Rev. D, 82, 2010, 092005, 10.1103/PhysRevD.82.092005 arXiv:1007.4730.
Pate, S.F., Determination of the strange form-factors of the nucleon from nu p, anti-nu p, and parity violating polarized-e p elastic scattering. Phys. Rev. Lett., 92, 2004, 082002, 10.1103/PhysRevLett.92.082002 arXiv:hep-ex/0310052.
Pate, S.F., McKee, D.W., Papavassiliou, V., Strange Quark Contribution to the Vector and Axial Form Factors of the Nucleon: Combined Analysis of G0, HAPPEx, and Brookhaven E734 Data. Phys. Rev. C, 78, 2008, 015207, 10.1103/PhysRevC.78.015207 arXiv:0805.2889.
Adler, S.L., Tests of the Conserved Vector Current and Partially Conserved Axial-Vector Current Hypotheses in High-Energy Neutrino Reactions. Phys. Rev. 135 (1964), B963–B966, 10.1103/PhysRev.135.B963.
Allasia, D., et al. Q**2 Dependence of the Proton and Neutron Structure Functions from Neutrino and anti-neutrinos Scattering in Deuterium. Z. Phys. C, 28, 1985, 321, 10.1007/BF01413595.
Gross, D.J., Llewellyn Smith, C.H., High-energy neutrino-nucleon scattering, current algebra and partons. Nucl. Phys. B 14 (1969), 337–347, 10.1016/0550-3213(69)90213-2.
Kim, J.H., et al. A Measurement of alpha(s) (Q**2) from the Gross-Llewellyn Smith sum rule. Phys. Rev. Lett. 81 (1998), 3595–3598, 10.1103/PhysRevLett.81.3595 arXiv:hep-ex/9808015.
Larin, S.A., Vermaseren, J.A.M., The alpha-s**3 corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule. Phys. Lett. B 259 (1991), 345–352, 10.1016/0370-2693(91)90839-I.
Kataev, A.L., Sidorov, A.V., The Jacobi polynomials QCD analysis of the CCFR data for xF3 and the Q**2 dependence of the Gross-Llewellyn-Smith sum rule. Phys. Lett. B 331 (1994), 179–186, 10.1016/0370-2693(94)90961-X arXiv:hep-ph/9402342.
Zeller, G.P., et al. A Precise Determination of Electroweak Parameters in Neutrino Nucleon Scattering. Phys. Rev. Lett., 88, 2002, 091802, 10.1103/PhysRevLett.88.091802 Erratum Phys. Rev. Lett., 90, 2003, 239902 arXiv:hep-ex/0110059.
Hirai, M., Kumano, S., Nagai, T.H., Nuclear modification difference between u(v) and d(v) distributions and its relation to NuTeV sin**2 theta(W) anomaly. Phys. Rev. D, 71, 2005, 113007, 10.1103/PhysRevD.71.113007 arXiv:hep-ph/0412284.
Martin, A.D., Roberts, R.G., Stirling, W.J., Thorne, R.S., Parton distributions incorporating QED contributions. Eur. Phys. J. C 39 (2005), 155–161, 10.1140/epjc/s2004-02088-7 arXiv:hep-ph/0411040.
Bentz, W., Cloet, I.C., Londergan, J.T., Thomas, A.W., Reassessment of the NuTeV determination of the weak mixing angle. Phys. Lett. B 693 (2010), 462–466, 10.1016/j.physletb.2010.09.001 arXiv:0908.3198.
Kulagin, S.A., Paschos-Wolfenstein relationship for nuclei and the NuTeV sin**2(theta(w)) measurement. Phys. Rev. D, 67, 2003, 091301, 10.1103/PhysRevD.67.091301 arXiv:hep-ph/0301045.
Kumano, S., Song, Q.-T., Teryaev, O.V., Hadron tomography by generalized distribution amplitudes in pion-pair production process γ*γ → π0π0 and gravitational form factors for pion. Phys. Rev. D, 97(1), 2018, 014020, 10.1103/PhysRevD.97.014020 arXiv:1711.08088.
Pire, B., Szymanowski, L., Wagner, J., Hard exclusive neutrino production of a light meson. Phys. Rev. D, 95(11), 2017, 114029, 10.1103/PhysRevD.95.114029 arXiv:1705.11088.
Kopeliovich, B.Z., Schmidt, I., Siddikov, M., Flavor structure of generalized parton distributions from neutrino experiments. Phys. Rev. D, 86, 2012, 113018, 10.1103/PhysRevD.86.113018 arXiv:1210.4825.
Dembinski, H.P., et al. Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers. EPJ Web Conf., 210, 2019, 02004, 10.1051/epjconf/201921002004 arXiv:1902.08124.
Royon, C., Recent results from the TOTEM collaboration at the LHC. Workshop of QCD and Forward Physics at the the LHC, the future Electron Ion Collider and Cosmic Ray Physics, 2020, University of Kansas Libraries, Lawrence, 131–138 arXiv:2006.15220.
Sako, T., Recent status and prospects of LHCf and RHICf Takashi Sako for the LHCf and RHICf Collaborations. Workshop of QCD and Forward Physics at the the LHC, the future Electron Ion Collider and Cosmic Ray Physics, 2020, University of Kansas Libraries, Lawrence, 147–155.
Fenu, F., The cosmic ray energy spectrum measured using the Pierre Auger Observatory. PoS, ICRC2017, 2018, 486, 10.22323/1.301.0486.
Ivanov, D., Energy Spectrum Measured by the Telescope Array. PoS, ICRC2019, 2020, 298, 10.22323/1.358.0298.
Ivanov, D., Report of the Telescope Array – Pierre Auger Observatory Working Group on Energy Spectrum. PoS, ICRC2017, 2018, 498, 10.22323/1.301.0498.
di Matteo, A., et al. Full-sky searches for anisotropies in UHECR arrival directions with the Pierre Auger Observatory and the Telescope Array. PoS, ICRC2019, 2020, 439, 10.22323/1.358.0439 arXiv:2001.01864.
Aab, A., et al. Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D, 96(12), 2017, 122003, 10.1103/PhysRevD.96.122003 arXiv:1710.07249.
Bergman, D., Stroman, T., TA 10 Year Stereo Composition Measurement. PoS, ICRC2019, 2020, 191, 10.22323/1.358.0191.
Mezek, G.K., Mass composition of cosmic rays with energies from [1017.2]eV to [1020]eV using surface and fluorescence detectors of the Pierre Auger Observatory. EPJ Web Conf., 191, 2018, 08008, 10.1051/epjconf/201819108008.
Müller, S., Direct Measurement of the Muon Density in Air Showers with the Pierre Auger Observatory. EPJ Web Conf., 210, 2019, 02013, 10.1051/epjconf/201921002013.
Aartsen, M.G., et al. Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. Phys. Rev. D, 100(8), 2019, 082002, 10.1103/PhysRevD.100.082002 arXiv:1906.04317.
Abbasi, R., et al. Lateral Distribution of Muons in IceCube Cosmic Ray Events. Phys. Rev. D, 87(1), 2013, 012005, 10.1103/PhysRevD.87.012005 arXiv:1208.2979.
Soldin, D., Atmospheric Muons Measured with IceCube. EPJ Web Conf., 208, 2019, 08007, 10.1051/epjconf/201920808007 arXiv:1811.03651.
Aartsen, M.G., et al. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett., 113, 2014, 101101, 10.1103/PhysRevLett.113.101101 arXiv:1405.5303.
Gaisser, T.K., Jero, K., Karle, A., van Santen, J., Generalized self-veto probability for atmospheric neutrinos. Phys. Rev. D, 90(2), 2014, 023009, 10.1103/PhysRevD.90.023009 arXiv:1405.0525.
Bhattacharya, A., Enberg, R., Reno, M.H., Sarcevic, I., Stasto, A., Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. JHEP, 06, 2015, 110, 10.1007/JHEP06(2015)110 arXiv:1502.01076.
Aartsen, M.G., et al. IceCube-Gen2: The Window to the Extreme Universe. arXiv:2008.04323, 2020.
Connolly, A., Thorne, R.S., Waters, D., Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments. Phys. Rev. D, 83, 2011, 113009, 10.1103/PhysRevD.83.113009 arXiv:1102.0691.
Bertone, V., Gauld, R., Rojo, J., Neutrino Telescopes as QCD Microscopes. JHEP, 01, 2019, 217, 10.1007/JHEP01(2019)217 arXiv:1808.02034.
Klein, S.R., Robertson, S.A., Vogt, R., Nuclear effects in high-energy neutrino interactions. Phys. Rev. C, 102(1), 2020, 015808, 10.1103/PhysRevC.102.015808 arXiv:2001.03677.
Aartsen, M.G., et al. Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Phys. Rev. D, 99(3), 2019, 032004, 10.1103/PhysRevD.99.032004 arXiv:1808.07629.
Garcia, A., Gauld, R., Heijboer, A., Rojo, J., Complete predictions for high-energy neutrino propagation in matter. JCAP, 09, 2020, 025, 10.1088/1475-7516/2020/09/025 arXiv:2004.04756.
Klein, S.R., Probing high-energy interactions of atmospheric and astrophysical neutrinos. 2020, World Scientific, 75–107, 10.1142/9789813275027_0004 Ch. 4 arXiv:1906.02221.
Aartsen, M.G., et al. Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption. Nature 551 (2017), 596–600, 10.1038/nature24459 arXiv:1711.08119.
Bhattacharya, A., Enberg, R., Reno, M.H., Sarcevic, I., Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events. JCAP, 06, 2015, 034, 10.1088/1475-7516/2015/06/034 arXiv:1407.2985.
Angeles-Martinez, R., et al. Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects. Acta Phys. Polon. B 46:12 (2015), 2501–2534, 10.5506/APhysPolB.46.2501 arXiv:1507.05267.
Dominguez, F., Marquet, C., Stasto, A.M., Xiao, B.-W., Universality of multiparticle production in QCD at high energies. Phys. Rev. D, 87, 2013, 034007, 10.1103/PhysRevD.87.034007 arXiv:1210.1141.
Sun, P., Xiao, B.-W., Yuan, F., Gluon Distribution Functions and Higgs Boson Production at Moderate Transverse Momentum. Phys. Rev. D, 84, 2011, 094005, 10.1103/PhysRevD.84.094005 arXiv:1109.1354.
Liou, T., Color-neutral heavy particle production in nucleus-nucleus collisions in the quasi-classical approximation. Nucl. Phys. A 897 (2013), 122–140, 10.1016/j.nuclphysa.2012.11.005 arXiv:1206.6123.
Collins, J., Qiu, J.-W., kT factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions. Phys. Rev. D, 75, 2007, 114014, 10.1103/PhysRevD.75.114014 arXiv:0705.2141.
Rogers, T.C., Mulders, P.J., No Generalized TMD-Factorization in Hadro-Production of High Transverse Momentum Hadrons. Phys. Rev. D, 81, 2010, 094006, 10.1103/PhysRevD.81.094006 arXiv:1001.2977.
Gelis, F., Lappi, T., Venugopalan, R., High energy factorization in nucleus-nucleus collisions. II. Multigluon correlations. Phys. Rev. D, 78, 2008, 054020, 10.1103/PhysRevD.78.054020 arXiv:0807.1306.
Gelis, F., Lappi, T., Venugopalan, R., High energy factorization in nucleus-nucleus collisions. Phys. Rev. D, 78, 2008, 054019, 10.1103/PhysRevD.78.054019 arXiv:0804.2630.
Gelis, F., Lappi, T., Venugopalan, R., High energy factorization in nucleus-nucleus collisions. 3. Long range rapidity correlations. Phys. Rev. D, 79, 2009, 094017, 10.1103/PhysRevD.79.094017 arXiv:0810.4829.
Abdul Khalek, R., Ethier, J.J., Rojo, J., Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider. Eur. Phys. J. C, 79(6), 2019, 471, 10.1140/epjc/s10052-019-6983-1 arXiv:1904.00018.
Aaij, R., et al. Study of prompt D0 meson production in pPb collisions at sNN=5TeV. JHEP, 10, 2017, 090, 10.1007/JHEP10(2017)090 arXiv:1707.02750.
Helenius, I., Eskola, K.J., Paukkunen, H., Probing the small-x nuclear gluon distributions with isolated photons at forward rapidities in p+Pb collisions at the LHC. JHEP, 09, 2014, 138, 10.1007/JHEP09(2014)138 arXiv:1406.1689.
Collaboration, A., Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE experiment. Tech. rep., 2020, CERN.
Citron, Z., et al. Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams. CERN Yellow Rep. Monogr. 7 (2019), 1159–1410, 10.23731/CYRM-2019-007.1159 arXiv:1812.06772.
Akiba, Y., et al. The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC. arXiv:1502.02730, 2015.
Bernhard, J.E., Moreland, J.S., Bass, S.A., Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nature Phys. 15:11 (2019), 1113–1117, 10.1038/s41567-019-0611-8.
Schlichting, S., Tribedy, P., Collectivity in Small Collision Systems: An Initial-State Perspective. Adv. High Energy Phys., 2016, 2016, 8460349, 10.1155/2016/8460349 arXiv:1611.00329.
Altinoluk, T., Armesto, N., Particle correlations from the initial state. Eur. Phys. J. A, 56(8), 2020, 215, 10.1140/epja/s10050-020-00225-6 arXiv:2004.08185.
Marquet, C., Petreska, E., Roiesnel, C., Transverse-momentum-dependent gluon distributions from JIMWLK evolution. JHEP, 10, 2016, 065, 10.1007/JHEP10(2016)065 arXiv:1608.02577.
Aad, G., et al. Centrality and rapidity dependence of inclusive jet production in sNN=5.02TeV proton-lead collisions with the ATLAS detector. Phys. Lett. B 748 (2015), 392–413, 10.1016/j.physletb.2015.07.023 arXiv:1412.4092.
Adare, A., et al. Centrality-dependent modification of jet-production rates in deuteron-gold collisions at sNN=200GeV. Phys. Rev. Lett., 116(12), 2016, 122301, 10.1103/PhysRevLett.116.122301 arXiv:1509.04657.
Neufeld, R.B., Vitev, I., Zhang, B.-W., A possible determination of the quark radiation length in cold nuclear matter. Phys. Lett. B 704 (2011), 590–595, 10.1016/j.physletb.2011.09.045 arXiv:1010.3708.
Xing, H., Guo, Y., Wang, E., Wang, X.-N., Parton Energy Loss and Modified Beam Quark Distribution Functions in Drell-Yan Process in p+A Collisions. Nucl. Phys. A 879 (2012), 77–106, 10.1016/j.nuclphysa.2012.01.012 arXiv:1110.1903.
Arleo, F., Peigne, S., J/ψ suppression in p-A collisions from parton energy loss in cold QCD matter. Phys. Rev. Lett., 109, 2012, 122301, 10.1103/PhysRevLett.109.122301 arXiv:1204.4609.
Kang, Z.-B., Vitev, I., Xing, H., Effects of cold nuclear matter energy loss on inclusive jet production in p+A collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Phys. Rev. C, 92(5), 2015, 054911, 10.1103/PhysRevC.92.054911 arXiv:1507.05987.
Chien, Y.-T., Vitev, I., Towards the understanding of jet shapes and cross sections in heavy ion collisions using soft-collinear effective theory. JHEP, 05, 2016, 023, 10.1007/JHEP05(2016)023 arXiv:1509.07257.
Qiu, J.-w., Vitev, I., Transverse momentum diffusion and broadening of the back-to-back dihadron correlation function. Phys. Lett. B 570 (2003), 161–170, 10.1016/j.physletb.2003.08.009 arXiv:nucl-th/0306039.
Arrington, J., Higinbotham, D.W., Rosner, G., Sargsian, M., Hard probes of short-range nucleon-nucleon correlations. Prog. Part. Nucl. Phys. 67 (2012), 898–938, 10.1016/j.ppnp.2012.04.002 arXiv:1104.1196.
Ciofi degli Atti, C., In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances. Phys. Rept. 590 (2015), 1–85, 10.1016/j.physrep.2015.06.002.
Tang, A., et al. n-p short range correlations from (p, 2p + n) measurements. Phys. Rev. Lett., 90, 2003, 042301, 10.1103/PhysRevLett.90.042301 arXiv:nucl-ex/0206003.
Piasetzky, E., Sargsian, M., Frankfurt, L., Strikman, M., Watson, J.W., Evidence for the strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett., 97, 2006, 162504, 10.1103/PhysRevLett.97.162504 arXiv:nucl-th/0604012.
Subedi, R., et al. Probing Cold Dense Nuclear Matter, Science 320 (2008), 1476–1478, 10.1126/science.1156675 arXiv:0908.1514.
Fomin, N., et al. New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett., 108, 2012, 092502, 10.1103/PhysRevLett.108.092502 arXiv:1107.3583.
Korover, I., et al. Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the 4He(e, e'pN) Triple-Coincidence Reaction. Phys. Rev. Lett., 113(2), 2014, 022501, 10.1103/PhysRevLett.113.022501 arXiv:1401.6138.
Hen, O., et al. Momentum sharing in imbalanced Fermi systems. Science 346 (2014), 614–617, 10.1126/science.1256785 arXiv:1412.0138.
Duer, M., et al. Probing high-momentum protons and neutrons in neutron-rich nuclei. Nature 560:7720 (2018), 617–621, 10.1038/s41586-018-0400-z.
Duer, M., et al. Direct Observation of Proton-Neutron Short-Range Correlation Dominance in Heavy Nuclei. Phys. Rev. Lett., 122(17), 2019, 172502, 10.1103/PhysRevLett.122.172502 arXiv:1810.05343.
Arrington, J., Fomin, N., Searching for flavor dependence in nuclear quark behavior. Phys. Rev. Lett., 123(4), 2019, 042501, 10.1103/PhysRevLett.123.042501 arXiv:1903.12535.
Wang, X.G., Thomas, A.W., Melnitchouk, W., Do short-range correlations cause the nuclear EMC effect in the deuteron?. Phys. Rev. Lett., 125(26), 2021, 262002, 10.1103/PhysRevLett.125.262002 arXiv:2004.03789.
Miller, G.A., Sievert, M.D., Venugopalan, R., Probing short-range nucleon-nucleon interactions with an Electron-Ion Collider. Phys. Rev. C, 93(4), 2016, 045202, 10.1103/PhysRevC.93.045202 arXiv:1512.03111.
Aschenauer, E., Baker, M., Chang, W., Lee, J., Tu, Z., et al. BeAGLE: Benchmark eA Generator for LEptoproduction. https://wiki.bnl.gov/eic/index.php/BeAGLE, 2017 a tool to refine detector requirements for eA collisions EIC R&D; Project eRD17.
Frankfurt, L.L., Sargsian, M.M., Strikman, M.I., Feynman graphs and Gribov-Glauber approach to high-energy knockout processes. Phys. Rev. C 56 (1997), 1124–1137, 10.1103/PhysRevC.56.1124 arXiv:nucl-th/9603018.
Sargsian, M.M., Selected topics in high energy semiexclusive electronuclear reactions. Int. J. Mod. Phys. E 10 (2001), 405–458, 10.1142/S0218301301000617 arXiv:nucl-th/0110053.
Laget, J.M., The Electro-disintegration of few body systems revisited. Phys. Lett. B 609 (2005), 49–56, 10.1016/j.physletb.2005.01.046 arXiv:nucl-th/0407072.
Egiyan, K.S., et al. Experimental study of exclusive H-2(e,e-prime p)n reaction mechanisms at high Q**2. Phys. Rev. Lett., 98, 2007, 262502, 10.1103/PhysRevLett.98.262502 arXiv:nucl-ex/0701013.
Sargsian, M.M., Large Q**2 Electrodisintegration of the Deuteron in Virtual Nucleon Approximation. Phys. Rev. C, 82, 2010, 014612, 10.1103/PhysRevC.82.014612 arXiv:0910.2016.
Boeglin, W.U., et al. Probing the high momentum component of the deuteron at high Q2. Phys. Rev. Lett., 107, 2011, 262501, 10.1103/PhysRevLett.107.262501 arXiv:1106.0275.
Cruz-Torres, R., et al. Probing Few-Body Nuclear Dynamics via 3H and 3He (e, e'p)pn Cross-Section Measurements. Phys. Rev. Lett., 124(21), 2020, 212501, 10.1103/PhysRevLett.124.212501 arXiv:2001.07230.
Miller, G.A., A Light front treatment of the nucleus implications for deep inelastic scattering. Phys. Rev. C 56 (1997), 8–11, 10.1103/PhysRevC.56.R8 arXiv:nucl-th/9702036.
Miller, G.A., Machleidt, R., Infinite nuclear matter on the light front: Nucleon-nucleon correlations. Phys. Rev. C, 60, 1999, 035202, 10.1103/PhysRevC.60.035202 arXiv:nucl-th/9903080.
Machleidt, R., The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn). Phys. Rev. C, 63, 2001, 024001, 10.1103/PhysRevC.63.024001 arXiv:nucl-th/0006014.
Epelbaum, E., Hammer, H.-W., Meissner, U.-G., Modern Theory of Nuclear Forces. Rev. Mod. Phys. 81 (2009), 1773–1825, 10.1103/RevModPhys.81.1773 arXiv:0811.1338.
Machleidt, R., Entem, D.R., Chiral effective field theory and nuclear forces. Phys. Rept. 503 (2011), 1–75, 10.1016/j.physrep.2011.02.001 arXiv:1105.2919.
Cooke, J.R., Miller, G.A., Ground states of the Wick-Cutkosky model using light front dynamics. Phys. Rev. C, 62, 2000, 054008, 10.1103/PhysRevC.62.054008 arXiv:nucl-th/0002016.
Vary, J.P., Honkanen, H., Li, J., Maris, P., Brodsky, S.J., Harindranath, A., de Teramond, G.F., Sternberg, P., Ng, E.G., Yang, C., Hamiltonian light-front field theory in a basis function approach. Phys. Rev. C, 81, 2010, 035205, 10.1103/PhysRevC.81.035205 arXiv:0905.1411.
Barrett, B.R., Navratil, P., Vary, J.P., Ab initio no core shell model. Prog. Part. Nucl. Phys. 69 (2013), 131–181, 10.1016/j.ppnp.2012.10.003.
Chen, J.-W., Detmold, W., Lynn, J.E., Schwenk, A., Short Range Correlations and the EMC Effect in Effective Field Theory. Phys. Rev. Lett., 119(26), 2017, 262502, 10.1103/PhysRevLett.119.262502 arXiv:1607.03065.
Bogner, S.K., Furnstahl, R.J., Perry, R.J., Similarity Renormalization Group for Nucleon-Nucleon Interactions. Phys. Rev. C, 75, 2007, 061001, 10.1103/PhysRevC.75.061001 arXiv:nucl-th/0611045.
Glazek, S.D., Wilson, K.G., Renormalization of Hamiltonians. Phys. Rev. D 48 (1993), 5863–5872, 10.1103/PhysRevD.48.5863.
Bogner, S.K., Roscher, D., High-momentum tails from low-momentum effective theories. Phys. Rev. C, 86, 2012, 064304, 10.1103/PhysRevC.86.064304 arXiv:1208.1734.
Cosyn, W., Deshpande, A., Ryckebusch, J., Weiss, C., Workshop on polarized light ion physics with EIC. https://indico.jlab.org/event/246/, 2018.
Deshpande, A., Kharzeev, D., Nazarewicz, W., Qiu, J., Ullrich, T., Venugopolan, R., Yoshida, R., 2018 Center for Frontiers in Nuclear Science (CFNS) Workshop on: Short-range Nuclear Correlations at an Electron-Ion Collider. https://www.bnl.gov/enc2018/, 2018.
Council, N.R., Scientific Opportunities with a Rare-Isotope Facility in the United States. 2007, The National Academies Press, Washington, DC, 10.17226/11796.
Tarasov, O., Bazin, D., LISE++: Radioactive beam production with in-flight separators. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266:19 (2008), 4657–4664, 10.1016/j.nimb.2008.05.110.
Tarasov, O., Bazin, D., LISE++: Exotic beam production with fragment separators and their design. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 376 (2016), 185–187, 10.1016/j.nimb.2016.03.021.
Kelic, A., Ricciardi, M.V., Schmidt, K.-H., ABLA07 – towards a complete description of the decay channels of a nuclear system from spontaneous fission to multifragmentation. arXiv:0906.4193, 2009.
High Energy Physics Community Planning Exercise: Snowmass. https://snowmass21.org/, 2021.
European Strategy for Particle Physics. https://home.cern/sites/home.web.cern.ch/files/2020-06/2020%20Update%20European%20Strategy.pdf, 2020.
Fazio, S., et al. Hadronic Tomography at the EIC and the Energy Frontier. https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF6_EF7-TF5_TF7-CompF2_CompF3_Hobbs-205.pdf, 2020 Letter of Interest submitted to the Snowmass 2021 Theory Frontier.
Bacchetta, A., Bozzi, G., Radici, M., Ritzmann, M., Signori, A., Effect of Flavor-Dependent Partonic Transverse Momentum on the Determination of the W Boson Mass in Hadronic Collisions. Phys. Lett. B 788 (2019), 542–545, 10.1016/j.physletb.2018.11.002 arXiv:1807.02101.
Bozzi, G., Signori, A., Nonperturbative Uncertainties on the Transverse Momentum Distribution of Electroweak Bosons and on the Determination of the Boson Mass at the LHC. Adv. High Energy Phys., 2019, 2019, 2526897, 10.1155/2019/2526897 arXiv:1901.01162.
Arratia, M., et al. Jet Physics at the Electron Ion Collider. https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF6_EF7-TF2_TF6-CompF3_CompF2-153.pdf, 2020 Letter of Interest submitted to the Snowmass 2021 Theory Frontier.
Abdolmaleki, M., et al. Heavy flavors at the EIC. https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF6_EF7-TF2_TF7-CompF2_CompF0_Ivan_Vitev-068.pdf, 2020 Letter of Interest submitted to the Snowmass 2021 Theory Frontier.
Abraham, R., et al. Forward Physics Facility. https://doi.org/10.5281/zenodo.4009640, 2020 Letter of Interest submitted to the Snowmass 2021 Theory Frontier.
Arratia, M., et al. EW and BSM physics at EIC. https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF5_EF9-210.pdf, 2020 Letter of Interest submitted to the Snowmass 2021 Theory Frontier.
Brodsky, S.J., Hwang, D.S., Schmidt, I., Final state interactions and single spin asymmetries in semi-inclusive deep inelastic scattering. Phys. Lett. B 530 (2002), 99–107, 10.1016/S0370-2693(02)01320-5 arXiv:hep-ph/0201296.
Aoki, S., et al. FLAG Review 2019: Flavour Lattice Averaging Group (FLAG). Eur. Phys. J. C, 80(2), 2020, 113, 10.1140/epjc/s10052-019-7354-7 arXiv:1902.08191.
Ji, X., Parton Physics on a Euclidean Lattice. Phys. Rev. Lett., 110, 2013, 262002, 10.1103/PhysRevLett.110.262002 arXiv:1305.1539.
Ji, X., Parton Physics from Large-Momentum Effective Field Theory. Sci. China Phys. Mech. Astron. 57 (2014), 1407–1412, 10.1007/s11433-014-5492-3 arXiv:1404.6680.
Liu, K.-F., Dong, S.-J., Origin of difference between anti-d and anti-u partons in the nucleon. Phys. Rev. Lett. 72 (1994), 1790–1793, 10.1103/PhysRevLett.72.1790 arXiv:hep-ph/9306299.
Liu, K.F., Dong, S.J., Draper, T., Leinweber, D., Sloan, J.H., Wilcox, W., Woloshyn, R.M., Valence QCD: Connecting QCD to the quark model. Phys. Rev. D, 59, 1999, 112001, 10.1103/PhysRevD.59.112001 arXiv:hep-ph/9806491.
Liu, K.-F., Parton degrees of freedom from the path integral formalism. Phys. Rev. D, 62, 2000, 074501, 10.1103/PhysRevD.62.074501 arXiv:hep-ph/9910306.
Detmold, W., Lin, C.J.D., Deep-inelastic scattering and the operator product expansion in lattice QCD. Phys. Rev. D, 73, 2006, 014501, 10.1103/PhysRevD.73.014501 arXiv:hep-lat/0507007.
Braun, V., Müller, D., Exclusive processes in position space and the pion distribution amplitude. Eur. Phys. J. C 55 (2008), 349–361, 10.1140/epjc/s10052-008-0608-4 arXiv:0709.1348.
Ma, Y.-Q., Qiu, J.-W., Extracting Parton Distribution Functions from Lattice QCD Calculations. Phys. Rev. D, 98(7), 2018, 074021, 10.1103/PhysRevD.98.074021 arXiv:1404.6860.
Ma, Y.-Q., Qiu, J.-W., QCD Factorization and PDFs from Lattice QCD Calculation. Int. J. Mod. Phys. Conf. Ser., 37, 2015, 1560041, 10.1142/S2010194515600411 arXiv:1412.2688.
Ma, Y.-Q., Qiu, J.-W., Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations. Phys. Rev. Lett., 120(2), 2018, 022003, 10.1103/PhysRevLett.120.022003 arXiv:1709.03018.
Radyushkin, A., Nonperturbative Evolution of Parton Quasi-Distributions. Phys. Lett. B 767 (2017), 314–320, 10.1016/j.physletb.2017.02.019 arXiv:1612.05170.
Chambers, A.J., Horsley, R., Nakamura, Y., Perlt, H., Rakow, P.E.L., Schierholz, G., Schiller, A., Somfleth, K., Young, R.D., Zanotti, J.M., Nucleon Structure Functions from Operator Product Expansion on the Lattice. Phys. Rev. Lett., 118(24), 2017, 242001, 10.1103/PhysRevLett.118.242001 arXiv:1703.01153.
Cichy, K., Constantinou, M., A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results. Adv. High Energy Phys., 2019, 2019, 3036904, 10.1155/2019/3036904 arXiv:1811.07248.
Constantinou, M., The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD. arXiv:2010.02445, 2020.
Bali, G.S., Lang, B., Musch, B.U., Schäfer, A., Novel quark smearing for hadrons with high momenta in lattice QCD. Phys. Rev. D, 93(9), 2016, 094515, 10.1103/PhysRevD.93.094515 arXiv:1602.05525.
Lin, H.-W., Melnitchouk, W., Prokudin, A., Sato, N., Shows, H., First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints. Phys. Rev. Lett., 120(15), 2018, 152502, 10.1103/PhysRevLett.120.152502 arXiv:1710.09858.
Bringewatt, J., Sato, N., Melnitchouk, W., Qiu, J.-W., Steffens, F., Constantinou, M., Confronting lattice parton distributions with global QCD analysis. Phys. Rev. D, 103(1), 2021, 016003, 10.1103/PhysRevD.103.016003 arXiv:2010.00548.
Alexandrou, C., Cichy, K., Constantinou, M., Jansen, K., Scapellato, A., Steffens, F., Transversity parton distribution functions from lattice QCD. Phys. Rev. D, 98(9), 2018, 091503, 10.1103/PhysRevD.98.091503 arXiv:1807.00232.
Bhattacharya, S., Cichy, K., Constantinou, M., Metz, A., Scapellato, A., Steffens, F., Insights on proton structure from lattice QCD: The twist-3 parton distribution function gT(x). Phys. Rev. D, 102(11), 2020, 111501, 10.1103/PhysRevD.102.111501 arXiv:2004.04130.
Chen, J.-W., Lin, H.-W., Zhang, J.-H., Pion generalized parton distribution from lattice QCD. Nucl. Phys. B, 952, 2020, 114940, 10.1016/j.nuclphysb.2020.114940 arXiv:1904.12376.
Alexandrou, C., Cichy, K., Constantinou, M., Hadjiyiannakou, K., Jansen, K., Scapellato, A., Steffens, F., Unpolarized and helicity generalized parton distributions of the proton within lattice QCD. Phys. Rev. Lett., 125(26), 2020, 262001, 10.1103/PhysRevLett.125.262001 arXiv:2008.10573.
Shanahan, P., Wagman, M., Zhao, Y., Collins-Soper kernel for TMD evolution from lattice QCD. Phys. Rev. D, 102(1), 2020, 014511, 10.1103/PhysRevD.102.014511 arXiv:2003.06063.
Zhang, Q.-A., et al. Lattice QCD Calculations of Transverse-Momentum-Dependent Soft Function through Large-Momentum Effective Theory. Phys. Rev. Lett., 125(19), 2020, 192001, 10.1103/PhysRevLett.125.192001 arXiv:2005.14572.
Aubert, J.J., et al. The ratio of the nucleon structure functions F 2n for iron and deuterium. Phys. Lett. B 123 (1983), 275–278, 10.1016/0370-2693(83)90437-9.
Chen, J.-W., Detmold, W., Universality of the EMC effect. Phys. Lett. B 625 (2005), 165–170, 10.1016/j.physletb.2005.08.041 arXiv:hep-ph/0412119.
Cloet, I.C., Bentz, W., Thomas, A.W., Spin-dependent structure functions in nuclear matter and the polarized EMC effect. Phys. Rev. Lett., 95, 2005, 052302, 10.1103/PhysRevLett.95.052302 arXiv:nucl-th/0504019.
Detmold, W., Illa, M., Murphy, D.J., Oare, P., Orginos, K., Shanahan, P.E., Wagman, M.L., Winter, F., Lattice QCD constraints on the parton distribution functions of 3He. arXiv:2009.05522, 2020.
Winter, F., Detmold, W., Gambhir, A.S., Orginos, K., Savage, M.J., Shanahan, P.E., Wagman, M.L., First lattice QCD study of the gluonic structure of light nuclei. Phys. Rev. D, 96(9), 2017, 094512, 10.1103/PhysRevD.96.094512 arXiv:1709.00395.
Shanahan, P.E., Thomas, A.W., Young, R.D., Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions. Phys. Rev. D, 87(9), 2013, 094515, 10.1103/PhysRevD.87.094515 arXiv:1303.4806.
Keshavarzi, A., Nomura, D., Teubner, T., Muon g −2 and α(M2Z): a new data-based analysis. Phys. Rev. D, 97(11), 2018, 114025, 10.1103/PhysRevD.97.114025 arXiv:1802.02995.
Afanasev, A., Blunden, P.G., Hasell, D., Raue, B.A., Two-photon exchange in elastic electron–proton scattering. Prog. Part. Nucl. Phys. 95 (2017), 245–278, 10.1016/j.ppnp.2017.03.004 arXiv:1703.03874.
Henderson, B.S., et al. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment. Phys. Rev. Lett., 118(9), 2017, 092501, 10.1103/PhysRevLett.118.092501 arXiv:1611.04685.
Tomalak, O., Pasquini, B., Vanderhaeghen, M., Two-photon exchange contribution to elastic e−-proton scattering: Full dispersive treatment of πN states and comparison with data. Phys. Rev. D, 96(9), 2017, 096001, 10.1103/PhysRevD.96.096001 arXiv:1708.03303.
Yennie, D.R., Frautschi, S.C., Suura, H., The infrared divergence phenomena and high-energy processes. Annals Phys. 13 (1961), 379–452, 10.1016/0003-4916(61)90151-8.
Mo, L.W., Tsai, Y.-S., Radiative Corrections to Elastic and Inelastic e p and mu p Scattering. Rev. Mod. Phys. 41 (1969), 205–235, 10.1103/RevModPhys.41.205.
Liu, T., Melnitchouk, W., Qiu, J.-W., Sato, N., Factorized approach to radiative corrections for inelastic lepton-hadron collisions. arXiv:2008.02895, 2020.
Bloch, F., Nordsieck, A., Note on the Radiation Field of the electron. Phys. Rev. 52 (1937), 54–59, 10.1103/PhysRev.52.54.
Kripfganz, J., Mohring, H.J., Spiesberger, H., Higher order leading logarithmic QED corrections to deep inelastic e p scattering at very high-energies. Z. Phys. C 49 (1991), 501–510, 10.1007/BF01549704.
Blumlein, J., Kawamura, H., Universal higher order singlet QED corrections to unpolarized lepton scattering. Eur. Phys. J. C 51 (2007), 317–333, 10.1140/epjc/s10052-007-0300-0 arXiv:hep-ph/0701019.
Bucoveanu, R.D., Spiesberger, H., Second-Order Leptonic Radiative Corrections for Lepton-Proton Scattering. Eur. Phys. J. A, 55(4), 2019, 57, 10.1140/epja/i2019-12727-1 arXiv:1811.04970.
Banerjee, P., Engel, T., Signer, A., Ulrich, Y., QED at NNLO with McMule. SciPost Phys., 9, 2020, 027, 10.21468/SciPostPhys.9.2.027 arXiv:2007.01654.
Badelek, B., Bardin, D.Y., Kurek, K., Scholz, C., Radiative correction schemes in deep inelastic muon scattering. Z. Phys. C 66 (1995), 591–600, 10.1007/BF01579633 arXiv:hep-ph/9403238.
Akhundov, A.A., Bardin, D.Y., Kalinovskaya, L., Riemann, T., Model independent QED corrections to the process e p → e X. Fortsch. Phys. 44 (1996), 373–482, 10.1002/prop.2190440502 arXiv:hep-ph/9407266.
Kwiatkowski, A., Spiesberger, H., Mohring, H.J., Heracles: An Event Generator for ep Interactions at {HERA} Energies Including Radiative Processes: Version 1.0. Comput. Phys. Commun. 69 (1992), 155–172, 10.1016/0010-4655(92)90136-M.
Charchula, K., Schuler, G.A., Spiesberger, H., Combined QED and QCD radiative effects in deep inelastic lepton-proton scattering: The Monte Carlo generator DJANGO6. Comput. Phys. Commun. 81 (1994), 381–402, 10.1016/0010-4655(94)90086-8.
Meziane, M., et al. Search for effects beyond the Born approximation in polarization transfer observables in e→p elastic scattering. Phys. Rev. Lett., 106, 2011, 132501, 10.1103/PhysRevLett.106.132501 arXiv:1012.0339.
Akushevich, I., Ilyichev, A., Lowest order QED radiative effects in polarized SIDIS. Phys. Rev. D, 100(3), 2019, 033005, 10.1103/PhysRevD.100.033005 arXiv:1905.09232.
Bernauer, J.C., Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q2 range from 0.004 to 1 (GeV/c)2. Ph.D. thesis, 2010, Mainz U., Inst. Kernphys.
Akushevich, I., Filoti, O.F., Ilyichev, A.N., Shumeiko, N., Monte Carlo Generator ELRADGEN 2.0 for Simulation of Radiative events in Elastic ep-Scattering of Polarized Particles. Comput. Phys. Commun. 183 (2012), 1448–1467, 10.1016/j.cpc.2012.01.015 arXiv:1104.0039.
Gramolin, A.V., Fadin, V.S., Feldman, A.L., Gerasimov, R.E., Nikolenko, D.M., Rachek, I.A., Toporkov, D.K., A new event generator for the elastic scattering of charged leptons on protons. J. Phys. G, 41(11), 2014, 115001, 10.1088/0954-3899/41/11/115001 arXiv:1401.2959.
Hoeche, S., Schumann, S., Siegert, F., Hard photon production and matrix-element parton-shower merging. Phys. Rev. D, 81, 2010, 034026, 10.1103/PhysRevD.81.034026 arXiv:0912.3501.
Buckley, A., et al. General-purpose event generators for LHC physics. Phys. Rept. 504 (2011), 145–233, 10.1016/j.physrep.2011.03.005 arXiv:1101.2599.
Bernauer, J.C., et al. OLYMPUS: First measurement of the charge-averaged elastic lepton-proton scattering cross section. arXiv:2008.05349, 2020.
Rimal, D., et al. Measurement of two-photon exchange effect by comparing elastic e±p cross sections. Phys. Rev. C, 95(6), 2017, 065201, 10.1103/PhysRevC.95.065201 arXiv:1603.00315.
Rachek, I.A., et al. Measurement of the two-photon exchange contribution to the elastic e±p scattering cross sections at the VEPP-3 storage ring. Phys. Rev. Lett., 114(6), 2015, 062005, 10.1103/PhysRevLett.114.062005 arXiv:1411.7372.
Sofiatti, C., Donnelly, T.W., Polarized e-p Elastic Scattering in the Collider Frame. Phys. Rev. C, 84, 2011, 014606, 10.1103/PhysRevC.84.014606 arXiv:1104.2149.
CFNS ad-hoc workshop on Radiative Corrections. https://indico.bnl.gov/event/8844/, 2020 proceedings in preparation.
Afanasev, A., et al. CFNS Ad-Hoc meeting on Radiative Corrections Whitepaper. arXiv:2012.09970, 2020.
Aschenauer, E.-C., et al. Electron-ion collider detector requirements and R&D handbook. http://eicug.org/web/sites/default/files/EIC_HANDBOOK_v1.2.pdf, 2020.
Kauder, K., EIC-Smear Detectors. https://github.com/eic/eicsmeardetectors, 2020.
Wang, D., Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV. Ph.D. thesis, 2013, Virginia U., 10.2172/1133072.
Alekhin, S., et al. HERAFitter. Eur. Phys. J. C, 75(7), 2015, 304, 10.1140/epjc/s10052-015-3480-z arXiv:1410.4412.
Glazier, D., et al. elSpectro: an event generator framework for incorporating spectroscopy into electro/photoproduction reactions. https://github.com/dglazier/elSpectro, 2020.
Sjostrand, T., Mrenna, S., Skands, P.Z., A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178 (2008), 852–867, 10.1016/j.cpc.2008.01.036 arXiv:0710.3820.
de Favereau, J., Delaere, C., Demin, P., Giammanco, A., Lemaître, V., Mertens, A., Selvaggi, M., DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP, 02, 2014, 057, 10.1007/JHEP02(2014)057 arXiv:1307.6346.
Adye, T., et al. Roounfold: Root unfolding framework. http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html, 2019.
Aaij, R., et al. Measurement of the track reconstruction efficiency at LHCb. JINST, 10(02), 2015, P02007, 10.1088/1748-0221/10/02/P02007 arXiv:1408.1251.
Aaron, F.D., et al. Jet Production in ep Collisions at Low Q**2 and Determination of alpha(s). Eur. Phys. J. C 67 (2010), 1–24, 10.1140/epjc/s10052-010-1282-x arXiv:0911.5678.
von Toussaint, U., Bayesian inference in physics. Rev. Mod. Phys. 83 (2011), 943–999, 10.1103/RevModPhys.83.943 https://link.aps.org/doi/10.1103/RevModPhys.83.943.
Perez, E., Schoeffel, L., Favart, L., MILOU: A Monte-Carlo for deeply virtual Compton scattering. arXiv:hep-ph/0411389, 2004.
Akhunzyanov, R., et al. Transverse extension of partons in the proton probed in the sea-quark range by measuring the DVCS cross section. Phys. Lett. B 793 (2019), 188–194, 10.1016/j.physletb.2019.04.038 arXiv:1802.02739.
Kumericki, K., Mueller, D., Passek-Kumericki, K., Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond. Nucl. Phys. B 794 (2008), 244–323, 10.1016/j.nuclphysb.2007.10.029 arXiv:hep-ph/0703179.
Kumerički, K., Mueller, D., Deeply virtual Compton scattering at small xB and the access to the GPD H. Nucl. Phys. B 841 (2010), 1–58, 10.1016/j.nuclphysb.2010.07.015 arXiv:0904.0458.
Kumerički, K., Müller, D., Murray, M., HERMES impact for the access of Compton form factors. Phys. Part. Nucl. 45:4 (2014), 723–755, 10.1134/S1063779614040108 arXiv:1301.1230.
Čuić, M., Kumerički, K., Schäfer, A., Separation of Quark Flavors Using Deeply Virtual Compton Scattering Data. Phys. Rev. Lett., 125(23), 2020, 232005, 10.1103/PhysRevLett.125.232005 arXiv:2007.00029.
Goloskokov, S.V., Kroll, P., Vector meson electroproduction at small Bjorken-x and generalized parton distributions. Eur. Phys. J. C 42 (2005), 281–301, 10.1140/epjc/s2005-02298-5 arXiv:hep-ph/0501242.
Goloskokov, S.V., Kroll, P., The Role of the quark and gluon GPDs in hard vector-meson electroproduction. Eur. Phys. J. C 53 (2008), 367–384, 10.1140/epjc/s10052-007-0466-5 arXiv:0708.3569.
Goloskokov, S.V., Kroll, P., An Attempt to understand exclusive pi+ electroproduction. Eur. Phys. J. C 65 (2010), 137–151, 10.1140/epjc/s10052-009-1178-9 arXiv:0906.0460.
Berthou, B., et al. PARTONS: PARtonic Tomography Of Nucleon Software: A computing framework for the phenomenology of Generalized Parton Distributions. Eur. Phys. J. C, 78(6), 2018, 478, 10.1140/epjc/s10052-018-5948-0 arXiv:1512.06174.
Botts, J., Sterman, G.F., Hard Elastic Scattering in QCD: Leading Behavior. Nucl. Phys. B 325 (1989), 62–100, 10.1016/0550-3213(89)90372-6.
Alexeev, M.G., et al. Measurement of the cross section for hard exclusive π0 muoproduction on the proton. Phys. Lett. B, 805, 2020, 135454, 10.1016/j.physletb.2020.135454 arXiv:1903.12030.
Jadach, S., Sawicki, P., mFOAM-1.02: A Compact version of the cellular event generator FOAM. Comput. Phys. Commun. 177 (2007), 441–458, 10.1016/j.cpc.2007.02.112 arXiv:physics/0506084.
Kirchner, A., Mueller, D., Deeply virtual Compton scattering off nuclei. Eur. Phys. J. C 32 (2003), 347–375, 10.1140/epjc/s2003-01415-x arXiv:hep-ph/0302007.
Belitsky, A.V., Mueller, D., Refined analysis of photon leptoproduction off spinless target. Phys. Rev. D, 79, 2009, 014017, 10.1103/PhysRevD.79.014017 arXiv:0809.2890.
P. Sznajder, TCS generator for EIC, 2020.
Davidson, N., Przedzinski, T., Was, Z., PHOTOS interface in C++: Technical and Physics Documentation. Comput. Phys. Commun. 199 (2016), 86–101, 10.1016/j.cpc.2015.09.013 arXiv:1011.0937.
Abe, T., GRAPE dilepton (Version1.1): A Generator for dilepton production in e p collisions. Comput. Phys. Commun. 136 (2001), 126–147, 10.1016/S0010-4655(00)00246-0 arXiv:hep-ph/0012029.
Toll, T., Ullrich, T., The dipole model Monte Carlo generator Sartre 1. Comput. Phys. Commun. 185 (2014), 1835–1853, 10.1016/j.cpc.2014.03.010 arXiv:1307.8059.
Sambasivam, B., Toll, T., Ullrich, T., Investigating saturation effects in ultraperipheral collisions at the LHC with the color dipole model. Phys. Lett. B, 803, 2020, 135277, 10.1016/j.physletb.2020.135277 arXiv:1910.02899.
Chekanov, S., et al. Exclusive photoproduction of J/psi mesons at HERA. Eur. Phys. J. C 24 (2002), 345–360, 10.1007/s10052-002-0953-7 arXiv:hep-ex/0201043.
Li, W.B., et al. Backward-angle Exclusive π0 Production above the Resonance Region. arXiv:2008.10768, 2020.
Singh, B.P., et al. Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR. Eur. Phys. J. A, 51(8), 2015, 107, 10.1140/epja/i2015-15107-y arXiv:1409.0865.
Pire, B., Szymanowski, L., Wagner, J., Exclusive neutrino-production of a charmed meson. Phys. Rev. D, 95(9), 2017, 094001, 10.1103/PhysRevD.95.094001 arXiv:1702.00316.
Helenius, I., Rasmussen, C.O., Hard diffraction in photoproduction with Pythia 8. Eur. Phys. J. C, 79(5), 2019, 413, 10.1140/epjc/s10052-019-6914-1 arXiv:1901.05261.
Derrick, M., et al. Diffractive hard photoproduction at HERA and evidence for the gluon content of the pomeron. Phys. Lett. B 356 (1995), 129–146, 10.1016/0370-2693(95)00803-S arXiv:hep-ex/9506009.
Derrick, M., et al. Observation of events with a large rapidity gap in deep inelastic scattering at HERA. Phys. Lett. B 315 (1993), 481–493, 10.1016/0370-2693(93)91645-4.
Ahmed, T., et al. Deep inelastic scattering events with a large rapidity gap at HERA. Nucl. Phys. B 429 (1994), 477–502, 10.1016/0550-3213(94)90151-1.
Fomin, N., Higinbotham, D., Sargsian, M., Solvignon, P., New Results on Short-Range Correlations in Nuclei. Ann. Rev. Nucl. Part. Sci. 67 (2017), 129–159, 10.1146/annurev-nucl-102115-044939 arXiv:1708.08581.
Klein, S.R., Using precision timing to improve particle tracking. JINST, 15(03), 2020, P03024, 10.1088/1748-0221/15/03/P03024 arXiv:2001.10624.
Osborn, J.D., Requirements, Status, and Plans for Track Reconstruction at the sPHENIX Experiment. arXiv:2007.00771, 2020.
I.A.E. Agency, Live Chart of Nuclides, 2020.
Choi, T.K., Kong, K.J., Yu, B.G., Pion and proton form factors in the Regge description of electroproduction p(e, e'π+)n. J. Korean Phys. Soc. 67:7 (2015), 1089–1094, 10.3938/jkps.67.1089 arXiv:1508.00969.
Basnet, S., et al. Exclusive π+ electroproduction off the proton from low to high-t. Phys. Rev. C, 100(6), 2019, 065204, 10.1103/PhysRevC.100.065204 arXiv:1911.11681.
Agostinelli, S., et al. GEANT4–a simulation toolkit. Nucl. Instrum. Meth. A 506 (2003), 250–303, 10.1016/S0168-9002(03)01368-8.
Jung, H., Hard diffractive scattering in high-energy e p collisions and the Monte Carlo generator RAPGAP. Comput. Phys. Commun. 86 (1995), 147–161, 10.1016/0010-4655(94)00150-Z.
Electron Ion Collider eRHIC Pre-Conceptual Design Report, 2019.
Abeyratne, S., et al. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab. arXiv:1209.0757, 9 2012.
Morozov, V., et al. Full Acceptance Interaction Region Design of JLEIC. 10th International Particle Accelerator Conference, 2019, WEPGW123, 10.18429/JACoW-IPAC2019-WEPGW123.
Adare, A., et al. Concept for an Electron Ion Collider (EIC) detector built around the BaBar solenoid. arXiv:1402.1209, 2 2014.
Aidala, C., Bazilevsky, A., Borca-Tasciuc, G., Feege, N., Gamez, E., Goto, Y., He, X., Huang, J., V, A.K., Lajoie, J., Matousek, G., Mattioli, K., Nadel-Turonski, P., Nunez, C., Osborn, J., Perez, C., Seidl, R., Shangase, D., Stankus, P., Sun, X., Zhang, J., An EIC Detector Built Around The sPHENIX Solenoid – A Detector Design Study. https://indico.bnl.gov/event/5283/, 2018 sPHENIX-note sPH-cQCD-2018-001.
Kersevan, R., Ady, M., Recent developments of Monte-Carlo codes Molflow+ and Synrad+. 10th International Particle Accelerator Conference, 2019, TUPMP037, 10.18429/JACoW-IPAC2019-TUPMP037.
Aschenauer, E.C., Sassot, R., Stratmann, M., Helicity Parton Distributions at a Future Electron-Ion Collider: A Quantitative Appraisal. Phys. Rev. D, 86, 2012, 054020, 10.1103/PhysRevD.86.054020 arXiv:1206.6014.
Chekanov, S., et al. Measurement of the neutral current cross-section and F(2) structure function for deep inelastic e + p scattering at HERA. Eur. Phys. J. C 21 (2001), 443–471, 10.1007/s100520100749 arXiv:hep-ex/0105090.
Narayan, A., et al. Precision Electron-Beam Polarimetry at 1 GeV Using Diamond Microstrip Detectors. Phys. Rev. X, 6(1), 2016, 011013, 10.1103/PhysRevX.6.011013 arXiv:1509.06642.
Vansteenkiste, N., Vignolo, P., Aspect, A., Optical reversibility theorems for polarization: application to remote control of polarization. J. Opt. Soc. Am. A 10 (1993), 2240–2245, 10.1364/JOSAA.10.002240.
Gonella, L., EIC Silicon Vertex and Tracking: Technology survey. 1st EIC Yellow Report Workshop, 2020, Temple University https://indico.bnl.gov/event/7449/contributions/35954/.
Abelev, B., et al. Technical Design Report for the Upgrade of the ALICE Inner Tracking System. J. Phys. G, 41, 2014, 087002, 10.1088/0954-3899/41/8/087002.
ALICE Collaboration. Letter of Intent for an ALICE ITS Upgrade in LS3. cERN-LHCC-2019-018. LHCC-I-034 https://cds.cern.ch/record/2703140, 2019.
Contin, G., et al. The STAR MAPS-based PiXeL detector. Nucl. Instrum. Meth. A 907 (2018), 60–80, 10.1016/j.nima.2018.03.003 arXiv:1710.02176.
Aglieri Rinella, G., The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System. Nucl. Instrum. Meth. A 845 (2017), 583–587, 10.1016/j.nima.2016.05.016.
Schimassek, R., Andreazza, A., Augustin, H., Barbero, M., Benoit, M., Ehrler, F., Iacobucci, G., Meneses, A., Pangaud, P., Prathapan, M., Schöning, A., Vilella, E., Weber, A., Weber, M., Wong, W., Zhang, H., Perić, I., Test results of atlaspix3 – a reticle size hvcmos pixel sensor designed for construction of multi chip modules. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 986, 2021, 164812, 10.1016/j.nima.2020.164812.
Moustakas, K., et al. CMOS Monolithic Pixel Sensors based on the Column-Drain Architecture for the HL-LHC Upgrade. Nucl. Instrum. Meth. A 936 (2019), 604–607, 10.1016/j.nima.2018.09.100 arXiv:1809.03434.
Cardella, R., et al. MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade. JINST, 14(06), 2019, C06019, 10.1088/1748-0221/14/06/C06019.
Dyndal, M., et al. Mini-MALTA: Radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC. JINST, 15(02), 2020, P02005, 10.1088/1748-0221/15/02/P02005 arXiv:1909.11987.
Snoeys, W., et al. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance. Nucl. Instrum. Meth. A 871 (2017), 90–96, 10.1016/j.nima.2017.07.046.
Munker, M., Benoit, M., Dannheim, D., Fenigstein, A., Kugathasan, T., Leitner, T., Pernegger, H., Riedler, P., Snoeys, W., Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance. JINST, 14(05), 2019, C05013, 10.1088/1748-0221/14/05/C05013 arXiv:1903.10190.
Greiner, L., Silicon material projections. 2nd EIC Yellow Report Workshop, 2020, Pavia University https://indico.bnl.gov/event/8231/contributions/37955/.
Sauli, F., GEM: A new concept for electron amplification in gas detectors. Nucl. Instrum. Meth. A 386 (1997), 531–534, 10.1016/S0168-9002(96)01172-2.
Giomataris, Y., Rebourgeard, P., Robert, J.P., Charpak, G., MICROMEGAS: A High granularity position sensitive gaseous detector for high particle flux environments. Nucl. Instrum. Meth. A 376 (1996), 29–35, 10.1016/0168-9002(96)00175-1.
Bencivenni, G., De Oliveira, R., Morello, G., Lener, M.P., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD. JINST, 10(02), 2015, P02008, 10.1088/1748-0221/10/02/P02008 arXiv:1411.2466.
Altunbas, C., et al. Construction, test and commissioning of the triple-GEM tracking detector for COMPASS. Nucl. Instrum. Meth. A 490 (2002), 177–203, 10.1016/S0168-9002(02)00910-5.
Wotschack, J., The development of large-area Micromegas detectors for the ATLAS upgrade. Mod. Phys. Lett. A, 28, 2013, 1340020, 10.1142/S0217732313400208.
Akl, M.A., et al. CMS Technical Design Report for the Muon Endcap GEM Upgrade. https://cds.cern.ch/record/2021453, 2015.
Gasik, P., Development of GEM-based Read-Out Chambers for the upgrade of the ALICE TPC. JINST, 9, 2014, C04035, 10.1088/1748-0221/9/04/C04035.
Alfonsi, M., Bencivenni, G., de Simone, P., Murtas, F., Lener, M.P., Bonivento, W., Cardini, A., Pinci, D., Raspino, D., Saitta, B., The LHCb triple-GEM detector for the inner region of the first station of the muon system: Construction and module-0 performance. IEEE Trans. Nucl. Sci. 53 (2006), 322–325, 10.1109/TNS.2006.869834.
Gnanvo, K., Liyanage, N., Nelyubin, V., Saenboonruang, K., Sacher, S., Wojtsekhowski, B., Large Size GEM for Super Bigbite Spectrometer (SBS) Polarimeter for Hall A 12 GeV program at JLab. Nucl. Instrum. Meth. A 782 (2015), 77–86, 10.1016/j.nima.2015.02.017 arXiv:1409.5393.
Acker, A., et al. The CLAS12 Micromegas Vertex Tracker. Nucl. Instrum. Meth. A, 957, 2020, 163423, 10.1016/j.nima.2020.163423.
Xiong, W., et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575:7781 (2019), 147–150, 10.1038/s41586-019-1721-2.
eRD6 Consortium. EIC Generic Detector R&D Program. https://wiki.bnl.gov/eic/index.php/Tracking#2016, 2020 eRD6: EIC R&D for Tracking and PID with MPGDs.
Zhang, A., Hohlmann, M., Azmoun, B., Purschke, M.L., Woody, C., A GEM readout with radial zigzag strips and linear charge-sharing response. Nucl. Instrum. Meth. A 887 (2018), 184–192, 10.1016/j.nima.2017.12.074 arXiv:1708.07931.
Gnanvo, K., Bai, X., Gu, C., Liyanage, N., Nelyubin, V., Zhao, Y., Performance in test beam of a large-area and light-weight GEM detector with 2D stereo-angle (U–V) strip readout. Nucl. Instrum. Meth. A 808 (2016), 83–92, 10.1016/j.nima.2015.11.071 arXiv:1509.03875.
Posik, M., Surrow, B., Optical and electrical performance of commercially manufactured large GEM foils. Nucl. Instrum. Meth. A 802 (2015), 10–15, 10.1016/j.nima.2015.08.048 arXiv:1506.03652.
Aiola, S., Ehlers, R.J., Gu, S., Harris, J.W., Majka, R., Mulligan, J.D., Oliver, M., Schambach, J., Smirnov, N., Combination of two Gas Electron Multipliers and a Micromegas as gain elements for a time projection chamber. Nucl. Instrum. Meth. A 834 (2016), 149–157, 10.1016/j.nima.2016.08.007 arXiv:1603.08473.
Tassielli, G.F., et al. The Drift Chamber of the MEG II experiment. JINST, 15(09), 2020, C09051, 10.1088/1748-0221/15/09/C09051 arXiv:2006.02378.
Andryakov, A., et al. The KLOE drift chamber. Nucl. Instrum. Meth. A 379 (1996), 414–416, 10.1016/0168-9002(96)00563-3.
Tortora, L., The KLOE detector and physics program. Nucl. Phys. B Proc. Suppl. 78 (1999), 157–162, 10.1016/S0920-5632(99)00539-3.
Baldini, A.M., et al. Single-hit resolution measurement with MEG II drift chamber prototypes. JINST, 11, 2016, P07011, 10.1088/1748-0221/11/07/P07011 arXiv:1605.07970.
Chiarello, G., Corvaglia, A., Grancagnolo, F., Miccoli, A., Panareo, M., Tassielli, G.F., The tracking system for the IDEA detector at future lepton colliders. Nucl. Instrum. Meth. A 936 (2019), 503–504, 10.1016/j.nima.2018.10.009.
Tassielli, G.F., A proposal of a drift chamber for the IDEA experiment for a future e+e- collider. PoS, ICHEP2020, 2021, 877, 10.22323/1.390.0877.
Abada, A., et al. FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Eur. Phys. J. ST 228:2 (2019), 261–623, 10.1140/epjst/e2019-900045-4.
Stelzer, B., The New Small Wheel Upgrade Project of the ATLAS Experiment. Nucl. Part. Phys. Proc. 273–275 (2016), 1160–1165, 10.1016/j.nuclphysbps.2015.09.182.
The STAR Forward Calorimeter System and Forward Tracking System beyond BES-II. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648.
Abusleme, A., et al. Performance of a Full-Size Small-Strip Thin Gap Chamber Prototype for the ATLAS New Small Wheel Muon Upgrade. Nucl. Instrum. Meth. A 817 (2016), 85–92, 10.1016/j.nima.2016.01.087 arXiv:1509.06329.
Yang, C., Yang, Q., The STAR Detector Upgrades for the BES-II and at Forward Rapidity. JINST, 15(07), 2020, C07040, 10.1088/1748-0221/15/07/C07040.
Pinkenburg, C., Analyzing ever growing datasets in PHENIX. J. Phys. Conf. Ser., 331, 2011, 072027, 10.1088/1742-6596/331/7/072027.
Pinkenburg, C., Online Monitoring and online calibration/reconstruction for the PHENIX experiment. 14th International Conference on Computing in High-Energy and Nuclear Physics, 2005, 127–129.
BeAST Magnetic Field. https://eic.github.io/software/beast_magnetic_field.html.
A dedicated eRHIC Detector Design. https://indico.desy.de/indico/event/12482/session/7/contribution/259/material/slides/0.pptx.
A.Y. Kiselev, Private communication.
E. Cisbani, Private Communication.
erd25: “a compact all-silicon central tracker concept for eic”. open-mic session at the 2nd EIC Yellow Report Workshop, 2020, Pavia University https://indico.bnl.gov/event/8231/.
Aschenauer, E.C., et al. eRHIC Design Study: An Electron-Ion Collider at BNL. arXiv:1409.1633, 9 2014.
Pernegger, H., et al. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors. JINST, 12(06), 2017, P06008, 10.1088/1748-0221/12/06/P06008.
Berdalovic, I., et al. Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment. JINST, 13, 2018, C01023, 10.1088/1748-0221/13/01/C01023.
Hiti, B., et al. Development of the monolithic “MALTA” CMOS sensor for the ATLAS ITK outer pixel layer. PoS, TWEPP2018, 2019, 155, 10.22323/1.343.0155.
Abelev, B., Adam, J., Adamová, D., Aggarwal, M.M., Aglieri Rinella, G., Agnello, M., Agostinelli, A., Agrawal, N., Ahammed, Z., Ahmad, N., Ahmad Masoodi, A., Ahmed, I., Ahn, S.U., More, M., Technical Design Report for the Upgrade of the ALICE Inner Tracking System. Tech. Rep. CERN-LHCC-2013-024. ALICE-TDR-017, 11 2013, CERN https://cds.cern.ch/record/1625842.
Bencivenni, G., et al. The μ-RWELL detector. JINST, 12(06), 2017, C06027, 10.1088/1748-0221/12/06/C06027.
Giovanetti, M., et al. The μrwell for high rate applications. https://indico.inp.nsk.su/event/20/contributions/790/attachments/488/573/2020-02_Giovannetti_the_urwell_for_high_rate_applications.pdf, 2020.
Poli Lener, M., The micro-rwell. https://agenda.infn.it/event/14816/contributions/26754/attachments/19109/21615/CepC_MPL_Roma_2018.pdf, 2018.
Barbosa, F., et al. A new Transition Radiation detector based on GEM technology. Nucl. Instrum. Meth. A, 942, 2019, 162356, 10.1016/j.nima.2019.162356.
Visser, G., Abbot, D., Barbosa, F., Cuevas, C., Dong, H., Jastrzembski, E., Moffit, B., Raydo, B., A 72 channel 125 msps analog-to-digital converter module for drift chamber readout for the gluex detector. IEEE Nuclear Science Symposuim Medical Imaging Conference, 2010, 777–781, 10.1109/NSSMIC.2010.5873864.
Azmoun, B., Aune, S., Dehmelt, K., Deshpande, A., Fan, W., Garg, P., Hemmick, T.K., Kebbiri, M., Kiselev, A., Mandjavidze, I., Pereira-Da-Costa, H., Perez-Lara, C.E., Purschke, M.L., Revolle, M., Vandenbroucke, M., Woody, C., Design Studies of High-Resolution Readout Planes Using Zigzags with GEM Detectors. IEEE Transactions on Nuclear Science 67:8 (2020), 1869–1876, 10.1109/TNS.2020.3001847.
Azmoun, B., Garg, P., Hemmick, T.K., Hohlmann, M., Kiselev, A., Purschke, M.L., Woody, C., Zhang, A., Design Studies for a TPC Readout Plane Using Zigzag Patterns with Multistage GEM Detectors. IEEE Transactions on Nuclear Science 65:7 (2018), 1416–1423, 10.1109/TNS.2018.2846403.
Greiner, L., Silicon pixel-based particle vertex and tracking detectors towards the us electron ion collider workshop. https://www.jlab.org/indico/event/400/contribution/18/material/slides/0.pdf, 2020.
Bazilevsky, A., Initial Considerations for EIC Detector EMCAL. https://indico.bnl.gov/event/7787/contributions/35311/attachments/26770/40728/EIC_EMCal_25feb20.pdf, 2020 Presentation at a DWG Calorimetry meeting.
Bazilevsky, A., Initial Considerations for the EMCAL of the EIC Detector. https://indico.bnl.gov/event/7449/contributions/35965/attachments/27128/41350/EIC_EMCal_Temple_19mar20.pdf, Mar. 21 2020 Presentation at EIC WG Workshop, Temple, March 2020.
Bazilevsky, A., EMCAL for eID. https://indico.bnl.gov/event/8231/contributions/37820/attachments/28257/43445/EIC_EMCal_Pavia_21may20_v2.pdf, May 21 2020 Presentation at EIC WG Workshop, Pavia, May 2020.
Bazilevsky, A., EMCAL for eID: Shower Profile. https://indico.bnl.gov/event/8659/contributions/38247/attachments/28502/43931/EIC_EMCal_02jun20.pdf, Jun. 2 2020 Presentation at a DWG Calorimetry meeting.
Bazilevsky, A., EMCAL: Effect of Material. https://indico.bnl.gov/event/8933/contributions/39725/attachments/29364/45596/EIC_EMCal_14jul20.pdf, Jul. 14 2020 Presentation at a DWG Calorimetry meeting.
Aubert, B., et al. The BaBar detector. Nucl. Instrum. Meth. A 479 (2002), 1–116, 10.1016/S0168-9002(01)02012-5 arXiv:hep-ex/0105044.
Repond, J., TOPSiDE: Concept of an EIC Detector. PoS, DIS2018, 2018, 179, 10.22323/1.316.0179.
Aubert, B., et al. The BABAR Detector: Upgrades, Operation and Performance. Nucl. Instrum. Meth. A 729 (2013), 615–701, 10.1016/j.nima.2013.05.107 arXiv:1305.3560.
Aphecetche, L., et al. PHENIX calorimeter. Nucl. Instrum. Meth. A 499 (2003), 521–536, 10.1016/S0168-9002(02)01954-X.
Britton, D., Ryan, M., Qu, X., Light collection uniformity of lead tungstate crystals for the CMS electromagnetic calorimeter. Nucl. Instrum. Meth. A 540 (2005), 273–284, 10.1016/j.nima.2004.11.038.
Diehl, S., Bremer, D., Brinkmann, K.-T., Dormenev, V., Eissner, T., Novotny, R.W., Rosenbaum, C., Zaunick, H.-G., Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector. Nucl. Instrum. Meth. A 857 (2017), 1–6, 10.1016/j.nima.2017.03.021.
Aidala, C.A., et al. Design and Beam Test Results for the 2D Projective sPHENIX Electromagnetic Calorimeter Prototype. arXiv:2003.13685, 3 2020.
Woody, C., W/ScFi and W/Shashlyk. https://indico.bnl.gov/event/9145/attachments/29919/46681/Wiki_Info_W-SciFi_W-Shashlik.pdf, Jul. 2020 Presentation at a DWG Calorimetry meeting.
Bazilevsky, A., EMCAL Depth. https://indico.bnl.gov/event/9145/contributions/40427/attachments/29891/46636/EIC_EMCal_depth_11aug20_.pdf, Aug. 11 2020 Presentation at a DWG Calorimetry meeting.
Wigmans, R., New developments in calorimetric particle detection. Prog. Part. Nucl. Phys. 103 (2018), 109–161, 10.1016/j.ppnp.2018.07.003 arXiv:1807.03853.
Acosta, D., et al. Results of Prototype Studies for a Spaghetti Calorimeter. Nucl. Instrum. Meth. A 294 (1990), 193–210, 10.1016/0168-9002(90)91833-W.
Antonelli, A., et al. Construction and performance of the lead scintillating fiber calorimeter prototypes for the KLOE detector. Nucl. Instrum. Meth. A 354 (1995), 352–363, 10.1016/0168-9002(94)01058-7.
Beattie, T.D., et al. Construction and Performance of the Barrel Electromagnetic Calorimeter for the GlueX Experiment. Nucl. Instrum. Meth. A 896 (2018), 24–42, 10.1016/j.nima.2018.04.006 arXiv:1801.03088.
Abbon, P., et al. The COMPASS Setup for Physics with Hadron Beams. Nucl. Instrum. Meth. A 779 (2015), 69–115, 10.1016/j.nima.2015.01.035 arXiv:1410.1797.
Shimizu, H., Sakamoto, Y., Hashimoto, T., Abe, K., Asano, Y., Kinashi, T., Matsumoto, T., Matsumura, T., Yoshida, H.Y., Okuno, H., Performance of a PbWO-4 crystal calorimeter for 0.2-GeV to 1.0-GeV electrons. Nucl. Instrum. Meth. A 447 (2000), 467–475, 10.1016/S0168-9002(99)01306-6.
Conesa, G., Delagrange, H., Diaz, J., Ippolitov, M., Kharlov, Y.V., Peresunko, D., Schutz, Y., Performance of the ALICE photon spectrometer PHOS. Nucl. Instrum. Meth. A 537 (2005), 363–367, 10.1016/j.nima.2004.08.044.
Abbon, P., et al. The COMPASS experiment at CERN. Nucl. Instrum. Meth. A 577 (2007), 455–518, 10.1016/j.nima.2007.03.026 arXiv:hep-ex/0703049.
Kharlov, Y.V., et al. Performance of a fine-sampling electromagnetic calorimeter prototype in the energy range from 1-GeV to 19-GeV. Nucl. Instrum. Meth. A 606 (2009), 432–438, 10.1016/j.nima.2009.05.110 arXiv:0809.3671.
Bazilevsky, A., Need for a preshowerin h-endcup?. https://indico.bnl.gov/event/9197/contributions/40574/attachments/29996/46820/Preshower_18aug20.pdf, Aug. 18 2020 Presentation at a DWG Calorimetry meeting.
Allen, J., et al. Performance of prototypes for the ALICE electromagnetic calorimeter. Nucl. Instrum. Meth. A 615 (2010), 6–13, 10.1016/j.nima.2009.12.061 arXiv:0912.2005.
Inaba, S., Kobayashi, M., Nakagawa, M., Nakagawa, T., Shimizu, H., Takamatsu, K., Tsuru, T., Yasu, Y., A Beam test of a calorimeter prototype of PWO crystals at energies between 0.5-GeV and 2.5-GeV. Nucl. Instrum. Meth. A 359 (1995), 485–491, 10.1016/0168-9002(95)00022-4.
Alexeev, G., et al. Studies of lead tungstate crystal matrices in high-energy beams for the CMS electromagnetic calorimeter at the LHC. Nucl. Instrum. Meth. A 385 (1997), 425–434, 10.1016/S0168-9002(96)01030-3.
Mkrtchyan, H., et al. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab. Nucl. Instrum. Meth. A 719 (2013), 85–100, 10.1016/j.nima.2013.03.070 arXiv:1204.6413.
Awes, T.C., et al. High-energy beam test of the PHENIX lead scintillator EM calorimeter. arXiv:nucl-ex/0202009, 2 2002.
Aidala, C.A., et al. Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes. IEEE Trans. Nucl. Sci. 65:12 (2018), 2901–2919, 10.1109/TNS.2018.2879047 arXiv:1704.01461.
Benvenuti, A.C., et al. A shashlik calorimeter with longitudinal segmentation for a linear collider. Nucl. Instrum. Meth. A 461 (2001), 373–375, 10.1016/S0168-9002(00)01247-X.
Qiang, Y., Zorn, C., Barbosa, F., Smith, E., Radiation Hardness Tests of SiPMs for the JLab Hall D Barrel Calorimeter. Nucl. Instrum. Meth. A 698 (2013), 234–241, 10.1016/j.nima.2012.10.015 arXiv:1207.3743.
Biró, B., et al. A Comparison of the Effects of Neutron and Gamma Radiation in Silicon Photomultipliers. IEEE Trans. Nucl. Sci. 66:7 (2019), 1833–1839, 10.1109/TNS.2019.2921102 arXiv:1809.04594.
Chirikov-Zorin, I., et al. Performance of the COMPASS II shashlyk calorimeter ECAL0 read out by SiPMs. Nucl. Instrum. Meth. A 936 (2019), 141–143, 10.1016/j.nima.2018.09.046.
Tsai, O., Hadron Calorimetry for EIC. https://indico.bnl.gov/event/7449/contributions/35968/attachments/27163/41401/EIC_YR_Temple_OT.pdf, Mar. 21 2020 Presentation at EIC WG Workshop, Temple, March 2020.
Anfimov, N., et al. Novel micropixel avalanche photodiodes (MAPD) with super high pixel density. Nucl. Instrum. Meth. A 628 (2011), 369–371, 10.1016/j.nima.2010.07.003.
NICA MPD Collaboration. MPD NICA TDR for ECal. http://mpd.jinr.ru/wp-content/uploads/2019/01/TDR_ECAL_v3.6_2019.pdf, Nov. 2018.
Horn, T., et al. Scintillating crystals for the Neutral Particle Spectrometer in Hall C at JLab. Nucl. Instrum. Meth. A, 956, 2020, 163375, 10.1016/j.nima.2019.163375 arXiv:1911.11577.
Alexeev, G.A., et al. Beam test results of a PbWO-4 crystal calorimeter prototype. Nucl. Instrum. Meth. A 364 (1995), 307–310, 10.1016/0168-9002(95)00451-3.
Aleksandrov, D.V., et al. A high resolution electromagnetic calorimeter based on lead-tungstate crystals. Nucl. Instrum. Meth. A 550 (2005), 169–184, 10.1016/j.nima.2005.03.174.
Adzic, P., et al. Results of the first performance tests of the CMS electromagnetic calorimeter. Eur. Phys. J. C 44S1 (2006), 1–10, 10.1140/epjcd/s2005-02-011-3.
Kubantsev, M., Larin, I., Gasparian, A., Performance of the PrimEx electromagnetic calorimeter. AIP Conf. Proc. 867:1 (2006), 51–58, 10.1063/1.2396938 arXiv:physics/0609201.
Rosenbaum, C., et al. Performance of Prototypes for the Barrel Part of the ANDA Electromagnetic Calorimeter. J. Phys. Conf. Ser., 742(1), 2016, 012015, 10.1088/1742-6596/742/1/012015.
Kavatsyuk, M., et al. Performance of the prototype of the electromagnetic calorimeter for PANDA. Nucl. Instrum. Meth. A 648 (2011), 77–91, 10.1016/j.nima.2011.06.044.
Balossino, I., et al. The HPS electromagnetic calorimeter. Nucl. Instrum. Meth. A 854 (2017), 89–99, 10.1016/j.nima.2017.02.065 arXiv:1610.04319.
Acker, A., et al. The CLAS12 Forward Tagger. Nucl. Instrum. Meth. A, 959, 2020, 163475, 10.1016/j.nima.2020.163475.
Asaturyan, A., et al. Electromagnetic calorimeters based on the scintillating lead tungstate crystals forexperiments at Jefferson Lab. https://halldweb.jlab.org/DocDB/0047/004784/001/ccal_nps.pdf, Dec. 2020.
Sumiyoshi, T., et al. Performance of the Venus Lead Glass Calorimeter at Tristan. Nucl. Instrum. Meth. A, 271, 1988, 432, 10.1016/0168-9002(88)90302-6.
Ahmet, K., et al. The OPAL detector at LEP. Nucl. Instrum. Meth. A 305 (1991), 275–319, 10.1016/0168-9002(91)90547-4.
GlueX Collaboration. GlueX/HallD Calorimeter Final Design and Safety Review. Section 4: FCAL – The Forward Calorimeter. https://halldweb.jlab.org/DocDB/0009/000988/001/fcal.pdf, Feb. 2008.
Bruckner, W., et al. The Electromagnetic calorimeter in the hyperon beam experiment at CERN. Nucl. Instrum. Meth. A 313 (1992), 345–356, 10.1016/0168-9002(92)90810-Q.
Prokoshkin, Y.D., Shtannikov, A.V., Energy resolution calculation of the PWO calorimeter, comparison with the beam tests. Nucl. Instrum. Meth. A 362 (1995), 406–409, 10.1016/0168-9002(95)00226-X.
Avakian, H., et al. Performance of F101 radiation resistant lead glass shower counters. Nucl. Instrum. Meth. A 378 (1996), 155–161, 10.1016/0168-9002(96)00443-3.
Sedykh, S.A., et al. Electromagnetic calorimeters for the BNL muon (g-2) experiment. Nucl. Instrum. Meth. A 455 (2000), 346–360, 10.1016/S0168-9002(00)00576-3.
Armstrong, T.A., et al. The E864 lead-scintillating fiber hadronic calorimeter. Nucl. Instrum. Meth. A 406 (1998), 227–258, 10.1016/S0168-9002(98)91984-2.
Tsai, O.D., et al. Results of R&D on a new construction technique for W/ScFi Calorimeters. J. Phys. Conf. Ser., 404, 2012, 012023, 10.1088/1742-6596/404/1/012023.
Barsuk, S., The LHCb Calorimeter Performance and its Expected Radiation-Induced Degradation. IEEE Trans. Nucl. Sci. 57:3 (2010), 1447–1453, 10.1109/TNS.2009.2033683.
Kuleshov, S., Shashlyk calorimeter option for EIC detector. https://indico.bnl.gov/event/8200/contributions/36406/attachments/27471/42023/shashlik_RD_compressed.pdf, Mar. 30 2020 Presentation at a DWG Calorimetry meeting.
Chirikov-Zorin, I., Krumshtein, Z., Olchevski, A., The design of a photodetector unit of a new Shashlyk EM calorimeter for COMPASS II. Nucl. Instrum. Meth. A 824 (2016), 674–677, 10.1016/j.nima.2015.11.075.
Atoian, G.S., et al. An Improved Shashlyk Calorimeter. Nucl. Instrum. Meth. A 584 (2008), 291–303, 10.1016/j.nima.2007.10.022 arXiv:0709.4514.
Semenov, A.Y., et al. Electromagnetic Calorimeter for MPD Spectrometer at NICA Collider. JINST, 15(05), 2020, C05017, 10.1088/1748-0221/15/05/C05017 arXiv:2002.07709.
Avoni, G., et al. The electromagnetic calorimeter of the HERA-B experiment. Nucl. Instrum. Meth. A 580 (2007), 1209–1226, 10.1016/j.nima.2007.06.030.
Anfimov, N., et al. Shashlyk EM calorimeter prototype readout by MAPD with superhigh pixel density for COMPASS II. Nucl. Instrum. Meth. A 718 (2013), 75–77, 10.1016/j.nima.2012.11.104.
Anfimov, N., et al. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA. Phys. Part. Nucl. Lett. 12:4 (2015), 566–569, 10.1134/S1547477115040044.
Jacquet, F., Blondel, A., Report from the Study Group on Detectors for Charge Current Events. Amaldi, U., (eds.) Study of an ep Facility for Europe DESY, Hamburg, April 2–3, 1979, 1979, Deutsches Electron Synchrotron/European Committee for Future Accelerators, Hamburg, Germany, 391.
Arratia, M., Jets for 3D Imaging. https://indico.bnl.gov/event/8604/contributions/38025/attachments/28373/43733/CalorimetryYR_052620.pdf, May 26 2020 Presentation at a DWG Calorimetry meeting.
Hilger, E., The ZEUS Uranium Scintillator Calorimeter for HERA. Nucl. Instrum. Meth. A, 257, 1987, 488, 10.1016/0168-9002(87)90952-1.
Buskulic, D., et al. Performance of the ALEPH detector at LEP. Nucl. Instrum. Meth. A 360 (1995), 481–506, 10.1016/0168-9002(95)00138-7.
Peez, M., et al. An energy flow algorithm for Hadronic Reconstruction in OO: Hadroo2. https://marh1.in2p3.fr/doc/h1-0105-616.pdf, Jan. 2005 H1 Note H1-01/05-616.
Sirunyan, A.M., et al. Particle-flow reconstruction and global event description with the CMS detector. JINST, 12(10), 2017, P10003, 10.1088/1748-0221/12/10/P10003 arXiv:1706.04965.
Komiske, P.T., Metodiev, E.M., Thaler, J., Energy Flow Networks: Deep Sets for Particle Jets. JHEP, 01, 2019, 121, 10.1007/JHEP01(2019)121 arXiv:1810.05165.
Page, B., Jets and Calorimetry: First Look. https://indico.bnl.gov/event/7449/contributions/35967/attachments/27134/41363/templeMeeting2020_jhq-cal_v0.pdf, Mar. 19 2020 Presentation at a DWG Calorimetry meeting.
Arratia, M., Jets for 3D Imaging. https://indico.bnl.gov/event/8200/contributions/36397/attachments/27447/41969/CalorimetryYR_EIC_033120.pdf, Mar. 30 2020 Presentation at a DWG Calorimetry meeting.
Tsai, O., HCAL. https://indico.bnl.gov/event/7787/contributions/35311/attachments/26770/40762/YR_Feb25_2020.pdf, Feb. 25 2020 Presentation at a DWG Calorimetry meeting.
Tsai, O., HCAL high resolution. https://indico.bnl.gov/event/8251/contributions/36487/attachments/27552/42169/YR_Apr7_2020.pdf, Apr. 7 2020 Presentation at a DWG Calorimetry meeting.
Abt, I., et al. The H1 detector at HERA. Nucl. Instrum. Meth. A 386 (1997), 310–347, 10.1016/S0168-9002(96)00893-5.
Wigmans, R., Sampling calorimetry. Nucl. Instrum. Meth. A 494 (2002), 277–287, 10.1016/S0168-9002(02)01481-X.
Drews, G., et al. Experimental Determination of Sampling Fluctuations in Uranium and Lead Hadronic Calorimeters. Nucl. Instrum. Meth. A, 290, 1990, 335, 10.1016/0168-9002(90)90549-L.
Bernardi, E., et al. Performance of a Compensating Lead Scintillator Hadronic Calorimeter. Nucl. Instrum. Meth. A, 262, 1987, 229, 10.1016/0168-9002(87)90861-8.
Acosta, D., et al. Electron, pion and multiparticle detection with a lead/scintillating-fiber calorimeter. Nucl. Instrum. Meth. A 308 (1991), 481–508, 10.1016/0168-9002(91)90062-U.
Wigmans, R., Quartz fibers and the prospects for hadron calorimetry at the 1% resolution level. 7th International Conference on Calorimetry in High-Energy Physics (ICCHEP 97), 1997, 182–193.
Wigmans, R., Calorimetry: Energy measurement in particle physics. vol. 107, 2000, 10.1093/oso/9780198786351.001.0001.
Andresen, A., et al. Response of a Uranium Scintillator Calorimeter to Electrons, Pions and Protons in the Momentum Range 0.5-{GeV}/c to 10-{GeV}/c. Nucl. Instrum. Meth. A, 290, 1990, 95, 10.1016/0168-9002(90)90347-9.
Abramowicz, H., et al. The Response and Resolution of an Iron Scintillator Calorimeter for Hadronic and Electromagnetic Showers Between 10-{GeV} and 140-{GeV}. Nucl. Instrum. Meth., 180, 1981, 429, 10.1016/0029-554X(81)90083-5.
Abt, I., et al. The Tracking, calorimeter and muon detectors of the H1 experiment at HERA. Nucl. Instrum. Meth. A 386 (1997), 348–396, 10.1016/S0168-9002(96)00894-7.
Issever, C., Borras, K., Wegener, D., An Improved weighting algorithm to achieve software compensation in a fine grained LAr calorimeter. Nucl. Instrum. Meth. A 545 (2005), 803–812, 10.1016/j.nima.2005.02.010 arXiv:physics/0408129.
Leroy, C., Rancoita, P., Physics of cascading shower generation and propagation in matter: Principles of high-energy, ultrahigh-energy and compensating calorimetry. Rept. Prog. Phys. 63 (2000), 505–606, 10.1088/0034-4885/63/4/202.
Acosta, D., et al. Effects of radiation damage on scintillating fiber calorimetry. Nucl. Instrum. Meth. B 62 (1991), 116–132, 10.1016/0168-583X(91)95937-9.
Nattrass, C., sPHENIX – a new jet detector at RHIC. J. Phys. Conf. Ser., 1070(1), 2018, 012024, 10.1088/1742-6596/1070/1/012024.
Huang, H., Igo, G., Trentalange, S., Tsai, O., Gagliardi, C., heppelmann, S., Proposal. Development of a New Detector Technology for Fiber Sampling Calorimeters for EIC and STAR. https://wiki.bnl.gov/conferences/images/d/d4/RD-1_RDproposal_April-2011.pdf, Mar. 2011.
Tsai, O.D., et al. Development of a forward calorimeter system for the STAR experiment. J. Phys. Conf. Ser., 587(1), 2015, 012053, 10.1088/1742-6596/587/1/012053.
Huang, H., Igo, G., Trentalange, S., Tsai, O., Gagliardi, C., Heppelmann, S., Proposal. Development of a New Detector Technology for Fiber Sampling Calorimeters for EIC and STAR. https://wiki.bnl.gov/conferences/images/d/d4/RD-1_RDproposal_April-2011.pdf, Mar. 2011.
Wigmans, R., On the role of neutrons in hadron calorimetry. Rev. Sci. Instrum. 69 (1998), 3723–3736, 10.1063/1.1149218.
Benaglia, A., Auffray, E., Lecoq, P., Wenzel, H., Para, A., Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques. IEEE Trans. Nucl. Sci. 63:2 (2016), 574–579, 10.1109/TNS.2016.2527758.
Barney, D., Calorimetry in Particle Physics, and the CMS High-Granularity Calorimeter. JINST, 15(07), 2020, C07018, 10.1088/1748-0221/15/07/C07018.
Armstrong, W., The TOPSiDE Detector Concept. https://indico.bnl.gov/event/9197/contributions/40572/attachments/30009/46826/topside_August_2020.pdf, Aug. 18 2020 Presentation at a DWG Calorimetry meeting.
Breton, D., Irles, A., Jeglot, J., Maalmi, J., Pöschl, R., Zerwas, D., CALICE SiW ECAL – Development and performance of a highly compact digital readout system. JINST, 15(05), 2020, C05074, 10.1088/1748-0221/15/05/C05074 arXiv:2002.09556.
Repond, J., Detector Concepts of the Electron-Ion Collider. PoS, High-pT2019, 2020, 015, 10.22323/1.355.0015.
Schöning, A., et al. MuPix and ATLASPix – Architectures and Results. PoS, Vertex2019, 2020, 024, 10.22323/1.373.0024 arXiv:2002.07253.
Brewer, I., Caputo, R., Negro, M., Leys, R., Kierans, C., Peric, I., Metcalfe, J., Perkins, J., AstroPix: Investigating the Potential of Silicon Pixel Sensors in the Future of Gamma-ray Astrophysics. SPIE Astronomical Telescopes + Instrumentation 2020, 2021 arXiv:2101.02665.
Adloff, C., et al. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques. JINST, 7, 2012, P09017, 10.1088/1748-0221/7/09/P09017 arXiv:1207.4210.
Baulieu, G., et al. Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter. JINST, 10(10), 2015, P10039, 10.1088/1748-0221/10/10/P10039 arXiv:1506.05316.
Anderson, M., et al. The Star time projection chamber: A Unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Meth. A 499 (2003), 659–678, 10.1016/S0168-9002(02)01964-2 arXiv:nucl-ex/0301015.
Alme, J., et al. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events. Nucl. Instrum. Meth. A 622 (2010), 316–367, 10.1016/j.nima.2010.04.042 arXiv:1001.1950.
Huang, J., de/dx in tpc and electron identification. https://indico.bnl.gov/event/8686/contributions/38424/attachments/28574/44046/sPHENIX_TPC_and_EIC.pdf, June 2020 presentation at PID DWG Biweekly Meeting.
Bahnke, T., et al. A novel tpc readout system based on readout chips for si-pixel detectors. https://wiki.bnl.gov/conferences/images/7/7b/New_ProposalLargePixelsTimePix.pdf, July 2017 proposal to EIC R&D Committee.
Anderson, W., et al. Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment. Nucl. Instrum. Meth. A 646 (2011), 35–58, 10.1016/j.nima.2011.04.015 arXiv:1103.4277.
Fraenkel, Z., et al. A Hadron blind detector for the PHENIX experiment at RHIC. Nucl. Instrum. Meth. A 546 (2005), 466–480, 10.1016/j.nima.2005.02.039 arXiv:physics/0502008.
Hemmick, T., Hbd update. https://indico.bnl.gov/event/9062/contributions/40124/attachments/29773/46451/HBD.pptx, July 2020 presentation at PID DWG Biweekly Meeting.
Blatnik, M., et al. Performance of a Quintuple-GEM Based RICH Detector Prototype. IEEE Trans. Nucl. Sci. 62:6 (2015), 3256–3264, 10.1109/TNS.2015.2487999 arXiv:1501.03530.
Seele, J., The sPHENIX forward upgrade (and ePHENIX). Nucl. Phys. A 904–905 (2013), 933c–936c, 10.1016/j.nuclphysa.2013.02.168.
Klest, H., High momentum gem rich parameterization. https://indico.bnl.gov/event/8459/contributions/37390/attachments/27969/42973/High_Momentum_GEM-RICH.pdf, May 2020 presentation at PID DWG Biweekly Meeting.
Agarwala, J., et al. The MPGD-Based Photon Detectors for the upgrade of COMPASS RICH-1 and beyond. Nucl. Instrum. Meth. A 936 (2019), 416–419, 10.1016/j.nima.2018.10.092 arXiv:1807.00816.
Brunbauer, F.M., et al. Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC. JINST, 15(09), 2020, C09052, 10.1088/1748-0221/15/09/C09052 arXiv:2006.02352.
Chatterjee, C., et al. Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC. J. Phys. Conf. Ser., 1498, 2020, 012008, 10.1088/1742-6596/1498/1/012008 arXiv:1908.05058.
Agarwala, J., et al. A modular mini-pad photon detector prototype for RICH application at the Electron Ion Collider. J. Phys. Conf. Ser., 1498, 2020, 012007, 10.1088/1742-6596/1498/1/012007 arXiv:1908.05052.
Agarwala, J., et al. Study of MicroPattern Gaseous detectors with novel nanodiamond based photocathodes for single photon detection in EIC RICH. Nucl. Instrum. Meth. A, 952, 2020, 161967, 10.1016/j.nima.2019.03.022 arXiv:1812.04552.
Cisbani, E., Contalbrigo, M., Dual ring imaging cherenkov status. https://indico.bnl.gov/event/7449/contributions/35908/attachments/27151/41432/EICYR-drich-200320.pdf, March 2020 presentation at Temple Yellow Report Meeting.
Preghenella, R., drich parameterisation. https://indico.bnl.gov/event/8297/contributions/36712/attachments/27616/42306/dRICH_parameterisation.pdf, April 2020 presentation at PID DWG Biweekly Meeting.
Cisbani, E., Contalbrigo, M., Preghenella, R., del, A., Dotto, drich details for yr. https://indico.bnl.gov/event/8297/contributions/36712/attachments/27616/42422/drich_toward_yr_v0.4.pdf, April 2020 presentation at PID DWG Biweekly Meeting.
Cisbani, E., et al. AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case. JINST, 15(05), 2020, P05009, 10.1088/1748-0221/15/05/P05009 arXiv:1911.05797.
Torre, S.D., High momentum pid at eic (in 10 years from now). https://indico.bnl.gov/event/7449/contributions/35912/attachments/27095/41303/DallaTorre_RICH_high-p_March2020_Temple.pdf, March 2020 presentation at the 1st EIC Yellow Report Workshop at Temple University, 19–21 March 2020.
Volpe, G., Focusing rich for high-momentum pid: preliminary results from simulation. https://indico.bnl.gov/event/9062/contributions/40118/attachments/29711/46342/YR_PIDmeeting_31_07_2020.pdf, July 2020 presentation at PID DWG Biweekly Meeting.
He, X., mRICH for EIC – past present and future. https://indico.bnl.gov/event/7449/contributions/35910/attachments/27157/41392/mRICH_YP_PID_Temple_v1.pdf, March 2020 presentation at Temple Yellow Report Meeting.
He, X., Sarsour, M., mrich for eic yr. https://indico.bnl.gov/event/8297/contributions/36713/attachments/27617/42299/mRICH_YP_PID_April15_2020.pdf, April 2020 presentation at PID DWG Biweekly Meeting.
He, X., Description of detector and parameters. https://indico.bnl.gov/event/8419/contributions/37212/attachments/27855/42733/mRICH_fastParameterization.pdf, May 2020 presentation at PID DWG Biweekly Meeting.
He, X., Sarsour, M., Contalbrigo, M., Zhao, Z., mrich for eic yr. https://indico.bnl.gov/event/8419/contributions/37212/attachments/27855/42768/mRICH_YP_PID_May1_2020.pdf, May 2020 presentation at PID DWG Biweekly Meeting.
Schwiening, J., DIRC: The Internally reflecting ring imaging Cherenkov detector for BaBar: Properties of the quartz radiators. AIP Conf. Proc. 422:1 (1998), 407–408, 10.1063/1.55065 arXiv:hep-ex/9707035.
Kalicy, G., The high-performance dirc detector for the electron ion collider detector. https://indico.bnl.gov/event/7449/contributions/35909/attachments/27145/41413/hpDIRC_Temple.pdf, March 2020 presentation at Temple Yellow Report Meeting.
Kalicy, G., Schwiening, J., Barrel dirc detectors for the eic. https://indico.bnl.gov/event/8459/contributions/37351/attachments/27955/42897/20200508-eRD14-DIRC-requirements.pdf, May 2020 presentation at PID DWG Biweekly Meeting.
Kalicy, G., Schwiening, J., Barrel dirc detectors for the eic. https://indico.bnl.gov/event/8542/contributions/37630/attachments/28104/43151/20200515-eRD14-YR-hpDIRC.pdf, May 2020 presentation at PID DWG Biweekly Meeting.
Kalicy, G., Schwiening, J., Barrel dirc detectors for the eic comments and questions from pavia meeting. https://indico.bnl.gov/event/8778/contributions/38831/attachments/28866/44683/20200619-eRD14-YR-hpDIRC-1.pdf, June 2020 presentation at PID DWG Biweekly Meeting.
Kalicy, G., Status of the high-performance DIRC detector for the Future Electron Ion Collider experiment. JINST, 15, 2020, C06060, 10.1088/1748-0221/15/06/C06060.
Kalicy, G., Developing high-performance DIRC detector for the future Electron Ion Collider experiment. JINST, 15, 2020, C11006, 10.1088/1748-0221/15/11/C11006.
Hattawy, M., Xie, J., Chiu, M., Demarteau, M., Hafidi, K., May, E., Repond, J., Wagner, R., Xia, L., Zorn, C., Characteristics of fast timing MCP-PMTs in magnetic fields. Nucl. Instrum. Meth. A 929 (2019), 84–89, 10.1016/j.nima.2019.03.045 arXiv:1808.07824.
Xie, J., Chiu, M., May, E., Meziani, Z.E., Nelson, S., Wagner, R., MCP-PMT development at Argonne for particle identification. JINST, 15(04), 2020, C04038, 10.1088/1748-0221/15/04/C04038.
Xie, J., Demarteau, M., May, R., Wagner, R., Xia, L., Fast-timing microchannel plate photodetectors: Design, fabrication, and characterization. Review of Scientific Instruments, 90, 2019, 43109, 10.1063/1.5063825.
Apresyan, A., et al. Studies of Uniformity of 50 μm Low-Gain Avalanche Detectors at the Fermilab Test Beam. Nucl. Instrum. Meth. A 895 (2018), 158–172, 10.1016/j.nima.2018.03.074.
Pellegrini, G., et al. Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications. Nucl. Instrum. Meth. A 765 (2014), 12–16, 10.1016/j.nima.2014.06.008.
Cartiglia, N., et al. Design optimization of ultra-fast silicon detectors. Nucl. Instrum. Meth. A 796 (2015), 141–148, 10.1016/j.nima.2015.04.025.
Breton, D., De Cacqueray, V., Delagnes, E., Grabas, H., Maalmi, J., Minafra, N., Royon, C., Saimpert, M., Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer. Nucl. Instrum. Meth. A 835 (2016), 51–60, 10.1016/j.nima.2016.08.019 arXiv:1604.02385.
Chiu, M., High-resolution ps tof for pid at the eic. https://indico.bnl.gov/event/7449/contributions/35904/attachments/27176/41439/pstof_pid_eicug2020.pptx, March 2020 presentation at Temple Yellow Report Meeting.
Xie, J., Development of mcp-pmt/lappd and exploring their application for particle identification. https://indico.bnl.gov/event/7449/contributions/35906/attachments/27154/41387/YR-Temple-2.pdf, March 2020 presentation at Temple Yellow Report Meeting.
Li, W., Geurts, F., Loizides, C., Apresyan, A., Cartiglia, N., A lgad-based time-of-flight system for EIC – leveraging experience from the hl-lhc upgrade. https://indico.bnl.gov/event/7449/contributions/35907/attachments/27178/41431/EIC_LGAD_Temple_v2.pdf, March 2020 presentation at Temple Yellow Report Meeting.
Chiu, M., Li, W., pstof for eic pid. https://indico.bnl.gov/event/8419/contributions/37213/attachments/27869/42780/psTOF_EICPID_YR_20200501.pptx, May 2020 presentation at PID DWG Biweekly Meeting.
Ilieva, Y., Evaluation of small photo-sensors in high magnetic fields for eic pid. https://indico.bnl.gov/event/7449/contributions/35905/attachments/27137/41445/Y.Ilieva_HighB.pdf, March 2020 presentation at Temple Yellow Report Meeting.
Calvi, M., Carniti, P., Gotti, C., Matteuzzi, C., Pessina, G., Single photon detection with SiPMs irradiated up to 1014 cm−2 1-MeV-equivalent neutron fluence. Nucl. Instrum. Meth. A 922 (2019), 243–249, 10.1016/j.nima.2019.01.013 arXiv:1805.07154.
Kugathasan, R., A Low-Power Mixed-Signal ASIC for SiPM Readout at Low Temperature. 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), 2019, 1–3, 10.1109/NSS/MIC42101.2019.9059994.
Giacomini, G., Chen, W., Lanni, F., Tricoli, A., Development of a technology for the fabrication of Low-Gain Avalanche Diodes at BNL. Nucl. Instrum. Meth. A 934 (2019), 52–57, 10.1016/j.nima.2019.04.073 arXiv:1811.04152.
Moffat, N., Bates, R., Bullough, M., Flores, L., Maneuski, D., Simon, L., Tartoni, N., Doherty, F., Ashby, J., Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications. JINST, 13(03), 2018, C03014, 10.1088/1748-0221/13/03/C03014.
CMS Collaboration. Technical Proposal for a MIP timing detector in the CMS experiment phase 2 upgrade. Tech. Rep. CERN-LHCC-2017-027. LHCC-P-009, 12 2017, CERN https://cds.cern.ch/record/2296612.
ATLAS Collaboration. Technical Proposal: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade. Tech. Rep. CERN-LHCC-2018-023. LHCC-P-012, 2018, CERN http://cds.cern.ch/record/2623663.
Rossi, L., Bruning, O., High Luminosity Large Hadron Collider: A description for the European Strategy Preparatory Group. https://cds.cern.ch/record/1471000, 2012.
Mandurrino, M., et al. Analysis and numerical design of Resistive AC-Coupled Silicon Detectors (RSD) for 4D particle tracking. Nucl. Instrum. Meth. A, 959, 2020, 163479, 10.1016/j.nima.2020.163479.
Giacomini, G., Chen, W., D'Amen, G., Tricoli, A., Fabrication and performance of AC-coupled LGADs. JINST, 14(09), 2019, P09004, 10.1088/1748-0221/14/09/p09004 arXiv:1906.11542.
Mandurrino, M., et al. First demonstration of 200, 100, and 50 um pitch Resistive AC-Coupled Silicon Detectors (RSD) with 100% fill-factor for 4D particle tracking. IEEE Electron Device Letters 40 (2019), 1780–1783, 10.1109/LED.2019.2943242 arXiv:1907.03314.
Pernegger, H., Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment. Nucl. Instrum. Meth. A 924 (2019), 92–98, 10.1016/j.nima.2018.07.043.
Sharma, A., et al. The MALTA CMOS pixel detector prototype for the ATLAS Pixel ITk. PoS, VERTEX2018, 2019, 014, 10.22323/1.348.0014.
ALICE Collaboration. A Forward Calorimeter (FoCal) in the ALICE experiment. https://cds.cern.ch/record/2696471, 2019.
Horn, T., A PbWO4-based Neutral Particle Spectrometer in Hall C at 12 GeV JLab. J. Phys. Conf. Ser., 587(1), 2015, 012048, 10.1088/1742-6596/587/1/012048.
Atwood, W.B., et al. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission. Astrophys. J. 697 (2009), 1071–1102, 10.1088/0004-637X/697/2/1071 arXiv:0902.1089.
Kharzheev, Y.N., Radiation Hardness of Scintillation Detectors Based on Organic Plastic Scintillators and Optical Fibers. Phys. Part. Nucl. 50:1 (2019), 42–76, 10.1134/S1063779619010027.
Achenbach, P., et al. In-beam tests of scintillating fibre detectors at MAMI and at GSI. Nucl. Instrum. Meth. A 593 (2008), 353–360, 10.1016/j.nima.2008.05.017 arXiv:0802.2830.
Ayerbe Gayoso, C., The scintillating fiber focal plane detector for the use of Kaos as a double arm spectrometer. Ph.D. thesis, 2012, Mainz U., Inst. Kernphys.
Amaldi, U., (eds.) Study of an ep Facility for Europe DESY, Hamburg, April 2–3, 1979, vol. 790402, 1979, Deutsches Electron Synchrotron/European Committee for Future Accelerators, Hamburg, Germany.
Adamczyk, L., et al. Measurement of the Luminosity in the ZEUS Experiment at HERA II. Nucl. Instrum. Meth. A 744 (2014), 80–90, 10.1016/j.nima.2014.01.053 arXiv:1306.1391.
Andruszkow, J., et al. Luminosity measurement in the ZEUS experiment. Acta Phys. Polon. B 32 (2001), 2025–2058.
J. Andruszkow, et al., First measurement of HERA luminosity by ZEUS lumi monitor, 5 1992.
Helbich, M., Ning, Y., Paganis, S., Ren, Z., Schmidke, W.B., Sciulli, F., Schneekloth, U., Buttner, C., Caldwell, A., Sutiak, J., The Spectrometer system for measuring ZEUS luminosity at HERA. Nucl. Instrum. Meth. A 565 (2006), 572–588, 10.1016/j.nima.2006.06.049 arXiv:physics/0512153.
Frisson, T., Boudry, V., Specka, A., Moreau, F., Luminosity measurement in H1. Nucl. Instrum. Meth. A 640 (2011), 49–53, 10.1016/j.nima.2010.12.219.
Aaron, F.D., et al. Determination of the Integrated Luminosity at HERA using Elastic QED Compton Events. Eur. Phys. J. C, 72, 2012, 2163, 10.1140/epjc/s10052-012-2163-2 Erratum Eur. Phys. J. C, 74, 2012, 2733 arXiv:1205.2448.
Haas, T., Makarenko, V., Precision calculation of processes used for luminosity measurement at the ZEUS experiment. Eur. Phys. J. C, 71, 2011, 1574, 10.1140/epjc/s10052-011-1574-9 arXiv:1009.2451.
Aulenbacher, K., Chudakov, E., Gaskell, D., Grames, J., Paschke, K.D., Precision electron beam polarimetry for next generation nuclear physics experiments. Int. J. Mod. Phys. E, 27(07), 2018, 1830004, 10.1142/S0218301318300047.
Hansknecht, J., Poelker, M., Synchronous photoinjection using a frequency-doubled gain-switched fiber-coupled seed laser and ErYb-doped fiber amplifier. Phys. Rev. ST Accel. Beams, 9, 2006, 063501, 10.1103/PhysRevSTAB.9.063501.
Sobloher, B., Fabbri, R., Behnke, T., Olsson, J., Pitzl, D., Schmitt, S., Tomaszewska, J., Polarisation at HERA – Reanalysis of the HERA II Polarimeter Data. arXiv:1201.2894, 1 2012.
Camsonne, A., Hoskins, J., et al. eRD15: R&D for a Compton Electron Detector Progress Report. https://wiki.bnl.gov/conferences/images/7/7c/EIC_RnD_Report_compton_2016.2.pdf, 2017.
Camsonne, A., Hoskins, J., et al. eRD15: R&D for a Compton Electron Detector Progress Report. https://wiki.bnl.gov/conferences/images/e/ec/ERD15-Compton-Edet-Camsonne-v2.pdf, 2016.
Méot, F., et al. eRHIC EIC: Plans for Rapid Acceleration of Polarized Electron Bunch at Cornell Synchrotron. 9th International Particle Accelerator Conference, 2018, MOPMF013, 10.18429/JACoW-IPAC2018-MOPMF013.
Fischer, W., Bazilevsky, A., Impact of three-dimensional polarization profiles on spin-dependent measurements in colliding beam experiments. Phys. Rev. ST Accel. Beams, 15, 2012, 041001, 10.1103/PhysRevSTAB.15.041001.
Aidala, C., et al. Nuclear Dependence of the Transverse-Single-Spin Asymmetry for Forward Neutron Production in Polarized p + A Collisions at sNN=200GeV. Phys. Rev. Lett., 120(2), 2018, 022001, 10.1103/PhysRevLett.120.022001 arXiv:1703.10941.
Mitsuka, G., Recently measured large AN for forward neutrons in p↑A collisions at sNN=200GeV explained through simulations of ultraperipheral collisions and hadronic interactions. Phys. Rev. C, 95(4), 2017, 044908, 10.1103/PhysRevC.95.044908 arXiv:1702.03834.
Anthony, P.L., et al. Deep inelastic scattering of polarized electrons by polarized He-3 and the study of the neutron spin structure. Phys. Rev. D 54 (1996), 6620–6650, 10.1103/PhysRevD.54.6620 arXiv:hep-ex/9610007.
Ackerstaff, K., et al. Measurement of the neutron spin structure function g1(n) with a polarized He-3 internal target. Phys. Lett. B 404 (1997), 383–389, 10.1016/S0370-2693(97)00611-4 arXiv:hep-ex/9703005.
DeSchepper, D., et al. The HERMES polarized He-3 internal gas target. Nucl. Instrum. Meth. A 419 (1998), 16–44, 10.1016/S0168-9002(98)00901-2.
Amarian, M., et al. The Q**2 evolution of the generalized Gerasimov-Drell-Hearn integral for the neutron using a He-3 target. Phys. Rev. Lett., 89, 2002, 242301, 10.1103/PhysRevLett.89.242301 arXiv:nucl-ex/0205020.
Krimmer, J., Distler, M., Heil, W., Karpuk, S., Kiselev, D., Salhi, Z., Otten, E.W., A highly polarized He-3 target for the electron beam at MAMI. Nucl. Instrum. Meth. A 611 (2009), 18–24, 10.1016/j.nima.2009.09.064.
Krimmer, J., et al. A polarized He-3 target for the photon beam at MAMI. Nucl. Instrum. Meth. A 648 (2011), 35–40, 10.1016/j.nima.2011.05.051.
Long, E., et al. Measurement of the single-spin asymmetry A0y in quasi-elastic 3He↑(e, e'n) scattering at 0.4 < Q2 < 1.0 GeV/c2. Phys. Lett. B, 797, 2019, 134875, 10.1016/j.physletb.2019.134875 arXiv:1906.04075.
Okudaira, T., et al. Development and application of a 3He Neutron Spin Filter at J-PARC. Nucl. Instrum. Meth. A, 977, 2020, 164301, 10.1016/j.nima.2020.164301 arXiv:2005.14399.
Greiner, L., et al. A MAPS based vertex detector for the STAR experiment at RHIC. Nucl. Instrum. Meth. A 650 (2011), 68–72, 10.1016/j.nima.2010.12.006.
Kawamoto, T., Vlachos, S., Pontecorvo, L., Dubbert, J., Mikenberg, G., Iengo, P., Dallapiccola, C., Amelung, C., Levinson, L., Richter, R., Lellouch, D., New Small Wheel Technical Design Report. Tech. Rep. CERN-LHCC-2013-006. ATLAS-TDR-020, 2013, CERN http://cds.cern.ch/record/1552862.
De Geronimo, G., Fried, J., Smith, G.C., Yu, B., Vernon, E., Britton, C.L., Bryan, W.L., Clonts, L.G., Frank, S.S., Asic for small angle neutron scattering experiments at the sns. IEEE Transactions on Nuclear Science 54:3 (2007), 541–548, 10.1109/TNS.2007.893718.
A 32 Ch low latency 12b 0.5 GS/s ADC. http://pacificmicrochip.com/wp-content/uploads/2019/11/PMCC_32chADC_500M_12b.pdf.
Buncic, P., Krzewicki, M., Vande Vyvre, P., Technical Design Report for the Upgrade of the Online-Offline Computing System. https://cds.cern.ch/record/2011297, 2015.
Bodlak, M., Frolov, V., Jary, V., Huber, S., Konorov, I., Levit, D., Novy, J., Salac, R., Virius, M., Paul, S., FPGA based data acquisition system for COMPASS experiment. J. Phys. Conf. Ser., 513, 2014, 012029, 10.1088/1742-6596/513/1/012029 arXiv:1310.1308.
Alves, A.A. Jr., et al. The LHCb Detector at the LHC. JINST, 3, 2008, S08005, 10.1088/1748-0221/3/08/S08005.
Colombo, T., et al. The LHCb Online system in 2020: trigger-free read-out with (almost exclusively) off-the-shelf hardware. J. Phys. Conf. Ser., 1085(3), 2018, 032041, 10.1088/1742-6596/1085/3/032041.
Moreira, P., et al. The GBT Project. Topical Workshop on Electronics for Particle Physics, 2009, 10.5170/CERN-2009-006.342.
sPHENIX Collaboration. Technical Design Report for sPHENIX experiment. Tech. rep, 2019, Brookhaven National Lab https://indico.bnl.gov/event/7081/.
Adolfsson, J., et al. SAMPA Chip: the New 32 Channels ASIC for the ALICE TPC and MCH Upgrades. JINST, 12, 2017, C04008, 10.1088/1748-0221/12/04/C04008.
Anderson, J., et al. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework. JINST, 11, 2016, C12023, 10.1088/1748-0221/11/12/C12023.
Purschke, M.L., RCDAQ, a lightweight yet powerful data acquisition system. https://github.com/sPHENIX-Collaboration/rcdaq, 2012.
Ritt, S., The PSI DRS4 Evaluation Board. https://www.psi.ch/en/drs/evaluation-board.
CERN SRS Home Page https://espace.cern.ch/rd51-wg5/srs/default.aspx.
Aschenauer, E., Azmoun, B., Bhopatkar, V., Burton, T., Caines, H., Camsonne, A., Deshpande, K.D.A., Drees, A., Fazio, S., Franz, A., Gal, C., Ge, H., Gnanvo, K., Harris, J.W., Hemmick, T., Hohlmann, M., Kline, P., Lamont, M., Lebedev, A., Lewis, B., Liyanage, N., Majka, R., Nelyubin, V., Pak, R., Pisani, R., Purschke, M., Rosati, M., Saenboonruang, K., Sichtermann, E., Smirnov, N., Staib, M., Stoll, S., Surrow, B., Taneja, S., Ullrich, T., Videbaek, T., Woody, C., Yalcin, S., Proposal for detector R&D towards an EIC detector. https://wiki.bnl.gov/conferences/images/9/95/RD2012-16_EIC-Tracking_proposal_April_2012.pdf, 2012.
Gyurjyan, V., Abbott, D., Carbonneau, J., Gilfoyle, G., Heddle, D., Heyes, G., Paul, S., Timmer, C., Weygand, D., Wolin, E., CLARA: A contemporary approach to physics data processing. J. Phys. Conf. Ser., 331, 2011, 032013, 10.1088/1742-6596/331/3/032013.
Dong, H., Cuevas, C., Curry, D., Jastrzembski, E., Barbosa, F., Wilson, J., Taylor, M., Raydo, B., Integrated tests of a high speed vxs switch card and 250 msps flash adcs. 2007 IEEE Nuclear Science Symposium Conference Record, vol. 1, 2007, 831–833, 10.1109/NSSMIC.2007.4436457.
Ameli, F., Battaglieri, M., Bondí, M., Capodiferro, M., Celentano, A., Chiarusi, T., Chiodi, G., De Napoli, M., Lunadei, R., Marsicano, L., Musico, P., Pratolongo, F., Recchia, L., Ruggieri, D., Stellato, L., A low cost, high speed, multichannel analog to digital converter board. Nucl. Instrum. And Meth. in Phys. Res. A 936 (2019), 286–287, 10.1016/j.nima.2018.08.110.
Favaro, M., Chiarusi, T., Giacomini, F., Manzali, M., Margiotta, A., Pellegrino, C., The Trigger and Data Acquisition System for the KM3NeT-Italia towers. EPJ Web Conf., 116, 2016, 05009, 10.1051/epjconf/201611605009.
Lawrence, D., Boehnlein, A., Brei, N., Romanov, D., JANA2: Multithreaded Event Reconstruction. J. Phys. Conf. Ser., 1525(1), 2020, 012032, 10.1088/1742-6596/1525/1/012032.
Gyurgyan, V., Mancilla, S., Oyarzún, R., CLARA: CLAS12 Reconstruction and Analysis Framework. J. Phys. Conf. Ser., 762, 2016, 012009, 10.1088/1742-6596/762/1/012009.
Ziegler, V., et al. The CLAS12 software framework and event reconstruction. Nucl. Instrum. Meth. A, 959, 2020, 163472, 10.1016/j.nima.2020.163472.
Barbosa, F., Hutton, C., Sitnikov, A., Somov, A., Somov, S., Tolstukhin, I., Pair spectrometer hodoscope for Hall D at Jefferson Lab. Nucl. Instrum. Meth. A 795 (2015), 376–380, 10.1016/j.nima.2015.06.012.
Frank, M., Gaede, F., Grefe, C., Mato, P., DD4hep: A Detector Description Toolkit for High Energy Physics Experiments. J. Phys. Conf. Ser., 513, 2014, 022010, 10.1088/1742-6596/513/2/022010.
Brun, R., Gheata, A., Gheata, M., The ROOT geometry package. Nucl. Instrum. Meth. A 502 (2003), 676–680, 10.1016/S0168-9002(03)00541-2.
Amadio, G., et al. GeantV Alpha Release. J. Phys. Conf. Ser., 1085(3), 2018, 032037, 10.1088/1742-6596/1085/3/032037.
Ai, X., Acts: A common tracking software. arXiv:1910.03128, 2019.
Ai, X., Tracking with A Common Tracking Software. arXiv:2007.01239, 2020.
Rauch, J., Schlüter, T., GENFIT – a Generic Track-Fitting Toolkit. J. Phys. Conf. Ser., 608(1), 2015, 012042, 10.1088/1742-6596/608/1/012042 arXiv:1410.3698.
Barrand, G., et al. GAUDI – A software architecture and framework for building HEP data processing applications. Comput. Phys. Commun. 140 (2001), 45–55, 10.1016/S0010-4655(01)00254-5.
Clemencic, M., Degaudenzi, H., Mato, P., Binet, S., Lavrijsen, W., Leggett, C., Belyaev, I., Recent developments in the LHCb software framework Gaudi. J. Phys. Conf. Ser., 219, 2010, 042006, 10.1088/1742-6596/219/4/042006.
Tejedor, E., Bocchi, E., Castro, D., Gonzalez, H., Lamanna, M., Mato, P., Moscicki, J., Piparo, D., Facilitating collaborative analysis in SWAN. EPJ Web Conf., 214, 2019, 07022, 10.1051/epjconf/201921407022.
Höche, S., Prestel, S., The midpoint between dipole and parton showers. Eur. Phys. J. C, 75(9), 2015, 461, 10.1140/epjc/s10052-015-3684-2 arXiv:1506.05057.
Schuler, G.A., Spiesberger, H., DJANGO: The Interface for the event generators HERACLES and LEPTO. Workshop on Physics at HERA, 1991, 1419–1432.
Bedaque, P., Boehnlein, A., Cromaz, M., Diefenthaler, M., Elouadrhiri, L., Horn, T., Kuchera, M., Lawrence, D., Lee, D., Lidia, S., McKeown, R., Melnitchouk, W., Nazarewicz, W., Orginos, K., Roblin, Y., Smith, M.S., Schram, M., Wang, X.-N., Report from the a.i. for nuclear physics workshop. arXiv:2006.05422, 2020.
Mehta, P., Bukov, M., Wang, C.-H., Day, A.G., Richardson, C., Fisher, C.K., Schwab, D.J., A high-bias, low-variance introduction to machine learning for physicists. Physics Reports 810 (2019), 1–124, 10.1016/j.physrep.2019.03.001.
Lynch, C., Big data: How do your data grow?. Nature, 455, 2008, 28, 10.1038/455028a.
Fast Machine Learning Workshop. https://indico.cern.ch/event/924283/, 2020.
Chalapathy, R., Chawla, S., Deep learning for anomaly detection: A survey. arXiv:1901.03407, 2019.
Farrell, S., Calafiura, P., Mudigonda Prabhat, M., Anderson, D., Vlimant, J.-R., Zheng, S., Bendavid, J., Spiropulu, M., Cerati, G., Gray, L., Kowalkowski, J., Spentzouris, P., Tsaris, A., Novel deep learning methods for track reconstruction. arXiv:1810.06111, 2018.
Derkach, D., Hushchyn, M., Likhomanenko, T., Rogozhnikov, A., Kazeev, N., Chekalina, V., Neychev, R., Kirillov, S., Ratnikov, F., Machine-Learning-based global particle-identification algorithms at the LHCb experiment. J. Phys. Conf. Ser., 1085(4), 2018, 042038, 10.1088/1742-6596/1085/4/042038.
Derkach, D., Hushchyn, M., Kazeev, N., Machine Learning based Global Particle Identification Algorithms at the LHCb Experiment. EPJ Web Conf., 214, 2019, 06011, 10.1051/epjconf/201921406011.
Paganini, M., de Oliveira, L., Nachman, B., Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters. Phys. Rev. Lett., 120(4), 2018, 042003, 10.1103/PhysRevLett.120.042003 arXiv:1705.02355.
Stevens, R., Taylor, V., Nichols, J., Maccabe, A.B., Yelick, K., Brown, D., AI for Science. https://www.anl.gov/ai-for-science-report, 2020.
Li, K., Malik, J., Learning to optimize. arXiv:1606.01885, 2016.
Whitley, D., A genetic algorithm tutorial. Statistics and computing 4 (1994), 65–85.
Jones, D.R., Schonlau, M., Welch, W.J., Efficient global optimization of expensive black-box functions. Journal of Global optimization 13 (1998), 455–492.
Town Hall on A.I. Projects in the Experimental Physics Program. https://wiki.jlab.org/epsciwiki/index.php/Aug._28,_ENP_%2B_CST_AI/ML_Town_Hall, 2020.
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. International conference on parallel problem solving from nature, 2000, Springer, 849–858, 10.1007/3-540-45356-3_83.
Deb, K., Multi-objective optimization using evolutionary algorithms. vol. 16, 2001, John Wiley & Sons.
Feliot, P., Bect, J., Vazquez, E., A Bayesian approach to constrained single-and multi-objective optimization. Journal of Global Optimization 67:1–2 (2017), 97–133.
Jin, Y., Sendhoff, B., Pareto-based multiobjective machine learning: An overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38 (2008), 397–415.
Joint Machine Learning WorkshopGlueX Panda EIC. https://indico.gsi.de/event/9244/, 2020.
Berlinguette, C., Fork, D., Munday, J., Trevithick, M., Koningstein, R., Schenkel, T., Chiang, Y.-M., Revisiting the cold case of cold fusion. Nature, 570, 2019, 45, 10.1038/s41586-019-1256-6.
Goodman, M.C., Neutrino Mistakes: Wrong tracks and Hints, Hopes and Failures. International Conference on History of the Neutrino: 1930–2018, 2019 arXiv:1901.07068.
Aaron, F.D., et al. Search for first generation leptoquarks in ep collisions at HERA. Phys. Lett. B 704 (2011), 388–396, 10.1016/j.physletb.2011.09.017 arXiv:1107.3716.
Abramowicz, H., et al. Search for first-generation leptoquarks at HERA. Phys. Rev. D, 86, 2012, 012005, 10.1103/PhysRevD.86.012005 arXiv:1205.5179.
Aktas, A., et al. Search for baryonic resonances decaying to Xi pi in deep-inelastic scattering at HERA. Eur. Phys. J. C 52 (2007), 507–514, 10.1140/epjc/s10052-007-0407-3 arXiv:0704.3594.
Chekanov, S., et al. Search for pentaquarks decaying to Xi-pi in deep inelastic scattering at HERA. Phys. Lett. B 610 (2005), 212–224, 10.1016/j.physletb.2005.02.016 arXiv:hep-ex/0501069.
Abramowicz, H., et al. Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C, 75(12), 2015, 580, 10.1140/epjc/s10052-015-3710-4 arXiv:1506.06042.
Meehan, K., STAR Results from Au + Au Fixed-Target Collisions at sNN=4.5GeV. Nucl. Phys. A 967 (2017), 808–811, 10.1016/j.nuclphysa.2017.06.007 arXiv:1704.06342.
Maurice, E., Fixed-target physics at LHCb. 5th Large Hadron Collider Physics Conference, 2017 arXiv:1708.05184.
Barschel, C., et al. LHC fixed target experiments: Report from the LHC Fixed Target Working Group of the CERN Physics Beyond Colliders Forum. CERN Yellow Reports: Monographs, vol. 4/2020, 2020, CERN, Geneva, 10.23731/CYRM-2020-004.
Wong, C.P., et al. Modular focusing ring imaging Cherenkov detector for electron–ion collider experiments. Nucl. Instrum. Meth. A 871 (2017), 13–19, 10.1016/j.nima.2017.07.001.
Barion, L., et al. RICH detectors development for hadron identification at EIC: design, prototyping and reconstruction algorithm. JINST, 15(02), 2020, C02040, 10.1088/1748-0221/15/02/C02040.
Azmoun, B., et al. Results from a Prototype Combination TPC Cherenkov Detector with GEM Readout. IEEE Trans. Nucl. Sci. 66:8 (2019), 1984–1992, 10.1109/TNS.2019.2928269 arXiv:1904.13229.
White, S.N., R & D for a Dedicated Fast Timing Layer in the CMS Endcap Upgrade. Acta Phys. Polon. B Proc. Suppl., 7, 2014, 743, 10.5506/APhysPolBSupp.7.743 arXiv:1409.1165.
Minafra, N., Al Ghoul, H., Arcidiacono, R., Cartiglia, N., Forthomme, L., Mulargia, R., Obertino, M., Royon, C., Test of Ultra Fast Silicon Detectors for Picosecond Time Measurements with a New Multipurpose Read-Out Board. Nucl. Instrum. Meth. A 867 (2017), 88–92, 10.1016/j.nima.2017.04.032 arXiv:1704.05298.
CMS Collaboration. A MIP Timing Detector for the CMS Phase-2 Upgrade. Tech. Rep. CERN-LHCC-2019-003. CMS-TDR-020, 2019, CERN https://cds.cern.ch/record/2667167.
Jadhav, M., Armstrong, W., Cloet, I., Joosten, S., Mazza, S.M., Metcalfe, J., Meziani, Z.E., Sadrozinski, H.F.W., Schumm, B., Seiden, A., Picosecond Timing Resolution Measurements of Low Gain Avalanche Detectors with a 120 GeV Proton Beam for the TOPSiDE Detector Concept. arXiv:2010.02499, 10 2020.
Polakovic, T., Armstrong, W.R., Yefremenko, V., Pearson, J.E., Hafidi, K., Karapetrov, G., Meziani, Z.E., Novosad, V., Superconducting nanowires as high-rate photon detectors in strong magnetic fields. Nucl. Instrum. Meth. A, 959, 2020, 163543, 10.1016/j.nima.2020.163543 arXiv:1907.13059.
EIC Detector Advisory Committee, Report of the 19th Electron Ion Collider Detector R&D Meeting. https://wiki.bnl.gov/conferences/images/5/53/EIC_Review_2020_July.pdf, 2020.
Polakovic, T., Armstrong, W., Karapetrov, G., Meziani, Z.-E., Novosad, V., Unconventional applications of superconducting nanowire single photon detectors. Nanomaterials, 10, 2020, 1198, 10.3390/nano10061198.
DOE Basic Research Needs Study on High Energy Physics Detector Research and Development, Report of the Office of Science Workshop on Basic Research Needs for HEP Detector Research and Development https://science.osti.gov/-/media/hep/pdf/Reports/2020/DOE_Basic_Research_Needs_Study_on_High_Energy_Physics.pdf, 2019.
High precision timing distribution project. https://espace.cern.ch/HighPrecisionTiming.
Department, CERN Experimental Physics, Strategic R&D Programme on Technologies for Future Experiments. https://ep-dep.web.cern.ch/sites/ep-dep.web.cern.ch/files/Report%20final_0.pdf, 2018.
Bentvelsen, S., Engelen, J., Kooijman, P., Reconstruction of (x, Q2) and extraction of structure functions in neutral current scattering at HERA. Workshop on Physics at HERA, 1992, 23–42 https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/039/24039755.pdf.